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Background
Heart rate variability (HRV) provides useful physiological parameters according to the 
beat-to-beat intervals (R–R intervals, RRI) obtained from cardiac pulse signals. Some 
publications have validated that abnormality of HRV are related to some cardiologi-
cal and noncardiological diseases, e.g., myocardial infarction, diabetic neuropathy, and 
myocardial dysfunction [1]. The conventional way to obtain the cardiac pulse is using 
electrocardiography (ECG) to sense the electrical activity of heart over a period of time 
by electrodes attached to the surface of human skin. ECG provides clean and accurate 
pulse signals, however, it is prone to be interfered by electrical activity produced by skel-
etal muscles near the electrodes.
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pulse signal using a chrominance-based method followed by a proposed CWT-based 
denoising technique. The R–R intervals can then be obtained by finding the peaks in 
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and the ones obtained by an ECG-accurate chest band.
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Another way to obtain the cardiac pulse is photoplethysmography (PPG), which was 
first described in 1930s [2]. PPG detects the optical absorption variations of the human 
skin due to the blood volume variations. Both ECG and PPG need to contact the human 
skin, which are not suitable for the cases of extreme sensitivity, e.g., neonates, skindam-
aged patients, or when the non-contact property is required (surveillance, fitness, etc.). 
Peng et  al. [3] proposed an alternative method for extracting the PPG signal through 
the smart-phone camera followed by computing the HRV. However, this method still 
requires the subjects to put their finger on the smart-phone camera and keep themselves 
static, which has similar disadvantages as the traditional PPG device. Recent works 
have shown that cardiac pulse rate can be measured in a non-contact way, which is also 
known as remote-PPG (rPPG) [4–12]. These works obtain pulse signals under ambient 
light conditions with only one camera, which are low-cost, simple, and effective.

The main idea of rPPG is that the blood volume variations can be captured during 
video recording. The earlier works [4, 5] first obtain the mean intensity of skin region 
and perform frequency analysis (Fourier or wavelet transform) to estimate the pulse rate. 
Recent works [6–12] estimate the pulse rate using a regular color video camera. The first 
step of these methods are locating the region of interest by manual selection or auto-
matic face detection, followed by different analysis algorithms to extract the pulse sig-
nals, e.g., difference of RGB [6], source separation [7–9], chrominance [10, 12], motion 
magnification [11].

Poh et  al. [7] proposed an algorithm for heart rate (HR) measurement. They first 
detected the face every frame and extracted the mean RGB color values to form a three-
dimensional time series. Then they applied independent component analysis (ICA) [13, 
14] to separate the independent sources from these RGB signals which may contain the 
pulse signal, followed by FFT and select the frequency with maximum amplitude in 
the spectral of the component which has highest peak as the HR. Later on, the authors 
proposed a similar method in [8] to extract the R–R intervals by finding the peaks of 
the pulse signal. The peaks of pulse signal are treated as the R wave of ECG signal, and 
the peak intervals are treated as R–R intervals. Alternatively, one may apply PCA, as 
shown in [9], instead of ICA to separate the pulse signal from RGB time series. Wu et al. 
[11] proposed an Eulerian-based motion magnification to magnify the subtle motions 
or color changes in temporal domain using Laplacian pyramid. This method is able to 
obtain a clean pulse signal if the subjects are almost static. Haan and Jeanne [10] pro-
posed a chrominance-based remote PPG (we denote “C-rPPG” in the rest of this paper) 
which takes different factors into account to form the color model captured by camera. 
Given the pulsatility as a function of wavelength exhibits a strong peak in green and the 
dips in red [15, 16]. To exploit this fact and to reduce the specular reflection problem 
mentioned in [17], they proposed a model using difference of wighted color channels to 
obtain chrominance signals. This method is robust to different skin-tone and adaptive to 
non-white illumination. Moreover, the authors showed the impressive results of HR esti-
mation for the scenario with the subjects exercising on stationary bike. Wang et al. [12] 
proposed an algorithm exploiting the spatial redundancy of image sensor and the idea of 
chrominance to improve the robustness to motions.

