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Background
Hospitals have strived to include foetal ECG measurements in foetal monitoring, 
acquiring the foetal ECG waveform and calculating the foetal heart rate. A lot of stud-
ies have been conducted to extract foetal ECG from recorded pregnant abdominal ECG 

Abstract 

Background:  Almost all promising non-invasive foetal ECG extraction methods 
involve accurately determining maternal ECG R-wave peaks. However, it is not easy to 
robustly detect accurate R-wave peaks of the maternal ECG component in an acquired 
abdominal ECG since it often has a low signal-to-noise ratio (SNR), sometimes con‑
taining a large foetal ECG component or other noises and interferences. This paper 
discusses, under the condition of acquiring multi-channel abdominal ECG signals, how 
to improve the robustness of maternal ECG R-wave peak detection.

Methods:  On the basis of summarising the current single channel ECG R-wave peak 
detection methods, the paper proposed a specific fusion algorithm of detected multi-
channel maternal ECG R-wave peak locations. The proposed entire algorithm was then 
tested using two databases; one database, created by us, was composed of 343 groups 
of 8-channel data collected from 78 pregnant women, and the other one, called the 
challenge database, was from the Physionet/Computing in Cardiology Challenge 2013, 
including 175 groups of 4-channel data. When using these databases, each group of 
data was classified into two parts, called the training part and the validation test part 
respectively; the training part was the first 8.192 s of each group of data and the valida‑
tion test part was the next 8.192 s.

Results:  To show the results, three evaluation parameters—sensitivity (Se), positive 
predictive value (PPV) and F1—are used. The validation test results for the database we 
collected are Se = 99.93 %, PPV = 99.98 %, and F1 = 99.95 %, while the results for the 
challenge database are Se = 99.91 %, PPV = 99.86 %, and F1 = 99.88 %.

Conclusion:  The results of the test show that the robustness of our proposed whole 
fusion algorithm was superior to that of other outstanding algorithms for maternal 
R-wave detection, and is much better than that of single channel maternal R-wave 
detection algorithms.
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signals [1–5]. However, recent revelations have indicated that the key step for a success-
ful foetal ECG extraction is to locate the maternal ECG R-wave peaks accurately, after 
which, the maternal ECG component can be accurately estimated and cleanly cancelled 
[3–5].

It is very challenging to robustly detect accurate R-wave peaks of the maternal ECG 
component in an acquired abdominal ECG. Although the maternal ECG component is 
usually much greater than the foetal ECG component in an abdominal ECG signal, there 
are still some cases in which the foetal ECG component is just as great as or greater than 
the maternal ECG component. In these cases, a lot of incorrect maternal ECG R-wave 
peak detections will inevitably appear when using a single channel ECG R-wave peak 
detection method. This is a major obstacle for implementing foetal ECG monitoring, 
although it has yet to gain widespread attention.

Multi-point measurements provide an opportunity to improve the robustness of 
maternal ECG R-wave peak detection. One easy way is to synchronously collect one 
thoracic ECG signal when recording abdominal ECG signals to help locate the R-wave 
peaks of the maternal ECG component in recorded abdominal ECG signals [6]. How-
ever, in this method, a disadvantage is that an extra thoracic electrode is needed, which 
is undesirable in clinical application. On the other hand, noises and disturbances in the 
thoracic ECG signal sometimes will also result in incorrect R-wave peak detection when 
using a single channel ECG R-wave peak detection method. Alternatively, we can try to 
combine the acquired multi-channel abdominal ECG signals to produce a pure maternal 
ECG signal as a substitute for the thoracic ECG signal acquisition, based on a principal 
components analysis (PCA) or independent components analysis (ICA), but it is usually 
difficult to automatically select the pure maternal ECG signal from PCA or ICA outputs 
[2, 7–9].

