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Abstract

Background: The compressed sensing (CS) of acceleration data has been draw-

ing increasing attention in gait telemonitoring application. In such application, there
still exist some challenging issues including high energy consumption of body-worn
device for acceleration data acquisition and the poor reconstruction performance due
to nonsparsity of acceleration data. Thus, the novel scheme of compressive sensing of
acceleration data is needed urgently for solutions that are found to these issues.

Methods: In our scheme, the sparse binary matrix is firstly designed as an optimal
measurement matrix only containing a smallest number of nonzero entries. And then
the block sparse Bayesian learning (BSBL) algorithm is introduced to reconstruct accel-
eration data with high fidelity by exploiting block sparsity. Finally, some commonly
used gait classification models such as multilayer perceptron (MLP), support vector
machine (SVM) and KStar are applied to further validate the feasibility of our scheme
for gait telemonitoring application.

Results: The acceleration data were selected from open Human Activity Dataset of
Southern California University (USC-HAD). The optimal sparse binary matrix (a smallest
number of nonzero entries is 8) is as strong as the full optimal measurement matrix
such as Gaussian random matrix. Moreover, BSBL algorithm significantly outperforms
existing conventional CS reconstruction algorithms, and reaches the maximal signal-
to-noise ratio value (70 dB). In comparison, MLP is best for gait classification, and it can
classify upstairs and downstairs patterns with best accuracy of 95 % and seven gait
patterns with maximal accuracy of 92 %, respectively.

Conclusions: These results show that sparse binary matrix and BSBL algorithm are
feasibly applied in compressive sensing of acceleration data to achieve the perfect
compression and reconstruction performance, which has a great potential for gait

telemonitoring application.

Keywords: Compressed sensing, Acceleration data, Gait classification, Gait monitoring
and assessment

Background

In recent 10 years, the telemonitoring of human gait has been drawing increasing atten-
tion in clinical application such as the early identification of at-risk gait of elderly, the
assessment of gait during rehabilitation, and so on [1-3]. It is advantageous to easily
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real-time monitor gait function change of people at home or outdoor environment, and
people don’t often need to visit hospital. In most of gait telemonitoring system, the
body-worn device equipped with accelerometer is usually served as data acquisition
module, and the acquired acceleration data is transmitted, via internet, to remote termi-
nal where further data processing such as gait classification is performed for gait telem-
onitoring [4—6]. Currently, acceleration data has been widely applied in the field of study
on gait monitoring. In gait telemonitoring application, there still exist some challeng-
ing issues: energy constrains in body-worn device due to the limited battle life and the
poor fidelity of receiving acceleration data at remote terminal [7-9]. Most of pervious
studies mainly focused on searching for the technology solutions of energy constraint
by designing wireless communication protocol with low energy consumption. Although
previous studies can save energy by regulating the data packet size to be sent, they don’t
greatly reduce a larger amount of data (i.e. the dominant source of energy waste) during
transmission [7, 8]. Recently, some researchers tried to introduce CS method (a novel
data compression methodology including compression and reconstruction algorithm)
to address existing issues [10—12]. Their basic idea is that in view of gait telemonitor-
ing system, acceleration data processing is divided into two different stages. In the first
stage, acceleration data before transmission on body-worn device is compressed at far
below Nyquist sampling frequency. In the second stage, reconstruction of accelera-
tion data is performed at remote terminal. For instance, Akimura et al. demonstrated
that compressed sensing of acceleration data is feasible in human activity telemonitor-
ing application [10]. In their study, Gaussian measurement matrix and conventional
reconstruction algorithm were applied to compress and reconstruct acceleration data,
respectively. However, they don’t investigate the effect of nonsparsity of acceleration
data on CS reconstruction performance. As we know, acceleration data is character-
ized by complex dynamic with long-range correlation, and its time series is usually non-
stationary and nonlinear [13—-15]. Moreover, acceleration data is non-sparse enough in
time domain or the transformed domain. So, the nonsparsity of acceleration data must
be taken into count in CS reconstruction algorithm that mainly depends on the sparsity
of data [16], otherwise reconstruction data with poor fidelity is possibly produced, which
largely deteriorates the quality of gait monitoring. Thus, it is need to find the advanced
CS reconstruction algorithm for acceleration data with nonsparsity.