In the indoor scenes, the lighting sources are usually on the top of subjects, i.e., on 
ceiling. The color intensities or brightness of the skin captured by camera are various 
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at different positions. Different angles between the lighting sources and camera also 
result in intensity variations. These periodical or non-periodical variations will produce 
artifacts which severely influence most of the rPPG algorithms. The methods based on 
source separation [7–9] may separate the artifacts rather than true pulse signal. Never-
theless, the component with the highest spectral amplitude is not necessary to be the 
true pulse signal. The Eulerian motion magnification [11] requires the subject as station-
ary as possible; otherwise, the motion in the specific frequency band will be magnified 
accordingly. Hence the motion magnification is not appropriate for general scenarios. 
The C-rPPG [10] improved the robustness to motions and has much better performance 
in HR estimation with non-static subjects. However, we found that there exist noises 
and artifacts in the C-rPPG signal which produce false peaks and severely influence the 
accuracy of R–R intervals. The paper [12] further improves the motion-robustness of 
the C-rPPG algorithm by adaptively combining local PPG-signals, and improves the 
SNR using an adaptive band-pass filter. This more elaborated C-rPPG concept, however, 
leads to an increase in computational complexity, which we consider less attractive for a 
mobile platform.

This paper proposed a non-contact method to estimate accurate HRV metrics from 
30 fps video clips captured by frontal camera of off-the-shelf smart phones. The face of 
subject is located every frame followed by averaging all the skin pixels to form the RGB 
time series. The RGB time series are then used to compute the pulse signal by C-rPPG 
[10] algorithm. We proposed a denoising method based on continuous wavelet trans-
form (CWT) to increase the robustness to interferences. The R–R intervals are obtained 
by computing the intervals of successive peaks in the denoised signal. To demonstrate 
the performance of HRV measurement, we taped a 12 video clips for different scenar-
ios with static and non-static subjects and used an ECG-accurate chest band to obtain 
the R–R intervals as the ground truth. Comparing with existed approaches, the absolute 
errors of HRV metrics generated by proposed approach is relatively low. For the video 
clips with static subjects, the mean of absolute errors of the HRV metrics obtained by 
our method is only 3.53 ms.

Methods
Overview

Figure 1 shows the overall flow chart of the proposed algorithm. For each frame of the 
video, we first detect the face based on the nose positions to increase the robustness to 
non-frontal faces. Once the face is located, we perform skin detection in YCbCr color 
space followed by averaged the RGB channels of the skin pixels in the face region to form 
the time series. To increase the fineness of time grid, we upsample the time series by a 
factor of eight, i.e., the sampling rate is from 30 to 240 Hz. After data acquisition stage, 
we compute the C-rPPG signal to extract the pulse signal. Next, we perform our denois-
ing technique based on CWT. Finally, the peaks in the denoised signal are detected to 
compute the R–R intervals.

Data acquisition

First of all, we locate the face in every frame to extract the color signals. There are plenty 
of face detection works and surveys [18–21]. For simplicity and convenience, one may 
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apply the face detector proposed by Viola and Jones [18] which is effective and efficient 
to locate the faces in frames. However, the face detector will fail if the faces in video 
are non-frontal. We found that detecting the nose is more stable than detecting the 
face, thus we can exploit the nose position to derive appropriate face region. We use the 
object detection toolbox (vision.CascadeObjectDetector) built in MATLAB to detect the 
nose in every frame. The region of the face can be determined by

where w and h are the width and height, (x, y) is the top left coordinate of the bounding 
box. The subscripts n and f represent the “nose” and “face”.

Next, we use a simple skin color detection to ensure the processed data are obtained 
from skin pixels. There are lots of works one may refer for the skin detection, e.g., the 
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hf = 3hn

xf = xn + wn
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Fig. 1  The processing flow of the proposed algorithm
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method proposed in [22]. We only take into account the Cb and Cr components to detect 
the skin color. A pixel is classified as skin pixel if it satisfies the following conditions:

After skin detection, we then record the averaged RGB values of skin pixels in the ROI to 
form the time series. Finally, we upscale the time series by a factor of 8.

Computing C‑rPPG

Inspired by previous works, we apply the chrominance-based method in our algo-
rithm due to the better performance for extracting the real pulse signals instead of false 
ones. We apply the model XsminαYs proposed in [10] which is briefly reviewed in the 
following.