In the Physionet/Computing in Cardiology Challenge 2013, there appear two out-
standing maternal R-wave detection methods based on ICA [8, 9], called ICA$_
{ACC}$ [8] and ICA$_{SMI}$ [9], respectively. The main steps of the ICA$_{ACC}$ 
algorithm are: (1) using FASTICA to produce N independent components for the 
N-channel signals, (2) initial detection on both the inputs and outputs of ICA, (3) 
calculating the ACC measure for each output and choosing the purest maternal ECG 
from the N outputs using ACCs, and (4) further processing the MQRS detections on 
this chosen channel using kernel density estimation, a matched filter and RR corre-
lation to obtain more accurate MQRS detections as the final output. For the ICA$_
{SMI}$ algorithm, the main steps are: (1) performing ICA on N-channel signals to 
obtain N independent components, (2) initial detection on both the inputs and the 
outputs of ICA, (3) calculating a parameter called SMI for each input and output, and 
(4) choosing the maternal QRS time series as the final output from the inputs and out-
puts using SMIs.

Noticeably, in previous research [10], an effective and simple scheme was used to 
improve the robustness of foetal R-wave detection after removing maternal components 
from the abdominal ECG signals. Its main idea is: first, to detect the foetal R-wave peaks 
of each estimated foetal ECG signal using a single channel ECG R-wave peak detection 
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method, and then, to vote with the detected results of all channels’ estimated foetal ECG 
signals to correct the incorrect peak detections.

Referencing above, this paper will apply the new thought of fusion to the robust detec-
tion of maternal R-wave peaks of abdominal ECG signals. The proposed whole fusion 
algorithm consists of the first modification of the initial detection, channel selection, 
second modification, and voting.

The following chapters are arranged as follows. In the “Methods” chapter, first we will 
introduce, in detail, the two databases used for our research. Second, in the following 
subsections, each step of our proposed fusion algorithm will be thoroughly described 
and a block diagram for the algorithm will be provided. Finally, we will describe the 
parameter training and validation test method for the whole fusion algorithm. In the 
“Results” chapter, we will present the validation test results for the whole fusion algo-
rithm, as well as for the two ICA-based maternal R-wave detection algorithms (ICA$_
{ACC}$, ICA$_{SMI}$) for comparison. The final two chapters are the “Discussion” and 
“Conclusion”, respectively.

Methods
The block diagram for our proposed fusion algorithm can been found in Fig.  1. Our 
entire algorithm consists of five blocks: initial detection, first modification, channels 
selection, second modification and voting. In the following subsections, each individual 
block will be thoroughly explained.

Fig. 1  Block diagram for the entire algorithm
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Data description

Database 1 (collected ourselves)

The authors collected actual ECG data from a hospital for our research. The methods 
of collecting the data can be found in the literature [11]. We conducted the collecting 
experiment using 78 pregnant women in the 38–40th week of gestation in the Obstetrics 
Branch of Nanjing General Hospital of Nanjing Military Command. The data collect-
ing system was composed of a standard 12-lead ECG machine and a PC machine. The 
standard 12-lead ECG machine, made by Ni-hon Kohden Corporation with the model 
No. 1350p, was connected to the PC machine with a dedicated USB cable. The ECG 
machine acted as a data acquisition module. The parameters of this machine must be 
preset; the sample frequency was set to 500  Hz, the cut-off frequency of anti-aliasing 
filter was set to 75 Hz, and the switches for baseline drift suppression and EMG interfer-
ence suppression were turned on. Previous research [11] has described the placement of 
the electrodes on the abdominal surface more clearly. We collected 343 groups of data 
in all, and every group of data was comprised of 8-channel abdominal ECG signals with 
a duration of 24 s. For every pregnant woman, we collected three to six groups of data.

Database 2 (challenge data)

The challenge data were gathered from the Physionet/Computing in Cardiology Chal-
lenge 2013. The datasets used for the challenge were obtained from five different sources 
(including real and simulated data), yielding a total of 447 records. All records were 
formatted to have a 1  kHz sampling frequency, 1-min duration, and four channels of 
non-invasive abdominal maternal ECG leads. The whole records were divided into three 
datasets for the challenge: Set A (75 records, both records and reference for FQRS loca-
tions were made public), Set B (100 records, only the records were made public), and Set 
C (272 records, both records and reference for FQRS locations were withheld from the 
public). The more detailed information about the database can be seen in the literature 
[12]. In our test, we only used the public datasets A and B for the test.