Theoretically, acceleration data has the rich data structure such as block structure
[17-19], and it is possible to perfectly reconstruct acceleration data by exploiting block
sparsity. Recent studies showed that block sparse Bayesian learning (BSBL) algorithm
has superior ability to reconstruct non-sparse data by exploiting block sparsity even if
data has no distinct block structure [18, 19]. Successful examples include reconstruc-
tion of EEG and fetal ECG in telemonitoring setting [20, 21]. To date, no study has been
reported that BSBL is used to reconstruct acceleration data. It motivates us to investi-
gate the practicality of application of BSBL for reconstruction of acceleration data with
high fidelity.

In CS scheme, the design of measurement matrix is very important to improve CS
performance. Currently, the most used measurement matrix mainly includes Gauss-
ian matrix, Bernoulli matrix and sparse binary matrix. In comparison, Gaussian matrix
and Bernoulli matrix are theoretically superior to sparse binary matrix. However, they
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have to be implemented in hardware with high energy consumption [22, 23]. For exam-
ple, Gaussian random matrix can be generated only when Gaussian random generator is
integrated in hardware, thus increasing the hardware complexity and high-computational
complexity [22, 23]. In contrast, sparse binary matrix, derived from sub-Gaussian random
matrices that is formed by the entries of 0 and 1, has advantages that the efficient imple-
mentation of the large matrix multiplication in CS is performed during a short execution
time [20, 23]. More importantly, sparse binary matrix can be optimally designed as meas-
urement matrix that only includes a smallest number of nonzero entries. These advan-
tages are greatly contributes to be easily implemented in hardware design for saving more
energy. So far, no study has been published that sparse binary matrix is feasibly applied
for compressive sensing of acceleration data. Therefore, we try to investigate the feasibil-
ity of application of sparse binary matrix in compressive sensing of acceleration data.

So, in this study, we proposed a novel scheme of compressive sensing of acceleration
data for gait telemonitoring. That is, sparse binary matrix is designed as an optimal
measurement matrix only containing a smallest number of nonzero entries. And BSBL
algorithm is introduced to reconstruct nonsparse acceleration data with high fidelity.
The acceleration data were selected from an open human activity dataset of University
of Southern California (USC-HAD) [24], in order to validate the feasibility of our CS
scheme. In addition, three commonly used gait classification models such as support
vector machine (SVM) [25], multilayer perceptron (MLP) [26] and KStar [27] are utilized
to further test the reconstructed acceleration data with high fidelity for gait monitoring.

The rest of paper is organized as follows. Firstly, we describe the novel CS scheme of
acceleration data for gait classification. Secondly, we present the simulation experiment that
is made to validate the feasibility of our proposed CS scheme by using the selected USC-
HAD data. Thirdly, we further discuss the effectiveness of our CS scheme in gait telemoni-
toring application according to experimental results. Lastly, the conclusion is presented.

The novel CS scheme of acceleration data for gait classification

Compressive sensing theory is proposed by Donoho, and its basic idea is that the best
CS performance is achieved by exploring data sparsity. The conventional CS scheme
mainly includes sparse representation of data, design of measurement matrix and recon-
struction algorithm [11]. In our proposed CS scheme for gait telemonitoring, as shown
in Fig. 1, sparse binary matrix is optimally designed as a measurement matrix for accel-
eration data compression on body-worn device. And BSBL algorithm is introduced to
reconstruct acceleration data with high fidelity at remote terminal. This greatly contrib-
utes to gait classification with high quality in gait telemonitoring application. The detail
of our CS scheme is presented as follows.
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Fig. 1 Block diagram of compressive sensing of acceleration data for gait telemonitoring
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Design of the optimal measurement matrix
According to the CS theory, the raw acceleration data X € RN * ! (N denotes the length of
data) on body-worn device can be greatly compressed by

Y = X (D

where measurement matrix ® € R * N (M < N) and compressed data Y € RM <1 (M is
data length). Here, sparse binary matrix, as shown in Eq. (2), is selected to be optimally
designed as a measurement matrix that contains a smallest amount of nonzero entries,
in order to greatly reduce lots of computational resources on body-worn device. For
comparison, Gaussian random matrix and Bernoulli random matrix are both selected to

further validate the best CS performance from our scheme for acceleration data.

