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Abstract 

Background:  Parkinson’s disease (PD) and essential tremor (ET) are the two most 
common movement disorders but the rate of misdiagnosis rate in these disorders is 
high due to similar characteristics of tremor. The purpose of the study is to present: (a) 
a solution to identify PD and ET patients by using the novel measurement of tremor 
signal variations while performing the resting task, (b) the improvement of the differen-
tiation of PD from ET patients can be obtained by using the ratio of the novel measure-
ment while performing two specific tasks.

Methods:  35 PD and 22 ET patients were asked to participate in the study. They were 
asked to wear a 6-axis inertial sensor on his/her index finger of the tremor dominant 
hand and perform three tasks including kinetic, postural and resting tasks. Each task 
required 10 s to complete. The angular rate signal measured during the performance of 
these tasks was band-pass filtered and transformed into a two-dimensional represen-
tation. The ratio of the ellipse area covering 95 % of this two-dimensional representa-
tion of different tasks was investigated and the two best tasks were selected for the 
purpose of differentiation.

Results:  The ellipse area of two-dimensional representation of the resting task of PD 
and ET subjects are statistically significantly different (p < 0.05). Furthermore, the fluc-
tuation ratio, defined as a ratio of the ellipse area of two-dimensional representation 
of resting to kinetic tremor, of PD subjects were statistically significantly higher than 
ET subjects in all axes (p = 0.0014, 0.0011 and 0.0001 for x, y and z-axis, respectively). 
The validation shows that the proposed method provides 100 % sensitivity, specificity 
and accuracy of the discrimination in the 5 subjects in the validation group. While the 
method would have to be validated with a larger number of subjects, these prelimi-
nary results show the feasibility of the approach.

Conclusions:  This study provides the novel measurement of tremor variation in time 
domain termed ‘temporal fluctuation’. The temporal fluctuation of the resting task can 
be used to discriminate PD from ET subjects. The ratio of the temporal fluctuation of 
the resting task to the kinetic task improves the reliability of the discrimination. While 
the method is powerful, it is also simple so it could be applied on low resource plat-
forms such as smart phones and watches which are commonly equipped with inertial 
sensors.
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Background
Parkinson’s disease (PD) is a progressive neurodegenerative disorder with the cardi-
nal features of bradykinesia, rest tremor, rigidity, and postural instability [1]. There are 
reports stating that the diagnosis accuracy for Parkinson’s disease is only 76  % [2–4]. 
More recently, the accuracy of the clinical and pathological diagnosis of idiopathic Par-
kinson’s disease and another parkinsonian syndrome has been reported as 85.3 % (122 
out of 143 cases) [5]. The common misdiagnosis includes parkinsonism-plus syndrome 
and essential tremor (ET) [6]. Although PD and ET appear to be two distinct diseases, 
clinical presentation of the two conditions can overlap, including tremor frequency 
range, the occurrence of resting tremors in ET (atypical ET syndrome) and the presence 
of postural tremors in certain tasks in PD [7]. The differential diagnosis of these tremors 
is important since the treatment depends on the specific etiology of each tremor type 
[8].

The diagnosis of PD is generally based on unified clinical diagnostic criteria in which 
the most widely accepted one is the United Kingdom Parkinson’s Disease Society Brain 
Bank (UKPDSBB). Based on this criteria, the diagnosis of PD can be made according to 
the presence of the cardinal features, including rest tremor, bradykinesia, rigidity, and 
postural instability, followed by the exclusion of other potential mimics. While tremor is 
an important clinical feature of PD, the diagnosis of PD cannot generally be made based 
on the features of tremor alone, but requires the presence of other cardinal features, with 
supporting clinical features if present.