Initial detection

A single channel ECG R-wave peak detection algorithm was the basis of the fusion algo-
rithm for multi-channel ECG signals. Researchers have proposed a variety of single 
channel ECG R-wave peak detection algorithms, and all of these algorithms can be gen-
eralised as three steps: (1) taking a pre-processing stage for the original single channel 
ECG signal to improve its signal-to-noise ratio, (2) detecting the R-wave peaks on the 
enhanced signal obtained through the pre-processing stage, and (3) taking the initially 
detected R-wave peak positions of the enhanced signal as benchmarks and searching the 
real R-wave peaks within their neighbourhoods on the original wave. In the above three 
steps, the common methods for the first step are the difference method [13], the Hil-
bert transform method [14], the template matching method [15], the wavelet transform 
method [16, 17] and so on. For the second step, the common methods include all kinds 
of threshold setting and local searching methods [18, 19].

Among the pre-processing methods mentioned above, the robustness of the wavelet 
transform method was much stronger when compared to the others [20]. As long as 
the mother wavelet has been chosen appropriately, the wavelet transform method will 
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suppress the baseline drift and high frequency noise at a high level. In detail, there are 
two ways for the wavelet transform method to enhance the original single channel ECG 
signal for R-wave detection: one, the modulus maxima method [21], computes the con-
tinuous wavelet transform coefficients of the original signal based on a selected wavelet 
and a certain scale and then takes the modulus of wavelet transform coefficients as the 
enhanced signal for the R-wave detection; the other was to compute the wavelet trans-
form coefficients of the signal, followed by taking some scales’ coefficients to reconstruct 
an enhanced ECG signal with larger SNR [22].

This paper will apply the above first usage of the wavelet transform to do the pre-
processing. In addition, before the wavelet transform, some pre-filtering methods are 
applied to each channel of the multi-channel data. First, a bandpass FIR filter between 
0.5–80 Hz was used to suppress some noises, such as baseline wander, muscular arte-
facts and so on. Second, to remove the power line, two notch filters (at 50 and 60 Hz) 
were used. Third, to further suppress the baseline wander, a two-order smooth filter 
(0.2 s window) was used to obtain it and then it was subtracted from the signal.

First modification

The first modification was used to prepare for the following channel selection, since 
there are usually many errors in the initial detection results and these errors will inevita-
bly increase the difficulties in correct channel selection. The modification algorithm we 
used here was based on comparing each single signal’s RR interval value with the median 
value of all RR interval values of the channel. The main steps are as follows:

Step 1:	� After initial detection, for each single channel of the multi-channel signals, 
compute its RR interval values and mark them as RRs.

Step 2:	� Compute the median value of the RRs and mark it asRRm.

Step 3:	� Compute the difference value between each RR interval value andRRm; if the 
difference value is smaller than one threshold (named thres1_1; see “Results”), 
one of the corresponding two detected R-wave peaks needs to be removed; 
if the difference value is greater than one threshold (named thres1_2; see 
“Results”), an additional R-wave peak needs to be detected between the cor-
responding two detected R-wave peaks.

Channel selection

Channel selection was an important step to guarantee the robustness of the whole fusion 
algorithm, since once the number of channels with erroneous single channel mater-
nal R-wave peak detection was greater than or equal to half of the number of all chan-
nels, we cannot vote to get accurate maternal R-wave peak positions (described in next 
subsection).

To make the right channel selection, we used two kinds of indices to determine 
whether we should accept a signal. One index, named index1, was calculated based on 
the template method and the other, index2, was calculated using the RR interval values 
of the signal. The main steps of channel selection are as follows:
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Step 1:	� After the first modification (above), re-calculate RR intervals on each chan-
nel of the multi-channel signals, then compute the median value of RR inter-
val values of each channel and mark them as RRm1, RRm2,. . ., RRmi, . . . , RRmn, 
respectively (n refers to the number of channels of the multi-channel signals).

Step 2:	� Exclude the channels whose medians are lower than 0.4  s or higher 
than 1.6  s and mark the medians of the remaining channels as 
RLm1, RLm2, . . . , RLmi, . . . , RLmk (k is the number of remaining channels).

Step 3:	� Compute the median of RLm1, RLm2, . . ., RLmi, . . ., RLmk and mark it as RLmm1.

Step 4:	� Perform further exclusions. For each remaining channel, as we previ-
ously mentioned, first compute two indices, index1 and index2. Second 
multiply index1 by index2 and mark the result as index. Third, compute 
the maximal value of all indexes of the remaining channels and mark it as 
ma. Finally, compare each index with ma and if an index is greater than or 
equal to 0.5*ma, the corresponding channel is selected.