1010---1
0110---0

o= ... . 2
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BSBL algorithm for reconstructing acceleration data

In conventional CS reconstruction algorithm, data must satisfy sparse enough in time
domain or the transformed domain [11]. That is, data X is sparsely represented as
X = ya, where y € RV * N is sparse basis, and a is the corresponding sparse represen-
tation coefficient. And according to Eq. (1), compressed data ¥ = ®X = Oya. In CS
theory, the estimation of sparse coefficient a can be obtained by solving the following [,
optimization problem

min||a|;subjectto Y = & o 3)

Therefore, the reconstruction of data X can be achieved by the estimated «,
i.e.X = Wa ~ X. The detailed procedure of solution is found in [11].

Unlike the above reconstruction algorithm, BSBL algorithm accurately recon-
structs nonsparse data by exploiting block sparsity [17-19]. In this study, accel-
eration data Xis considered as a concatenation of a number of blocks, that is,

X =[x10 s %pys e Xpy 415 - - ,xhl]T where [ is a number of the randomly partitioned

T T
xl xl

blocks, and /; denotes the partitioned block size. In BSBL algorithm for reconstructing
acceleration data, each partition block X € R'* 1 satisfies the parameterized multivariate
Gaussian distribution:

p(Xji 4, bj) ~ N(0,4b;), j=12,...1 @)

where the unknown positive parameters ; is used to capture block sparsity, and \; = 0
means that the j-th block is zero. The unknown parameter b; € R%*% is a positive defi-
nite matrix, and it describes the correlation among elements within the j-th block. Here,
all partitioned block are assumed to satisfy mutual uncorrelated, and the prior density of
X is defined as
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In view of acceleration data contaminated by noise, compressed data Y € RMx1 g
defined as

Y=0X+Z (6)

where Z € RM* 1 denotes noise, and it satisfies Gaussian distribution of N(0, pl)where p
is a positive scalar and I € RM * lis an identity matrix. Based on Y € RM * 1, the posterior
density of X is defined as Gaussian distribution

p(X/ Yo {2}, ) =N(ke Y, ) @)

where the mean value o = >, @7 (p/ + ® Y, dDT)le, and the value of covariance
matrix ) g = (Z;l + %dJTCD)il. A

So, reconstruction of acceleration data X is achieved when all parameters (p, N bj) are
available, i.e. X ~ pe. In BSBL framework, all parameters (p, A;, b)) are obtained by opti-
mal learning algorithms [18, 19]. In this study, we select the bound-optimization BSBL
algorithm (i.e. BSBL-BO) due to its faster convergence speed. The detail procedure for
solution is presented in Appendix 1.

For comparison, some conventional CS reconstruction algorithms were selected to
validate superior ability of BSBL algorithm for reconstructing acceleration data. These
selected algorithms include: (1) algorithms without block structure such as orthogo-
nal matching pursuit (OMP) [28], basis pursuit (BP) [29], subspace pursuit (SP) [30],
smoothed /,-norm (SLO) [31]; (2) algorithms with block structure such as dynamic group
sparsity (DGS) [32], structured orthogonal matching pursuit (SOMP) [33], Group Lasso
[34], and these algorithms only consider the prior knowledge of block partition.