In [10], the intensity of a given pixel in i-th frame in color channel C ∈ {R,G,B} regis-
tered by the camera is modeled as

where ICi is the intensity of the light source integrated over the exposure time of the 
camera, ρCdc

 is the stationary part of the reflection coefficient of the skin, ρCi is the zero-
mean time-varying fraction caused by the pulsation of the blood volume, and si is the 
additive specular reflection contribution.

The RGB data are normalized using the following formula

where µ(Ci) is a moving average centered around frame index i. The chrominance sig-
nals are defined as follows

Finally, the pulse signals can be extracted by

with

where σ(·) is standard deviation of the signals, the signals with subscript f represent their 
band-pass filtered versions. We can further rewrite (6) as follows

CWT‑based denoising method

The CWT transforms a time series to a time-frequency representation and has been 
used to denoise the PPG signals in some works [23–25]. The CWT uses inner product to 

(2)
98 ≤ Cb ≤ 142
133 ≤ Cr ≤ 177

(3)Ci = ICi(ρCdc
+ ρCi + si)

(4)Cni =
Ci

µ(Ci)
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measure the similarity between a signal and a specific analysis function, which outper-
forms the Fourier Transform and the short term Fourier Transform since the CWT can 
detect rapid changes in frequency due to the multi-scale representation. We will briefly 
review the theory of CWT and describe our denoising method based on CWT in the 
following.

The CWT convolves a signal x(t) with child wavelets ψτ ,s(t) which represent scaled 
and translated versions of mother wavelet ψ(t),

Xw(τ , s) represents similarity between the signal x(t) and a child wavelet scaled by s and 
translated by τ, which is define as follows:

There are many standard mother wavelets available in CWT literature. We selected the 
Morlet wavelet in our algorithm since it has been used to analysis PPG signals in [25]. 
The signal can be reconstructed from the wavelet transform by the inverse formula of 
(11).

where Cψ is the admissible constant of wavelet transform. Let ψ̂(ξ) denoted as Fourier 
version of ψ(t), the admissible constant is defined as follows:

One may reserve the coefficients of specific scales corresponding to the observed fre-
quency band (0.75, 4) Hz [(45, 240) bpm] and set the others to zero followed by inverse 
transform, which is equivalent to bandpass filtering (we call it “CWT-BP”). However, the 
motion artifacts are usually in the same frequency band, hence there will be false peaks 
produced by motion artifacts in the reconstructed signal.

Assume the pulse signal is the most significant component of the C-rPPG signal, our 
goal is to select a representative scale to reconstruct the pulse signal. We computed the 
summation of the magnitude of CWT coefficients in the same scale within a time inter-
val, followed by selecting the scale with maximal value of the summation, i.e.,

where s∗ is the optimal scale to reconstruct the pulse signal. The CWT coefficients 
belonging to the scale s∗ are reserved and the others are set to zero. In practice, we 
should take into account computation efficiency, thus we divide the CWT coefficients 
into non-overlapping time intervals with length T (seconds) and select the representa-
tive scales for every time interval. Another factor we should take into account is the non-
stationary property of cardiac activity, hence the value of T should be carefully selected. 

(9)Xw(τ , s) =
∫ ∞

−∞
x(t)ψτ ,s(t)dt

(10)ψτ ,s(t) =
1√
|s|ψ

(
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s

)
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τ
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Choosing smaller T is able to catch up to variation of cardiac activity but is less robust 
to the strong interference such as motion artifacts, and vice versa. Here we suggest that 
one can set T in the range of 10–30 (seconds). After selecting the optimal scales for 
every time interval, the pulse signal is reconstructed by inverse CWT. We denoted this 
method as “CWT-MAX” in the following.