The method of calculating index1 of each remaining channel is as follows. For each 
channel’s first-modified signal, first we need to make a maternal wave complex template. 
In our paper, a maternal wave complex, whose duration is assigned as RLmm1, is defined 
as 0.5*RLmm1 before and 0.5*RLmm1 after the detected maternal R-wave peak location. 
Averaging all the maternal wave complexes synchronised on their R-wave peaks results 
in the maternal wave complex template. Second, compute the correlation coefficient 
between the template and each actual maternal wave complex. Third, compute the num-
ber of correlation coefficients that are greater than or equal to one threshold (named 
thres2_1; see “Results”) and then compute the ratio of this number to the number of all 
maternal R-wave peaks obtained by the first modification. The ratio value was taken as 
the index1of this channel.

Regarding the method of calculating index2, for each remaining channel, first compute 
the absolute difference value between itsRLmi and RLmm1, marking the absolute differ-
ence value as med_diff. Second, compute the minimum of all med_diffs of the remaining 
channels and mark it as mi. Finally, for each med_diff, if the difference value between 
it andmi is lower than one threshold (named thres2_2; see “Results”), the index2 of the 
corresponding channel is set to 0.3, and if the different value is between the thres2_2 and 
2*thres2_2, the index2 of the corresponding channel is set to 0.2, while in other situa-
tions, the index2 is set to 0.1.

Second modification

This section is also very important because it corrects the error detections on the 
selected channels more carefully than the first modification does, reducing the pres-
sure to the voting and improving the robustness of the whole fusion algorithm to some 
degree. The second modification includes two parts: the first part is a modification using 
the template method and the second is a modification through the RR interval values of 
the signal.
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The steps of the first part are as follows. First, compute the median value of all of the 
RR interval values of each selected channel. Then, compute the median value of all of 
the selected channels’ median values and mark it as RRmm2. Second, for each selected 
channel, make a maternal wave complex template whose duration is RRmm2 and then 
compute the correlation coefficient between the template and each actual maternal wave 
complex. Finally, remove the detected maternal R-wave peaks whose correlation coef-
ficients are lower than one threshold (named thres3_3; see “Results”).

The fundamental idea of the second part is just like that of the first modification. It 
is also based on the difference values between the RR interval values and the median 
value of the RR intervals of each selected channel. If there is a difference value which is 
less than one threshold (named thres3_1; see “Results”), one of the corresponding two 
detected R-wave peaks will be removed; if the different value is greater than one thresh-
old (named thres3_2; see “Results”), another R-wave peak needs to be detected between 
the corresponding two detected R-wave peaks.

However, there is an important detail that is different from the first modification: 
for different groups of data, the thresholds (thres3_1 and thres3_2) are different and 
are assigned according to one parameter (named med_cha) related to the actual heart 
rate variability (HRV) of the group of data. The method of calculating the parameter, 
med_cha, is described as follows:

After finishing the first part of the second modification, for each selected channel of 
the multi-channel signals, first, we compute its RR interval values, named RRs, and the 
median value of them, named RRmedian. Second, we exclude the RR interval values that 
are greater than 1.4*RRmedian or less than 0.6*RRmedian. Third, we group the remaining 
RR interval values according to the original sequence and make each group consist of 
five values (each group can partially overlap). The number of groups can be computed 
using the formula ceil(length(N)/5), where (N) is the number of all remaining RR interval 
values of this channel. Finally, we calculated the absolute difference value between the 
maximal value and the minimum value of each group, and the median value of all abso-
lute difference values for each selected channel. After finishing all of the above steps, the 
minimum of the median values for all selected channels was the parameter, med_cha, we 
needed.

Thres3_1 is set to -a*med_cha and thres3_2 is set to a*med_cha (the parameter a was 
a constant value). At the same time, the absolute value of thres3_1 and thres3_2 must be 
restricted to between 0.12 s and 0.25 s.

Voting

Voting is the final step of our fusion algorithm and further corrects the error detections. 
Noticeably, even if the channel selection is not totally correct, we can obtain the correct 
results through the voting, as long as the number of error selected channels is lower than 
half of the number of all selected channels.