Evaluation criteria for the proposed CS scheme
In this study, the assessment of performance of our scheme is implemented according to
the following common criteria [18, 20, 22, 23]:

1. Compression ratio (CR): it is used to quantitatively evaluate the ability of compres-
sion of acceleration data, and is defined as

N )
CR =~ % 100% (8)

2. Normalized mean square error (NMSE): it is employed to assess the performance of
reconstruction of acceleration data, and is defined as

NMSE(X,X) = +—112 9
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3. Signal-to-noise ratio (SNR): it is only used to measure the ability of the reconstruc-
tion of acceleration data, and is defined as

Yoy X2(n)
SN (X () — X (m))?

SNR = 10log,, (10)

4. Pearson correlation coefficient: it is also used to evaluate the reconstruction perfor-
mance by testing the similarity difference between the raw data and the reconstruc-
tion data, and is defined as

S -1 (k- )
SR (6 -0 2N (- %)

i=12,...,N (11)

where ):( denotes the mean value.

Gait classification models based on the reconstructed acceleration data

Three commonly used gait classification models such as SVM, MLP, and KStar were
selected to further test the reconstructed acceleration data with high fidelity for gait
monitoring. SVM classification model is derived from the Vapnik—Chervonenkis theory
and structural risk minimization [25]. Its basic idea is that the data to be classified can be
firstly mapped into the high-dimensional feature space via kernel function, and then an
optimal separating hyperplane is constructed between the classes in the mapped space.
The multilayer perceptron is also an effective classification model based on artificial
neural networks, and it usually uses the back propagation algorithm to construct classifi-
cation model [26]. KStar is a common classification model based on k-nearest neighbors
framework, and its basic idea is to measure the difference between input sample by using
entropy-based distance [27]. A detailed description of these classification algorithms are
found in [25-27], respectively.

In order to improve classification performance, some good gait features containing
more separate information are selected from the reconstructed acceleration data accord-
ing to some common statistical parameters [5, 9, 10, 13, 14]: Standard deviation (SD),
Skewness, Kurtosis and Pearson correlation coefficient. These selected parameters are
defined as follows:

1 N . 2\ 2
SD = N;( l«—)g) (12)
Ny (K- &)
i—=1 i i
Skewness = ! (13)
(N —1)(N —2)SD3
~ A\ 4
SN (X - X 12
Kurtosis = NN +1) =l ( : l) 3N —1)

(N =D =2)(N —-3)

SD* (N —2)(N —3)
(14)
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In addition, Pearson correlation coefficient is defined in Eq. (11).

Also, the prediction ability of gait classification model is evaluated according to three
statistical measures [16, 35]: Accuracy (Acc), Sensitivity (Sen), and Specificity (Spe). The
above measures are defined as follows:

A P+ IN 100 % 15
ccuracy = X
Y= TPy P+ IN + EN ° (s)
Sensitivit P 100 % 16
Vity = ———— X
ensitivity TP+ EN o (16)
N
Specificity = —— x 100 %
pecificity TN T EP X b (17)

where TP refers to the number of true positive; FP is the number of false positive; TN
denotes the number of true negative; FN is the number of false negative.

Experimental results

Acceleration data dataset

In this study, the acceleration data from an open USC-HAD (http://www-scf.usc.
edu/~mizhang/datasets.htm) [24] were selected to validate the feasibility of our pro-
posed CS scheme. The USC-HAD includes acceleration data of 14 subjects with 12 low-
level activities such as walk forward, walk left, walk right, go upstairs, go downstairs, run
forward, jump up and down, sit and fidget, stand, sleep, elevator up, and elevator down.
Each activity was asked to perform on different days at various indoor and outdoor loca-
tions for capturing more information related to day-to-day activity variations. The accel-
eration data was acquired by a MotionNode (e.g. a high-performance factory-calibrated
inertial sensing device) which integrates a 3-axis accelerometer (£6 g) and a 3-axis gyro-
scope (£500 dps). MotionNode was asked to wear on the front right hip of each subject
and the sample ratio was set to 100 Hz. For each activity, each participant was asked to

perform 5 trials.