Specifically on tremor in PD, they can have different manifestations although the most 
common type is the rest tremor, which accounts for 70 % of PD patients. However, in 
clinical practice, presentation of tremor in PD may overlap with other disorders, like 
essential tremor posing difficulties to clinicians to decide from the clinical examina-
tion alone if this tremor is parkinsonian. The common clinical scenario is to consider 
whether patients who have mild unilateral rest tremor, but also with postural tremor and 
unclear bradykinesia and rigidity if they are in fact parkinsonian. Since the evidence of 
PD treatment supports the fact that the treatment delays the disability [9], this clinical 
diagnosis of tremor alone can be challenging when presenting features of tremor overlap 
and characteristic features are not present, particularly in the early stage. Therefore, in 
our study, we seek to identify kinematic parameters that will enable us to differentiate 
tremor in PD from other disorders.

Current approaches of differential diagnosis of PD and ET can be categorized into 
conventional and non-conventional methods. The conventional approach includes clini-
cal history and examination, supported by neuroimaging, and genetic studies if available, 
and further assessment of a response from antitremor medications. The non-conven-
tional approach, which is more cost-effective and time efficient, is by studying tremor 
kinematics according to its intensity and frequency [8].

Recently, many researchers have been using, a particular or a combination of, low cost 
and widely available devices such as an electromyogram (EMG) [11, 12, 15, 16] and an 

Keywords:  Parkinson’s disease, Essential tremor, Tremor, Temporal fluctuation, 
Fluctuation ratio, Discrimination, Inertial sensor, Angular rate



Page 3 of 13Thanawattano et al. BioMed Eng OnLine  (2015) 14:101 

accelerometer [10–19] to capture tremor signals from patients in order to discriminate 
PD, ET and physiologic tremors. Features of tremor signal are extracted by some gen-
eral or specific methods such as peak frequency [10, 13], root mean square (RMS) of 
the linear acceleration [11, 12], approximate entropy [11, 12, 16], power spectral density 
[13, 14, 16], the shape of signal distribution [10, 12], wavelet coefficients [14, 16, 18] and 
higher order statistic parameters [14, 15]. These features, in general, are passed into one 
of the classifiers including neural networks [14, 18], support vector machines [17] and 
cluster analyses [10, 15], to classify the under test features as the group with the greatest 
potential. However, according to professional literatures, PD and ET cannot be confi-
dently differentiated by previous methods.

In this report we proposed a novel method to extract a temporal feature based on the 
observation that, in PD patients, tremor frequencies have alteration while performing 
different tasks. This leads to the hypothesis that when PD patients perform a specific 
task with lower tremor frequency, they could potentially be observed to have more 
tremor fluctuation on that task. This feature, which is extracted from the angular rate 
tremor, can then be used to differentiate PD from ET subjects. Furthermore, the ratio of 
extracted features from an individual subject performing two specific tasks provides the 
improvement to the differential diagnosis.

Methods
Subjects

Fifty-seven subjects (35 PD, 22 ET patients) who were attending the outpatient clinic at 
the Chulalongkorn Center of Excellence for Parkinson’s Disease and Related Disorders, 
King Chulalongkorn Memorial Hospital, Bangkok Thailand, participated in the study. 
All PD and ET patients were instructed to withhold their medications for at least 12 h 
before the test. The study was approved by the Human Subjects Ethics Committee of the 
Faculty of Medicine, Chulalongkorn University. All subjects gave their written informed 
consent before entering the study in accordance with the declaration of Helsinki. Thirty-
two PD and 20 ET patients were labeled as a training group whose data were used to 
generate the discrimination criteria. Three PD and 2 ET patients were labeled as a test-
ing group whose data were used for validation purpose. Data from the two groups were 
collected separately where data of the training group was collected 2 years prior. There 
was no special criterion of patient selection for the training group. Demographic data 
and disease characteristics of participants in the training group are shown in Table 1. 
Patients with early stage or mild tremor, suggested by lower Fahn–Tolosa–Marin 
Tremor Rating Scale (TRS) compared to the training group, were selected as a testing 
group. Demographic data and disease characteristics of participants in the testing group 
are shown in Table 2.