The voting part of the whole proposed fusion algorithm is based on the theory of clus-
tering, and its basic steps are: (1) taking the detected and corrected maternal R-wave 
peak positions of each selected channel of the multi-channel pregnant abdominal ECG 
signals, (2) projecting or drawing the all detected R-peak positions of selected channels 
on a time axis and regarding them as samples, (3) clustering all of the samples according 
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to their distances and labelling their classes, (4) determining whether or not the num-
ber of samples in a clustered class is greater than or equal to half of the number of all 
channels (if so, the class and its samples will be kept, otherwise the class and its samples 
will be deleted), and (5) for each remaining class, taking the median value of its sam-
ples as its representative R-wave peak position, and then searching for the peak in the 
neighbourhood of the representative position on each original signal, resulting in the 
all exact maternal R-wave peak positions of the multi-channel signals. In Step 3 above, 
if the distance between two samples was less than 30 ms, we assume that they belong to 
the same class; otherwise we assume that they belong to different classes [11]. In Step 4, 
we removed the classes that have few samples since we assume that they are false classes 
clustered with incorrectly detected peaks.

For explicitness, the voting is illustrated in Fig. 2, taking the 4-channel signals as an 
example and letting red circles represent the maternal R-wave peak positions of each 
signal. The pseudo code of the voting is described as follows: 

Fig. 2  Illustration of voting. The red circles refer to the detected maternal R-wave peak locations. a The initial 
maternal R-wave detection results of the four-channel signals; b the results after projecting the initial detec‑
tion results on the same axis; c cluster results for all locations; d remaining classes after removing error classes; 
e final detection results after back projecting the remaining classes to the real four-channel signals
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Parameter training

The parameter training was used for more accurately determining the parameters’ values 
in our algorithm. For each group of data in each database, the first 8.192 s of the data 
are used as the training data. The training can be further divided into two kinds—offline 
training and online training. In our paper, both thres3_1 and thres3_2 training belong to 
online training since we must train the two parameters for each group of data and differ-
ent individual data have different HRVs. Regarding the other parameters, their trainings 
belong to offline training, which means that once the parameters are adjusted to be good 
with some groups of data, the trained parameters will stay invariant for other groups of 
data. All of the values of the trained parameters are shown in the "Results" section.

Validation test method

The validation test part involves three algorithms (our fusion algorithm, ICA$_{ACC)$ 
and ICA$_{SMI}$), as well as two above-mentioned databases (Database 1 and Database 
2). Every algorithm will be tested using the two databases to compare with each other. 
In the validation test for each group of data in each database, only the second 8.192 s 
of the data are used, since we need to determine the correctness of detections through 
our observations and there would be a significant burden to the eyes if we used more 
sample points for each signal in the multi-channel signals. Additionally, though we just 
decided the correctness of the detections through our observations, we believe that the 
decisions are reliable because the data used are all multi-channel and in almost all condi-
tions, there is at least one channel whose MQRS peaks are clearly visible.

To show the results, we use three measurement parameters—Se, PPV, and F1 [9]. The 
Se, PPV, and F1 are obtained by first counting the number of correctly detected maternal 
R-wave peaks (TP), the number of extra falsely detected maternal R-wave peaks (FP), 
and the number of missed maternal R-wave peaks (FN) of all groups of data used, and 
then calculating the three parameters’ values according to previous research [9]. In the 
comparison of three algorithms, the average time spent after the initial detection for 
each group of data will be also included.

Results
In the test, first, we detected the maternal R-wave peaks on each signal of the multi-
channel ECG signals respectively using the wavelet-based single channel R-wave detec-
tion method. The parameters of the wavelet-based method for pre-processing are set as 
follows: the selected mother wavelet is bior1.5 [23], the selected decomposition scale for 
Database 1 is 2^5 and for Database 2, it is 2^6 according to the frequency characteristics 
of the data (the sampling frequency).

Next, we conducted the parameter training of the fusion algorithm with Database 1, 
and through the training part, the parameters were finally assigned as follows: in the 
first modification, thres1_1 = −0.30 s and thres1_2 = 0.30 s; in the channel selection, 
thres2_1 = 0.6, thres2_2 = 0.06 s; in the second modification, thres3_3 = 0.5, a = 2.5. 
Since thres3_1 and thres3_2 are usually different for different groups of data, their values 
are not included in this manuscript.
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After finishing the training, we conducted the test with Database 1 for our fusion algo-
rithm. We also tested the ICA$_{ACC}$, ICA$_{SMI}$, respectively, with Database 1 to 
compare them to our whole fusion algorithm. The results are shown in Table 1.