Evaluation of sparse binary matrix for CS of acceleration data

Firstly, we evaluate the effect of sparse binary measurement matrix containing the small-
est number of nonzero entries on CS performance. In the experiment, sparse binary
matrix only includes d nonzero entries in each column, and the smallest number of
nonzero entriesdis determined according to the best CS performance while compres-
sion ratios are varied. The acceleration data length is set to 512 points (i.e. N = 512).
BSBL-BO and NMSE are used as reconstruction algorithm and evaluation criterion,
respectively. The results are shown in Fig. 2, and it is obviously that while compression
ratios are varied, NMSE varies with the value of d. When compression ratio is less than
30 %, NMSE slightly changes during the increase of the value of d. In contrast, when
compression ratio reaches 50 %, NMSE increases with the value of d. Especially, when
the number of d exceeds 8, NMSE still keeps lower and stable. These results illustrate
that sparse binary matrix containing a small number of nonzero entries is feasible for
compressive sensing of acceleration data. In addition, when compression ratio is more
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Fig. 2 Results of NMSE versus d for different CRs

than 80 %, NMSE significantly grows, suggesting that higher compression ratios possibly
destroy CS performance.

For comparison, Gaussian random matrix and Bernoulli random matrix are performed
in the experiment. Both selected matrices satisfy independent identically distributed,
and the entries of each matrix are obtained by sampling its corresponding distribution.
The comparative results are shown in Fig. 3. It is apparent that NMSE from three matri-
ces all increase with compression ratios. In comparison, NMSE from our designed sparse
binary matrix is lower when compression ratio is less than 60 %. Especially, while com-
pression ratio is close to 40 %, NMSE from three matrices is almost same. These results
show that our designed sparse binary matrix is as strong as the full random matrices in

compressive sensing of acceleration data.

003 T T .
—&— Sparse Matrix(d=8)
— & — Gaussian Matrix fo
0025¢ Bernouilli Matrix // 1
/@
s
002t /S i
/ /./ ’
/o
w / /'/
L0015+ !/ 8
= /
= / /
74
.“ d
0.01f /// ]
v
Vi
0.005F .
el
:e’—_—él—_*”:\:'/ L L 1 1 1
%.2 03 04 05 06 07 08 09 1
Compression ratio
Fig. 3 Results of NMSE versus CRs for three different measurement matrices
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Evaluation of the performance of BSBL reconstruction algorithm

Next, we evaluate the reconstruction performance of BSBL algorithm. In this experi-
ment, acceleration data length is fixed to 500 (i.e. N = 500), and it is divided into 25
blocks, each block containing 20 points. Our designed sparse binary matrix and discrete
cosine group dictionary are used as measurement matrix and sparse basis {, respectively.
For comparison, some conventional CS reconstruction algorithms such as OMP, BP, SP,
SLO, DGS, SOMP, and Group Lasso are performed. Pearson correlation coefficient and
signal-to-noise ratio (SNR) are selected as evaluation criteria, respectively. Each recon-
struction algorithm is repeated for 20 times. The comparative results are shown in Figs. 4
and 5, respectively. As shown in Fig. 4, SNR from most of algorithms increases with the
value ofM, except that SNR from OMP, BP and DGS decrease. In comparison, SNR
from BSBL-BO algorithm is maximal. Similarly, as shown in Fig. 5, it is obviously that

100 . . . . . . —
—&— OMP T

0F —4--BP R 7
—% —SP o

o P S

T T

—8—DGS /{)/-’ s

70F —&--SOMP YT 1
—% — Group Lasso R < ’;;//”