Figure  2 shows an example to demonstrate our approach. We can observe that the 
original signal shown in Fig. 2c is noisy and with many false peaks. After applying CWT 
to the original signal, we can obtain the CWT coefficients as shown in Fig. 2b. The black 
line represents the coefficients of optimal scales of every time interval. The CWT-BP 
reserved all the coefficients in the observed band [(0.75, 4) Hz] and set the others to zero 

Fig. 2  Examples for using CWT to detrend and denoise. a The original C-rPPG signal. b The CWT coefficients 
of the original signal. Note that the black solid line denotes the representative frequency (scales) of pulse 
signal computed by (13). c The zoomed-in part of original signal. d The zoomed-in part of signal denoised by 
CWT-BP. e The zoomed-in part of signal denoised by CWT-MAX
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which may smooth and denoise the original signal as shown in Fig. 2d; however, it still 
retained some false peaks which may degrade the accuracy of R–R intervals. On the con-
trary, the CWT-MAX only reserved the coefficients of representative scales of each time 
interval and set the others to zero. The signal reconstructed by CWT-MAX is much 
cleaner, as shown in Fig. 2e. Therefore, we applied the CWT-MAX in our algorithm.

Peak detection and R–R intervals

After CWT denoising, the proposed approach then detect the peaks in the denoised 
pulse signal to compute the R–R intervals. One may simply use the findpeaks func-
tion built in MATLAB, or use the customized peak-finding algorithm. Since the CWT-
denoised signal is almost noise-free, the selection of peak-finding algorithms does not 
play a crucial role to our results. After peak detection, let pk be the time instance of k-th 
peak in the signal, the R–R intervals can be calculated by

and generally in the unit of millisecond (ms). Figure 3 shows the R–R intervals of the 
example in Fig. 2 computed by our method and the R–R intervals measured by an ECG-
accurate chest band.

Experimental setup

We totally taped 12 video clips with one minute long to evaluate the performance of 
R–R intervals extraction. The clips are taped by frontal camera of a smart phone (Sony 
Xperia Z1) with 30 fps frame rate and size of 640 × 480. We simulated the scenario that 
the video recorded the subjects when they were using their smart phone or tablet to 
monitoring their cardiac physiology. These video clips are classified into four categories, 
which are “static subjects”, “static subject with makeup”, “occasional motion”, and “fre-
quent motion”, respectively. Each of the category has 2–4 clips with different subjects 
or slightly different conditions. Note that the word “static” here means the subjects kept 

(14)RRIk = pk − pk−1

Fig. 3  R–R intervals of the example in Fig. 2. The red dot line is the R–R intervals measured by an ECG-accurate 
chest band. The blue dot line is the R–R intervals computed by our method
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their bodies static but slight movements (e.g., talking, facial expression, slight shaking) 
are allowable. The detail descriptions of the video clips are listed in the Table 1.

We have totally six subjects in the 22–28 age range involved in the experiments. There 
are four subjects (two males and two females) in “static subjects” category, one female 
subject in “static subject with makeup” category, and one male subject in both “occa-
sional motion” and “frequent motion” categories, respectively. For more details of the 
subjects, please see the Table 2. The makeups we used in the experiments are, CC cream 
(CLINIQUE Molsture Surge CC cream hydrating colour corrector broad spectrum 
SPF30), powder foundation (DiorSnow Sublissime SPF30 PA+++), and blush powder 
(Christian Dior Diorshow Powder Backstage Makeup Color in a flash loose powder 
0.17oz/5g 003 Catwalk Pink), respectively. This study had received approval by China 
Medical University and Hospital Research Ethics Committee. All the subjects have 
signed an informed consent allowing the authors to publish their HRV data.

We also used an ECG-accurate chest band (R1 Blue Comfortex+, made by Sigma 
sport) during video recording to obtain the ground truth of cardiac activity and exported 
the R–R intervals for the following comparisons. Because we aimed at the implemen-
tations suitable for smart phone applications, thus we only compared the proposed 
method with the algorithms which have similar computational cost. We will compare 
the performance of our algorithm with the ICA-based method [8] and original C-rPPG 

Table 1  Descriptions of the video clips in each category

Categories Clip names Descriptions

Static subjects Static_1 The subject kept the body relaxed and static

Static_2 There was desk light illuminated on the face

Static_3 The subject kept smile during video recording

Static_4 The subject kept making facial expression

Static subject with makeup static_M1 The subject put the CC cream on her face

Static_M2 The subject in static_M1 put additional powder foundation on her 
face

Static_M3 The subject in static_M2 put additional blush powder on her face

Occasional motion Motion_O1 The subject shook the head three times

Motion_O2 The subject moved away from camera and then moved back

Motion_O3 The subject turned the head, talking, then turned back, twice

Frequent motion Motion_F1 The subject kept shaking his head

Motion_F2 The subject rotated his head, move the body, or moved the camera 
several times