Measurement

A 6-Degree of freedom (DOF) inertial measurement unit (IMU) with the capacity of 
measuring 125 samples/second of tri-axial acceleration and tri-axial angular velocity 
[20] is attached to subject’s upper limb during the experiment. However, only angular 
rate signals were considered in this study. The IMU is composed of a transmission part 
which is attached to subject’s wrist, and a sensor part which is attached to the index 
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finger of the dominant hand manifesting tremor of the subject. The weight of the trans-
mission part and the sensor part are 74 and 5 g, respectively. With this weight, the sen-
sor part does not markedly affect the movement of a subject’s finger where the tremor 
is measured. The sensor orientation is shown in Fig. 1. For each subject, there are three 
tasks of data collection including kinetic, postural and resting tasks. For the kinetic task 
a participant was requested to do nose-target hand movement repeatedly. For the pos-
tural task, a participant outstretched his/her arms and hands forward from the shoulder. 
In the resting task, a participant was instructed to remain still with his/her arms on his/
her laps with relaxed muscles. The signal was captured and transferred to a personal 
computer via wireless communication link. The in-house software was developed to 

Table 1  Demographic data of PD and ET subjects in training group

PD Parkinson’s disease, ET essential tremor, TRS Fahn–Tolosa–Marin Tremor Rating Scale

Demographic data PD patients (mean ± SD) ET patients (mean ± SD) p value

Number (males) 32 (17) 20 (12) 0.64

Mean age (years) 65.50 ± 10.11 64.80 ± 15.76 0.85

Mean age at onset (years) 57.48 ± 10.71 55.30 ± 19.97 0.61

Disease duration (years) 7.60 ± 5.85 9.45 ± 9.63 0.39

TRS 37.31 ± 16.88 22.75 ± 12.10 0.0015

Hoehn and Yahr stage 2.42 ± 0.38

Table 2  Demographic data of  3 PD and  2 ET subjects with  mild tremor or early stage 
in testing group

PD Parkinson’s disease, ET essential tremor, TRS Fahn–Tolosa–Marin Tremor Rating Scale

Demographic data PD 1 PD 2 PD 3 ET 1 ET 2

Gender Male Female Male Female Male

Age (years) 76 61 60 81 84

Age at onset (years) 71 59 57 50 51

Disease duration (years) 5 2 3 31 23

TRS 21 19 13 14 17

Hoehn and Yahr stage 2 1.5 1.5 – –

Fig. 1  System set-up including a sensor unit and the transmitter, connected by a thin wire, and the axis 
orientation of an angular rate sensor
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collect inertial data of 10 s for each task and stored in a comma separated value (CSV) 
format for further analysis. The data can also be exported to other platforms.

Signal preprocessing

The tremor signals obtained from patients were processed using Matlab (R2009b) run-
ning on a standard personal computer for preprocessing and analysis. Unless stated oth-
erwise, a tremor signal is a time series obtained from the x-axis of an angular velocity 
sensor. Since tremor frequencies of PD and ET can overlap with range from 4 to 8 Hz 
[7], and to exclude low frequency high amplitude signal caused by movements while 
performing kinetic task, tremor signals were filtered with a 10th order Butterworth 
band-pass filter with cutoff frequencies of 3 and 10 Hz. Raw and preprocessed tremor 
signal collected from randomly selected PD and ET patients are shown in Figs. 2 and 3, 
respectively.

Tremor characteristics

To investigate frequency characteristics of tremor signals while performing different 
tasks, filtered tremor signals were partitioned into ten equal-sized subsequences. Each 
subsequence is modeled with the 7th order [21] autoregressive (AR) process using Yule-
Walker method. Model parameters of AR process were used to estimate the power spec-
trum of subsequences [22]. The peak frequency defined as the frequency achieved by 
the maximum of the power spectrum, was then located for each subsequence. Peak fre-
quencies obtained from previous steps were averaged and used as a representation of 
the peak frequency of each 10-s long tremor signal. Average tremor peak frequencies of 
all PD and ET subjects while performing the three tasks can be shown in Fig. 4. Table 3 
shows two-sample t test results of average peak frequencies between the two tasks.