o B
60F --%--BSBL-BO 8 HTE -
7

SNR

10 1 1 1 1 1 1 1
100 150 200 250 300 350 400 450 500
Length of compressed data M

Fig. 4 Results of SNR versus M

e
'3

—&-SOMP
—#—Group Lasso |
~%--BSBL-BO

Pearson correlation

100 150 200 250 300 350 400 450 500
Length of compressed data M

Fig. 5 Results of Pearson correlation coefficient versus M
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Pearson correlation coefficient values from all reconstruction algorithms increase with
the value ofM. In comparison, Pearson correlation coefficient from BSBL-BO is higher
when the value of M is less than 350. Especially, from Fig. 4 and 5, it is apparent that
when a number of Mis close to 250, the reconstruction performance of BSBL-BO algo-
rithm is best. In addition, Table 1 also presents that the comparative results among all
reconstruction algorithms when compression ratio is set to 50 %. As shown in Table 1,
BSBL-BO algorithm reaches the maximal SNR value of 70 dB while its execution time
is higher. This is because BSBL algorithm needs a large number of iterations for finding
fewer sparse blocks hidden in acceleration data. In conclusion, these results illustrate
that BSBL algorithm feasibly reconstruct acceleration data with high fidelity by exploit-
ing block sparsity.

Evaluation of the effect of our proposed CS scheme on gait classification

With the reconstructed data, different gait classification models based on SVM, MLP
and KStar were implemented to evaluate the effectiveness of our CS scheme in gait
telemonitoring application. In the experiment, the acceleration data from all subjects in
USC-HAD dataset were selected. The window was set to be length N = 512 with 50 %
overlap [16], and 10 windows were randomly extracted from each subject’ data. That is,
for each pattern, sample data size of each subjects are 10, and each sample data length
is fixed to 512 (i.e. N = 512). Based on four statistical parameters from each axis data,
a gait pattern is defined as 12 dimensions feature vector. In this experiment, MLP with
momentum back propagation algorithm is used, and SVM containing sequential mini-
mal optimization algorithm with the polynomial kernel function is employed. All classi-
fication algorithm programs are developed in Matlab 7.0 using WEKA [36], and they are
performed on computer with Intel(R) Core(TM) i5-3470 3.20 GHz CPU, 4.00 GB RAM
and Windows 7 operating system.

Firstly, we select two gait patterns such as up-stairs and down-stairs for testing clas-
sification performance. To effectively evaluate the generalization ability across subjects,
10 subjects’ data patterns including 100 upstairs and 100 downstairs were randomly
selected as training set. In the process of training classification model, a tenfold cross
validation scheme was implemented due to the limited data size. That is, the selected
200 gait patterns data were randomly divided into 10 subsets, each subset including 10
upstairs data and 10 downstairs data. 9 subsets were arbitrarily selected as training set

Table 1 Performance comparison between different reconstruction algorithms

Reconstruction algorithms SNR (dB) Reconstruction time (s) CR (%)
OMP 37 0.0078 50
BP 48 0.6363 50
SP 37 0.0079 50
SLO 52 0.2465 50
DGS 51 0.0780 50
Group Lasso 55 0.0875 50
SOMP 59 0.0796 50

BSBL-BO 70 0.6412 50
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while the remaining one was used to test. The above step is repeated until each subset
was employed to test. After classification model was obtained, the remaining 4 subjects’
data including 40 upstairs and 40 downstairs were used to test its generalization ability.
It is noted that the remaining 4 subjects’ data are not included in training set.

Table 2 presents the best results from three selected classification models. As shown in
Table 2, it is apparent that all generalization performance from three selected models are
higher while BSBL algorithm is performed. In comparison, classification performance of
MLP is best, and it reaches same maximum value of accuracy (95 %), sensitivity (95 %),
and specificity (95 %), suggesting that MLP with momentum back propagation algo-
rithm can capture more additional discriminatory information regarding gait patterns.
These results illustrate that BSBL algorithm has superior ability to reconstruct accelera-
tion data with high fidelity for gait classification with high quality.