Similar to the above, next we conducted the test for the fusion algorithm and the other 
two algorithms with Database 2, and the results are shown in Table 2.

In addition, in Fig. 3, the record ‘b20’ in Database 2 was taken as an example to show 
the performance of the three methods. In the figure, ‘★’ refers to the maternal R wave 
peak location obtained by the ICA$_{ACC}$ algorithm, ‘□’ means the location obtained 
by the ICA$_{SMI}$ algorithm, and the red lines represent the locations of the R-wave 
peaks detected using our fusion algorithm. Observing it carefully, we can find that the 
fusion algorithm has detected all of the maternal R-wave peaks correctly while the other 
two algorithms have not.

Through the results of test for the fusion algorithm, we can see that it is a large 
improvement for the single channel maternal R-wave algorithms. Additionally, 

Table 1  Results of the direct single channel maternal R-wave detection algorithm and the 
results of the fusion algorithm, ICA$_{ACC}$ and ICA$_{SMI}$, with Database 1

Se (%) PPV (%) F1 (%) t (s)

Initial detection 97.08 93.79 95.41

ICA$_{ACC}$ algorithm 99.37 99.82 99.59 0.9232

ICA$_{SMI}$ algorithm 99.81 99.55 99.68 0.0073

Our fusion algorithm 99.93 99.98  99.95 0.0911

Table 2  Results of the direct single channel maternal R-wave detection algorithm and the 
results of the fusion algorithm, ICA$_{ACC}$ and ICA$_{SMI}$, with Database 2

Se (%) PPV (%) F1 (%) t (s)

Initial detection 94.15 89.12  91.57 

ICA$_{ACC}$ algorithm 98.93 99.41  99.17  1.7973

ICA$_{SMI}$ algorithm 99.74 98.98  99.36  0.0016

Our fusion algorithm 99.91 99.86 99.88  0.0704

Fig. 3  Example showing the performance of the three methods. Filled black star refers to the maternal 
R-wave peak location obtained with the ICA$_{ACC}$ algorithm, white square means the location obtained 
by the ICA$_{SMI}$ algorithm, and the red lines represent the locations of the R-wave peaks detected by our 
fusion algorithm
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considering the results of the comparison test between the three algorithms, we also 
found that though our algorithm does not have the fastest speed, its detection results are 
the best and are superior to the other two algorithms.

Discussion
Our proposed fusion algorithm and other two comparative fusion algorithms are much 
better than single channel maternal R-wave detection algorithms. Let’s take an example 
to show this. The data for this example was the first channel signal of the 88th group of 
data in Database 1. Although the data have a low signal-to-noise ratio (containing a large 
foetal ECG component) and we obtained bad maternal R-wave detection results when 
directly using the single channel R-wave detection methods, shown in Fig. 4a, the three 
fusion algorithms in this paper were all able to give perfect maternal R-wave detection 
results, shown in Fig. 4c. Thus, with the correct maternal R-wave detection results, the 
ideal final foetal ECG were extracted using the foetal ECG extraction method in previ-
ous research [24], shown in Fig. 4d, which was in contrast with the bad foetal extraction 
result based on the single-channel R-wave detection results using the same extraction 
method [24], shown in Fig. 4b.

The comparative fusion algorithm ICA$_{SMI}$, involving choosing the channel with 
the best maternal QRS peak detection, was simple and cost the least amount of time, but 
it was found to be very sensitive to the initial detection, since it did not modify the initial 
detection results, and once the initial detection results on the selected output was incor-
rect due to other reasons, such as low quality, this algorithm was eventually not able to 
obtain the correct detection results.