Temporal fluctuation

Even though frequency alteration from kinetic to resting tasks of PD subjects tend to be 
on the lower side as shown in Fig. 4, this does not mean that this feature can solely be 
used for perfectly discriminating PD from ET because it is only sensitive to PD but not to 
ET as two-sample t test results shown in Table 3. To discriminate PD and ET, one needs 
to consider both frequency and time domains. To acquire features that are composed 
of both domains, previous literatures [14, 16, 18] applied a transformation such as the 
wavelet transform which decomposes time series signal into time and scale in different 
resolutions. Some research groups separately acquire frequency and temporal features 
by using peak frequency [10, 13], RMS [11, 12], approximate entropy [11, 12, 16], power 
spectral density [13, 14, 16] and higher order statistical parameters [14, 15] as features. 
These features are then fed to a classifier such as a neural network or a support vector 
machine. However none of aforementioned methods provides perfect discrimination.

To solve this problem, we generated a new relation according to signal amplitude tem-
poral variation as follows. Suppose s(n) is a signal acquired from inertial sensor at nth 
sample and d1 and d2 are delay units which d1  < d2. Let f (n) = (x(n), y(n)) be a two-
dimensional signal representing a relation of tremor samples at different delay units d1 
and d2 as

(1)f (n) =
(

x(n), y(n)
)

= ((s(n+ d1)− s(n)), (s(n+ d2)− s(n))).
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Since filtered tremor frequencies range from 3 to 10  Hz, tremor signals could have 
maximum fluctuations at the delay unit setting from approximately 0.05–0.16  s. For 
example, d1 and d2 can be selected to 5 and 20 samples, respectively. Therefore, we can 
generate a two-dimensional plot of the relation (1) with of tremor signals obtained while 
performing kinetic and resting tasks from a PD and an ET patient as shown in Fig. 5. The 
‘temporal fluctuation’ of tremor (TF) can be quantitatively defined as the area of 95 % 
confidence ellipse covering f(n) as shown in Fig. 5.

Fluctuation ratio

It is common for a PD subject to be visually observed to have rest tremor. The tremor 
amplitude is reduced when a subject has motor action such as moving or stretching his/
her arm in most cases. This phenomenon is the opposite for an ET subject. Therefore 
should there be a feature that compares the aforementioned characteristic of tremor 

Fig. 2  Tremor signal of a PD subject while performing kinetic, postural and resting tasks in x (a), y (b) and 
z-axis (c) and the corresponding preprocessed tremor signal (d–f). Subject was randomly selected
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Fig. 3  Tremor signal of an ET subject while performing kinetic, postural and resting tasks in x (a), y (b) and 
z-axis (c) and the corresponding preprocessed tremor signal (d), (e) and (f). Subject was randomly selected

Fig. 4  Average tremor peak frequencies of the training group, 32 PD (a) and 20 ET (b) subjects, while 
performing kinetic (cross), postural (star) and resting (square) task. Average peak frequency is the mean value 
of peak frequencies obtained from power spectral density of ten tremor subsequences. The power spectral 
density was obtained parametrically by autoregressive (AR) model parameters using Yule–Walker method
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during resting and kinetic tasks, the ratio of these measurements could provide insights 
to increase the reliability of the discrimination. As shown in Fig. 4, the largest variation 
of average peak frequencies is found when a PD subject performed a kinetic task and 
then a resting task. The differentiation of PD from ET can then be improved by using 
features related to the alteration of tremor peak frequencies of these two tasks. Concern-
ing an individual subject, the lower tremor frequency corresponds to the higher tremor 
amplitude, and vice versa. Therefore, the hypothesis is that PD subjects have more tem-
poral fluctuations in a resting task than in a kinetic task.

To differentiate PD and ET, based on tasks performed by an individual, we defined 
the ‘fluctuation ratio’ (RF) as a proportion of temporal fluctuations of a resting task to a 
kinetic task of a particular subject as in (2).

The higher the fluctuation ratio the greater is the potential that the tremor belongs to 
PD subjects. By this quantitative definition, we can then define a threshold value to dis-
criminate between PD and ET subjects.