In addition, the selection of optimal parameters is important for best classification
performance. Here, the optimal parameters are determined according to the best perfor-
mance because the optimal value of each parameter varies with different values of other
parameters in each classification model. The optimal parameters selected in each model
are presented as follows. In MLP, the number of learning epochs is 600. The learning rate

Table 2 The best prediction results from classification models with all reconstruction algo-

rithms
Reconstruction Classification Prediction results
algorithms models
ACC (%) Upstairs Downstairs
Sen (%) Spe (%) Sen (%) Spe (%)
OMP KStar 62.5 60.9 64.7 64.7 60.9
SVM 65 60 66.7 66.7 60
MLP 67.5 65.2 70.6 70.6 65.2
BP KStar 67.5 65.2 70.6 70.6 65.2
SVM 70 654 786 78.6 654
MLP 72.5 73.7 714 714 74.7
SpP KStar 55 87.5 57.1 571 875
SVM 62.5 60.9 64.7 64.7 60.9
MLP 65 62.5 68.8 68.8 62.5
SLO KStar 70 654 786 78.6 654
SVM 72.5 69.6 76.5 76.5 69.6
MLP 75 67.9 91.7 91.7 67.9
DGS KStar 67.5 66.7 68.4 684 66.7
SYM 725 69.6 765 76.5 69.6
MLP 75 75 75 75 75
Group Lasso KStar 72.5 69.6 76.5 76.5 69.6
SVM 75 72.7 779 77.9 72.7
MLP 775 72 86.7 86.7 72
SOMP KStar 775 76.5 79 79 76.2
SVM 85 79.2 93.8 93.8 79.2
MLP 875 85.7 89.5 89.5 85.7
BSBL-BO KStar 80 826 94.1 94.1 826
SVM 92.5 90.5 94.7 94.7 90.5

MLP 95 95 95 95 95
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is 0.3, and the momentum factor is 0.5. In SVM, the regularization parameter is 1 and
the degree of polynomial is 2. In KStar, the parameter for global blending is 20. A detail
description of these parameters can be found in [36].

Next, we employ the above optimal MLP model to classify seven different gait patterns
such as walk forward, walk left, walk right, go upstairs, go downstairs, run forward, sit-
ting, in order to further evaluate the practicability of our scheme for gait monitoring. In
this experiment, to effectively evaluate the generalization ability across subjects, the gait
pattern data from 13 subjects are randomly selected as training set containing all sam-
ple size of 910 (i.e. 130 walk forward data, 130 walk left data, 130 walk right data, 130
upstairs, 130 downstairs, 130 run data and 130 sitting data). In the process of training
model, a tenfold cross validation scheme was implemented, that is, the selected data is
randomly divided into 10 subsets, each subset containing 13 walk forward data, 13 walk
left data, 13 walk right data, 13 upstairs data, 13 downstairs data, 13 run data and 13 sit-
ting data. 9 subsets were randomly selected to train while the remaining one was used to
test. The above step was repeated until each subset was used to test. After the classifica-
tion model was obtained, the remaining one subject data including all sample size of 70
(i.e. 10 walk forward data, 10 walk left data, 10 walk right data, 10 upstairs, 10 down-
stairs, 10 run data and 10 sitting data) was used to test the generalization ability. Here,
each subject data has to be used to test generalization ability. Finally, the whole averaged
classification result is obtained for all subjects. Table 3 gives the confusion table for clas-
sification of seven gait patterns. Here, it is noted that the entry in the ith row and jth
column refers to the count of gait pattern belonging to class i that is classified as class
j. As shown in Table 3, the whole averaged classification accuracy across all gait pat-
terns reaches 92 %, suggesting that gait classification performance is superior. In term
of individual patterns, sitting pattern can gain the maximal precision and recall value of
99 %, and sitting pattern is classified accurately. For upstairs pattern, it is noticed that its
precision is near to 91 % whereas its recall is only 83 %. The possible reason is that some
samples of upstairs are easily misclassified as walk forward, but some samples of walk
forward is not misclassified as upstairs. In conclusion, these results show that our pro-
posed CS scheme can provide more valuable information regarding gait pattern change
for gait classification with higher quality.