Regarding another comparative fusion algorithm of ICA$_{ACC}$, although it is less 
sensitive to the initial detection step than ICA$_{SMI}$, it was found that a few times 
its channel selecting for the maternal component after doing ICA was incorrect. Let’s 
take the record ‘b76’ in Database 2 as an example. Both its initial detection results on 
pre-processed signals and the detection results on ICA outputs were shown in Fig.  5, 
where the red circles refer to the detected maternal R-wave peak locations. In test-
ing, the ICA$_{ACC}$ algorithm selected the wrong maternal component (the second 

Fig. 4  Foetal extraction results based on one single channel detection method and our fusion method. The 
red circles indicate the detected maternal R-wave peak locations. a The maternal ECG R-peak detection results 
obtained by initial single channel R-wave detection method; b the remaining component after maternal ECG 
cancelling based on the single channel R-wave detection results; c the maternal ECG R-peak detection results 
obtained by our whole fusion algorithm; d the remaining component after maternal ECG cancelling based 
on the detection results of our fusion algorithm
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independent component separated, IC2), since IC2 had the highest ACC value, resulting 
in the incorrect final detection results, shown in Fig. 6. Nevertheless, when we applied 
our proposed fusion algorithm to this group of data, the correct results are obtained; 
in Fig. 6, the red circles refer to the maternal R-wave peak locations detected by ICA$_
{ACC}$ and the red lines represent the locations of the R-wave peaks detected by our 
fusion algorithm. In addition to above, the fusion algorithm of ICA$_{ACC}$ was much 
more complex and cost the most time. 

Comparing our whole fusion algorithm with other two algorithms, the time required 
was a little more than ICA$_{SMI}$, but much less than ICA$_{ACC}$. In comparison 

Fig. 5  Example showing the ICA$_{ACC}$’s failure selecting for the maternal component from ICA outputs. 
The red circles refer to the detected maternal R-wave peak locations; IC2 was selected incorrectly for its high‑
est ACC value because the agreement between the detection results of IC2 and the initial ch2 was greater 
than the others

Fig. 6  Incorrect final detection Results of ICA$_{ACC}$ due to its failure selecting for the maternal compo‑
nent. The red circles refer to the maternal R-wave peak locations detected by ICA$_{ACC}$ and the red lines 
represent the locations of the R-wave peaks detected by our fusion algorithm
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with the ICA$_{SMI}$, our fusion algorithm’s dependence on the initial detection was 
much lower since it has done a lot of work on the modification. In comparison with 
ICA$_{ACC}$, the voting of our fusion algorithm was slightly similar to that, but the 
whole fusion algorithm also had many other different elements, such as channel selec-
tion and so on. In addition, since our fusion algorithm was not based on ICA, it avoided 
some problems that ICA-based methods may have, such as the incorrect selection of the 
separated independent maternal component, and the low-quality independent compo-
nent outputs of ICA due to the failed global optimal solution search when solving the 
ICA problem.

Although, in general, the proposed whole fusion algorithm was superior to others, it 
still did not work well for some groups of data in Databases 1 and 2. The 254th group 
of data in Database 1 was used as an example, shown in Fig. 7. Obviously, the second 
R-wave peak of each channel, which is labelled by red lines, was ignored by our algo-
rithm, since there was a sudden HRV on the signal and the parameters of our algorithm 
was not able to adapt it.

Future work on our algorithm we think is how to better set the parameters of the 
wavelet-based single channel maternal R-wave detection algorithm, such as the selection 
of the mother wavelet, the selection of the decomposition scale and so on. The setting 
of these parameters in our paper was from previous research [23]. Perhaps they can be 
further optimised in the future so as to improve the initial R-wave detection results of 
multi-channel signals.

Conclusion
Through the above analysis and comparison, we can conclude that though the single 
channel maternal R-wave detection algorithms are also useful algorithms, the detection 
results when directly used to detect the maternal R-wave peaks of the signal with low 
SNR may be not satisfactory. A lot of multi-channel maternal R wave detection algo-
rithms based on them can greatly improve the correct rate of maternal R-wave detection 

Fig. 7  Example showing our fusion algorithm’s failure. The red circles indicate the detected maternal R-wave 
peak locations, and the red line represents the ignored maternal R-wave peak location
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in the condition of multi-channel abdominal ECG signals, especially our proposed whole 
fusion algorithm when compared with the other two outstanding ICA-based maternal 
R-wave peak detection algorithms.

In summary, the proposed complete fusion algorithm based on the single channel 
ECG R-wave peak detection algorithm is promising for use in improving the robust-
ness and accuracy of the maternal R-wave detections in the condition of multi-channel 
abdominal ECG signals.
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