Results and discussion
To investigate the common outcome, delay units d1 and d2 are involuntarily selected 
to 5 and 20, respectively. The temporal fluctuation of PD and ET subjects are shown in 
Fig. 6. Matlab performed two-sample t test to compare the averages between two groups 

(2)RF = log
((

100× TFresting
)

/TFkinetic
)

Table 3  Two-sample t test results of  peak frequencies of  PD and  ET patients in  training 
group while performing different tasks

a  Denotes statistical significance

Tasks PD patients ET patients

Kinetic: postural 0.00054a 0.55

Kinetic: resting 9.92 × 10−14a 0.11

Postural: resting 9.78 × 10−6a 0.30

Fig. 5  Two-dimensional plot of relation (1) of tremor signal obtained while performing kinetic (cross) and 
resting (circle) tasks from a PD (a) and an ET (b) patient. Both are males with 77 years of ages and 7 years of 
disease duration. Delay units d1 and d2 in relation (1) were involuntarily selected to 5 and 20, respectively. The 
temporal fluctuation of tremor is the area of 95 % confidence ellipse covering the two-dimensional represen-
tation of kinetic (filled line) and resting (dash line) task
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and determine if there is a significant difference between them. It can be seen that PD 
and ET subjects can be differentiated based on the temporal fluctuation measured while 
performing the resting task (p = 0.0492). Furthermore, it can be visually observed that 
the temporal fluctuation of ET subjects while performing resting and kinetic task are 
more statistically significantly different (p = 0.0013) than PD subjects (p = 0.0228). The 
fluctuation ratio with selected delay units of PD and ET subjects are shown in Fig.  7 
(p < 0.01). To compare fluctuation ratios obtained from different axes, the distribution 
of fluctuation ratios in all axes is shown in Fig.  8. It can be seen that only fluctuation 
ratios in the x-axis have a statistically significant separation between the lowest fluctu-
ation ratio from PD subject and the largest fluctuation ratio from ET subjects. This is 
because a subject with tremor has more angular movement around the x-axis than other 
axes. The list of delay units tested in the experiment and their two-sample t test results 
and separation distances between fluctuation ratio of PD and ET groups are shown in 
Tables 4 and 5, respectively. However, two-sample t test results of the x-axis have larger 

Fig. 6  The temporal fluctuation of the training group, 32 PD (a) and 20 ET (b) subjects, while performing 
kinetic (plus) and resting (circle) tasks. Delay units d1 and d2 in relation (1) were involuntarily selected to 5 and 
20, respectively. The temporal fluctuation is shown in log scale

Fig. 7  The fluctuation ratio with delay unit d1 = 5 samples and d2 = 20 samples in relation (1) of the training 
group, 32 PD (star) and 20 ET (circle) subjects. The fluctuation ratio is a log scale of percentage of temporal 
fluctuation while performing resting task to kinetic task of an individual subject. The log scale is used because 
the distribution of percentage of temporal fluctuation while performing resting task to kinetic task is skew
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values comparing to the other two axes because the fluctuation ratios of the x-axis of PD 
group vary in a larger scale. The largest statistical difference of PD and ET (p = 0.0014) 
is obtained when d1 and d2 are selected to 15 and 40, respectively. The largest separa-
tion distance between fluctuation ratio of PD and ET groups is obtained when d1 and 
d2 are selected to 5 and 20, respectively. Regarding the tremor signals collected from 
the training group, the fluctuation ratio obtained from an ET subject is always negative 

Fig. 8  The distribution of fluctuation ratios of the training group, 32 PD and 20 ET subjects, obtained from x, 
y and z axis of angular rate sensor