Table 3 The confusion table for classification of seven different gait patterns

Walk Walk Walk Go Go Run Sitting Total Recall
forward left right up-stairs  down-stairs (%)
Walk forward 125 4 5 5 1 0 0 140 89
Walk left 6 125 2 2 5 0 0 140 89
Walk right 2 3 134 0 1 0 0 140 96
Go up-stairs 10 6 3 116 3 1 1 140 83
Go up-stairs 1 3 4 4 127 1 0 140 91
Run 0 1 0 0 3 136 0 140 97
Sitting 1 0 0 1 0 0 138 140 99
Total 145 142 148 128 140 138 139

Recall (%) 86 88 91 91 91 98 98
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Discussions

Currently, the novel scheme of compressive sensing of acceleration data is needed
urgently for addressing some challenging issues such as energy constraint and poor
reconstruction performance in gait telemonitoring application. In the present study, in
view of energy constraint on body-worn device, we investigate the feasibility of sparse
binary matrix in compressive sensing of acceleration data. As shown in Figs. 2 and 3, our
designed sparse binary matrix containing few nonzero entries can feasibly produce the
almost same best CS performance as some common used full optimal random matri-
ces such as Gaussian matrix. This greatly contributes to saving more computational
resources for hardware design of body-worn device. Besides, we also find that higher
compression ratio possibly destroy the proposed CS performance. The possible reason
is that higher compression ratio worsen the maximal incoherent measurement between
sparse binary measurement matrix @ and the sparse basis y [11].

In addition, in view of acceleration data with nonsparsity, we also investigate the prac-
ticability of BSBL algorithm for reconstructing acceleration data with high fidelity by
exploiting block sparsity. As seen from Figs. 4, 5 and Table 1, BSBL-BO algorithm signifi-
cantly outperform existing CS reconstruction algorithms such as OMP, BP, SP, SL0, DGS,
SOMP and Group Lasso. This is because BSBL algorithm has superior ability to capture
few unknown nonzero blocks by exploiting intra-block correlation in acceleration data.
In contrast, existing CS reconstruction algorithms only rely on the priori knowledge of
data block partition, not to provide valuable insight into specific types of possible intra-
block information [18, 37, 38]. Similar results of study on EEG telemonitoring have been
found in [20].

In this study, with the reconstructed acceleration data, we further evaluate the effec-
tiveness of our proposed CS scheme in gait telemonitoring application by using gait
classification. As shown in Tables 2 3, all selected gait classification models can produce
superior generalization performance. This is because BSBL algorithm takes advantage of
exploring intra-block correlation in acceleration data to gain more valuable information
associated with the spatial, temporal and dynamic correlations of human gait, which
greatly contribute to improving gait classification performance. In addition, this study
shows that MLP is best in all gait classification models. The possible reason is that MLP
with back propagation algorithm can significantly improve the learning speed of optimi-
zation algorithm for acceleration data, thus avoiding the local optimal solution of clas-
sification algorithm. Similar finding has been reported in [35].

Conclusion

In this study, we propose a novel scheme of compressive sensing of acceleration data
for gait telemonitoring. In such scheme, sparse binary matrix is feasibly designed as
measurement matrix only containing few nonzero entries, which greatly contribute to
saving lots of computational resources on body-worn device. Also, BSBL algorithm is
feasibly applied to reconstruct acceleration data with high fidelity by exploiting block
sparsity, which is very helpful for gait classification with high quality. This study has a
great potential for gait telemonitoring application. More effort should be exerted to find
the effective method that can significantly improve the ability of compressive sensing of
acceleration data while compressed ratio is higher.
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Appendix
In BSBL framework, all unknown parameters (p, A;, b)) is estimated by maximum likeli-
hood procedure that minimizes the following cost function

L(p, {},b;}) = log ‘pI +oy cpT\ + YT(pI +oY <I>T)_1Y

In BSBL-BO algorithm, the learning rules for parameters (p, \;, b)) is defined as follows:

o o Y = Puoli+Tr(Xo 79)
M

3 X' % h et o
1N T e e T ME ey,

l J i JNT
1 T + g ()
bj < 7 ; —7»;’

And then, the optimal parameters (p, \;, b;) are solved according to the defined learning
rules. So, reconstruction of acceleration data X is obtained by calculating

X = o :qu>T<p1+q>Zxch)71Y
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