Table 2  Descriptions of all the subjects

Subjects Genders Ages The corresponding video clips

Subject_1 Male 22 Static_1

Subject_2 Female 24 Static_2

Subject_3 Male 26 Static_3

Subject_4 Male 25 Static_4

Subject_5 Female 23 Static_M1, static_M2, and static_M3

Subject_6 Male 28 Motion_O1, motion_O2, motion_O3, motion_F1, and motion_F2
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[10]. Since the authors did not release the source codes, we have tried our best to imple-
ment the algorithms described in their papers. We implemented the same bandpass fil-
ter in [8] for the original C-rPPG signal. For fair comparisons, we applied the same peak 
detection function (findpeaks) built in MATLAB to all the methods in the following 
experiments. Note that we do not further process the R–R intervals no matter they are 
reasonable or not. All the algorithms are implemented in MATLAB code.

Results and discussions
Quantitative evaluation

To show the accuracy of HRV estimation, this paper make comparisons with existed 
works by using well-known HRV metrics [26]. The scatter plot of R–R intervals is usu-
ally a good tool to show the relationship between RRIn and RRIn+1 and thereby evaluate 
HRV. The scatter plot is a 2-D (RRIn,RRIn+1) plot, in which the calculated eigenvalues 
are useful in the following comparisons. The square root of an eigenvalue describes the 
standard deviation along the direction of corresponding eigenvector. In this paper we 
denote SD1 as the square root of the smallest eigenvalue and SD2 as the other one in our 
HRV comparisons. The time-domain HRV metrics used here are: the standard deviation 
of R–R intervals (SDNN), root mean square of successive differences (RMSSD), standard 
deviation of successive differences (SDSD). All the HRV metrics mentioned above are in 
the unit of millisecond (ms).

Results and discussions of each category

Static subjects

The HRV metrics of the “static subjects” clips estimated by the chest band and the dif-
ferent methods are listed in Table 3. Generally, the pulse signal extracted by C-rPPG [10] 
has better performance than the one extracted by ICA [8]. Our method inherited from 
C-rPPG and the HRV metrics are very close to the ones measured by chest band (see the 
absolute errors). Ideally, the clips with static subjects have no motion artifacts. However, 
as mentioned above, the HRV metrics are computed by R–R intervals which are very 
sensitive to the false peaks in the noisy signals. The proposed CWT-based denoising 
method removes the most interferences; hence, the R–R intervals are reliable and close 
to the ground truth even the subjects keep making facial expressions.

Static subjects with makeup

In this category, we made experiments on the cases which the subjects had different 
kind of makeup on her face. Table 4 shows the results of HRV estimated by the differ-
ent methods. The ICA-based method and C-rPPG deviated from the ground truth while 
our method still got much lower errors. In these experiments, we can observe that the 
makeup may interfere the performance of the pulse signal extraction. However, this 
interference will not degrade the results of our method because our technique can suc-
cessfully remove noises and artifacts.

Occasional motion

The clips in this category are that the subjects moved his/her body or head less than 
three times, just like the regular motions we make in daily-life. Table  5 shows the 



Page 11 of 16Huang and Dung ﻿BioMed Eng OnLine  (2016) 15:11 

results of this category. Our method only severely deviated from the ground truth in 
the “motion_O3”. To explain the result, we computed the averaged illumination (gray-
scale) on the face of the “motion_O3”, as shown in Fig. 4. We found that the illumination 

Table 3  The HRV metrics estimated by different methods in the “static subjects” category