Table 4  Two-sample t test results of fluctuation ratios between PD and ET patients in train-
ing group in three axes with a set of different values of delay units d1 and d2

d1 (samples) d2 (samples) X-axis Y-axis Z-axis

5 10 0.0111 0.0035 0.0001

5 20 0.0097 0.0021 0.0003

10 20 0.0111 0.0022 0.0002

10 30 0.0107 0.0021 0.0003

15 30 0.0317 0.0072 0.0002

15 40 0.0014 0.0011 0.0003

20 30 0.0151 0.0033 0.0003

20 40 0.0057 0.0015 0.0004

Table 5  Separation distances of fluctuation ratios between PD and ET patients in training 
group in three axes with a set of different values of delay units d1 and d2

d1 (samples) d2 (samples) X-axis Y-axis Z-axis

5 10 1.0747 −0.5290 −1.0970

5 20 1.9436 −1.0208 −0.4472

10 20 1.9435 −0.9816 −0.9146

10 30 1.1455 −1.2763 −1.1133

15 30 0.8109 −1.3183 −0.5249

15 40 1.5539 −0.7817 −1.2615

20 30 1.2872 −1.3904 −0.9399

20 40 0.8653 −1.9096 −0.8077
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(equivalent to 1 % in normal scale) and the fluctuation ratio obtained from a PD subject 
is always positive. Therefore, the threshold ratio could be simply set to zero and the clas-
sification rule can be assigned as follows. A patient is classified as a PD subject when his/
her fluctuation ratio is greater than zero and a patient is classified as an ET subject when 
his/her fluctuation ratio is less than zero.

To validate the discrimination performance, the signals collected from the testing 
group (3 PD and 2 ET) were processed as described procedure. Fluctuation ratios of PD 
patients in testing group are 0.7298, 0.0679 and 0.2788. Fluctuation ratios of ET patients 
in testing group are −3.1430 and −1.8253.

Suppose PD is a positive case and ET is a negative case, the performance of the dis-
crimination is evaluated by sensitivity, specificity, and accuracy, as follows:

where TP is true positive, TN is true negative, FP is false positive and FN is false nega-
tive. Despite a small number of patients in testing group, they were considered having 
mild tremor or early stage suggested by low TRS. The discrimination of PD from ET by 
this method provides 100 % accuracy, sensitivity and specificity in the 5 subjects in the 
validation group.

Conclusions
Parkinson’s disease and essential tremor are among the most frequent movement dis-
orders. While these two diseases share a common symptoms including tremor, it is 
important to diagnose these two diseases with confidence because successful treatment 
depends on specific medications. We proposed a novel measurement that can be used 
for discriminating PD from ET. This measurement quantifies the variation in a timely 
manner instead of providing a summarized quantity such as root-mean-square of tremor 
amplitude. Furthermore, an ellipse area covering 95  % of the two-dimensional signal 
excludes outliers and provides a more reliability of the discrimination. The result shows 
that the temporal fluctuation while performing resting task can be used to differentiate 
PD from ET. Furthermore, the differentiation can be improved by applying the fluctua-
tion ratio of the individual subject. As a result, two-sample t test results were reduced 
while using the fluctuation ratio. The fluctuation ratio acquired from the x-axis of a sen-
sor provides the highest separation of PD to ET tremor compared to other two axes. 
This is because subjects with tremor have maximum angular movements around this 
axis compared to the other two. This feature can be applied to classifiers such as neu-
ral networks and support vector machines. However, with a simple classification rule, 
the validation shows that the proposed method can differentiate mild tremor or early 
stage PD from ET subjects with 100 % accuracy in the 5 subjects in the validation group. 

(3)Sensitivity (%) =
TP

TP + FN
× 100

(4)Specificity (%) =
TN

TN + FP
× 100

(5)Accuracy (%) =
TN

TP + TN + FP + FN
× 100
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While the method would have to be validated with a larger number of subjects, these 
preliminary results show the feasibility of the approach. This demonstration introduces 
the efficacy of the proposed method for differential diagnosis of early cases of PD and 
ET. This method also provides convenience to patients since it takes only 10 s for each 
task. The total signal collection time including setup and giving instruction is normally 
less than 10 min. In future work, a larger number of participants are needed to verify 
whether this feature can represent each group effectively. Furthermore, this novel fea-
ture can then be explored with particular tasks designed for more convenient devices 
such as a smartphone and a smartwatch to obtain tremor data.
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