Clip names HRV metrics (ms) Chest band ICA [8] C-rPPG [10] Our method

Est. Est. Abs. error Est. Abs. error Est. Abs. error

Static_1 SD1 22.02 68.89 46.87 61.77 39.75 24.89 2.87

SD2 65.15 83.11 17.96 94.77 29.62 64.77 0.38

SDNN 49.28 77.69 28.41 83.87 34.59 48.79 0.49

RMSSD 30.81 96.31 65.50 87.30 56.49 34.63 3.82

SDSD 31.21 97.88 66.67 88.59 57.38 35.20 3.99

Static_2 SD1 24.58 78.59 54.01 38.73 14.15 18.85 5.73

SD2 72.80 90.66 17.86 79.03 6.23 69.40 3.40

SDNN 54.03 85.56 31.53 62.35 8.32 50.75 3.28

RMSSD 34.29 109.80 75.51 54.04 19.75 26.32 7.97

SDSD 34.76 111.34 76.58 54.77 20.01 26.66 8.10

Static_3 SD1 22.37 89.13 66.76 62.31 39.94 18.79 3.58

SD2 62.23 101.16 38.93 94.81 32.58 59.92 2.31

SDNN 47.09 95.70 48.61 84.68 37.59 44.51 2.58

RMSSD 31.25 140.83 109.58 87.59 56.34 26.16 5.09

SDSD 31.67 143.04 111.37 88.92 57.25 26.54 5.13

Static_4 SD1 18.62 99.79 81.17 78.78 60.16 18.93 0.31

SD2 38.41 107.31 68.90 91.64 53.23 41.15 2.74

SDNN 30.21 104.91 74.70 86.29 56.08 31.91 1.70

RMSSD 26.01 139.95 113.94 127.83 101.82 26.43 0.42

SDSD 26.34 141.69 115.35 129.47 103.13 26.77 0.43

Table 4  The HRV metrics estimated by  different methods in  the “static subjects 
with makeup” category

Clip names HRV metrics (ms) Chest band ICA [8] C-rPPG [10] Our method

Est. Est. Abs. error Est. Abs. error Est. Abs. error

Static_M1 SD1 14.95 101.16 86.21 97.89 82.94 19.59 4.64

SD2 48.17 109.16 60.99 127.48 79.31 52.62 4.45

SDNN 35.66 106.39 70.73 114.03 78.37 39.62 3.96

RMSSD 20.85 141.85 121.00 136.41 115.56 27.28 6.43

SDSD 21.14 143.76 122.62 138.52 117.38 27.71 6.57

Static_M2 SD1 13.97 49.93 35.96 54.71 40.74 13.94 0.03

SD2 65.34 74.35 9.01 76.72 11.38 68.56 3.22

SDNN 47.14 64.42 17.28 67.81 20.67 50.21 3.07

RMSSD 19.50 69.77 50.27 76.45 56.95 19.59 0.09

SDSD 19.75 70.77 51.02 77.52 57.77 19.72 0.03

Static_M3 SD1 20.96 71.56 50.6 79.62 58.66 23.95 2.99

SD2 86.84 127.90 41.06 135.26 48.42 92.18 5.34

SDNN 63.79 104.07 40.28 114.17 50.38 67.58 3.79

RMSSD 29.34 99.66 70.32 111.30 81.96 33.43 4.09

SDSD 29.73 101.20 71.47 112.88 83.15 33.92 4.19
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changes significantly due to the auto-exposure function of camera. The camera changed 
the exposure automatically when the subject turned the head, while the other two clips 
(“motion_O1” and “motion_O2”) have no such illumination changes. Therefore, our 
method still obtained the HRV metrics close to the ground truth in “motion_O1” and 
“motion_O2”.

Frequent motion

Table  6 shows the HRV metrics of the “frequent motion” video clips. This category is 
extremely challenging since the subjects kept making movements during the video 

Fig. 4  The illumination changes of the face in the “motion_O3” clip

Table 5  The HRV metrics estimated by  different methods in  the “occasional motion” cat-
egory

Clip names HRV metrics 
(ms)

Chest band ICA [8] C-rPPG [10] Our method

Est. Est. Abs. error Est. Abs. error Est. Abs. error

Motion_O1 SD1 27.77 50.39 22.62 62.06 34.29 20.44 7.33

SD2 59.82 68.47 8.65 89.43 29.61 56.38 3.44

SDNN 46.94 60.03 13.09 78.82 31.88 42.08 4.86

RMSSD 38.76 70.19 31.43 86.91 48.15 28.47 10.29

SDSD 39.29 71.26 31.97 88.16 48.87 28.91 10.38

Motion_O2 SD1 20.84 87.95 67.11 65.91 45.07 29.20 8.36

SD2 72.93 91.72 18.79 87.78 14.85 72.57 0.36

SDNN 53.29 89.60 36.31 78.28 24.99 55.37 2.08

RMSSD 29.07 122.65 93.58 91.99 62.92 40.74 11.67

SDSD 29.47 124.39 94.92 93.26 63.79 41.31 11.84

Motion_O3 SD1 24.60 123.32 98.72 103.63 79.03 60.63 36.03

SD2 62.16 206.86 144.70 152.90 90.74 90.54 28.38

SDNN 47.63 170.02 122.39 131.73 84.10 76.50 28.87

RMSSD 34.35 171.91 137.56 144.61 110.26 84.39 50.04

SDSD 34.83 174.41 139.58 146.71 111.88 85.74 50.91
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recording. Both the ICA [8] and C-rPPG [10] severely deviated from the ground truth. 
Although our method was interfered by the large motion artifacts, we still obtained a 
reasonable HRV metrics close to ground truth. Figure  5 shows the face positions and 
the illumination changes on the face of “motion_F1”. The face positions changes periodi-
cally due to the continuously shaking of the head. We can observe that the illumination 
changed with the motion of face rather than exposure changes. The results have shown 
that our method can deal with the motion artifacts even the subject kept shaking his 
head during the video recording if the exposure of camera is almost fixed.

Conclusion
In this paper, we have analyzed the problems of camera-based PPG and proposed an 
algorithm to extract accurate R–R intervals using 30  fps camera. We first extract the 
pulse signal using the chrominance-based method (C-rPPG) followed by a denoising 
method based on the CWT. The R–R intervals are computed by finding the peaks in 
the denoised signals. The experimental video clips were recorded by a frontal camera of 
smart phone (Sony Xperia Z1) held by the subjects in different situations. The experi-
ments have shown that our method is able to extract much more accurate results than 
the related works. The mean of absolute errors of HRV metrics obtained by our method 
is only 3.53 ms in the “Static subjects” and “Static subjects with makeup” categories. This 
shows the potential of our method for remote health monitoring of patients, which can 
be done by an easy and comfortable way in daily-life.

Note that the measurements of HRV for clinical use should conform to professional 
recommendations (e.g., [1, 26]), and our method might not meet those requirements. 
However, it can be useful for informal applications; for instance, monitoring the physi-
ological status of the tablet users and giving warnings to the users who may have some 
potential healthy problems.

Although the proposed method is able to alleviate the interference of motion artifacts, 
we still have room for improvement to deal with the artifacts made by the significantly 
changes of exposure due to auto-exposure function of camera. In addition, for a proof of 
concept, this paper validates our work with six subjects which might not be enough to 

Table 6  The HRV metrics estimated by  different methods in  the “frequent motion” cat-
egory

Clip names HRV metrics (ms) Chest band ICA [8] C-rPPG [10] Our method

Est. Est. Abs. error Est. Abs. error Est. Abs. error

Motion_F1 SD1 19.78 177.67 157.89 89.05 69.27 27.05 7.27

SD2 48.73 271.01 222.28 133.70 84.97 58.09 9.36

SDNN 37.76 227.73 189.97 112.87 75.11 45.04 7.28

RMSSD 27.72 247.65 219.93 124.22 96.50 37.72 10.00

SDSD 28.03 251.26 223.23 125.94 97.91 38.26 10.23

Motion_F2 SD1 30.89 149.01 118.12 130.11 99.22 41.60 10.71

SD2 95.04 255.18 160.14 164.69 69.65 99.60 4.56

SDNN 71.15 207.28 136.13 147.28 76.13 75.97 4.82

RMSSD 43.12 207.25 164.13 180.92 137.80 57.85 14.73

SDSD 43.73 210.73 167.00 184.00 140.27 58.84 15.11
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Fig. 5  The face positions and illumination in “motion_F1” clip. a The face position (x-axis). b The face position 
(y-axis). c The illumination (grayscale) of the face
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show convincing, statistically significant evidence of efficacy. In the future, we will aim 
to refine our algorithm for being robust to artifacts generated by built-in functions in 
smart phones, and conduct the experiments with larger number of subjects.
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