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Abstract

Background: Diffuse reflection imaging could potentially be used to recover the
superficial microvasculature under cutaneous tissue and the associated blood oxy-
genation status with a modified imaging resolution. The aim of this work is to deliver
a new approach of local off-axis scanning diffuse reflection imaging, with the revisit of
the modified Beer-Lambert Law (MBLL).

Methods: To validate this, the system is used to recover the micron-scale subsurface
vessel structure interiorly embedded in a skin equivalent tissue phantom. This vessel
structure is perfused with oxygenated meta-hemoglobin solution.

Results: Our preliminary results confirm that the thin vessel structure can be mapped
into a 2-D planar image. The distributions of oxygenated hemoglobin concentration
(CtHpo,) and deoxygenated hemoglobin concentration (Ctgyp) can be co-registerated
through the MBLL upon the CW spectroscopy, the scattering issue is addressed in the
reformed MBLL. The recovered pattern matches to the estimation from the simultane-
ous optical coherence tomography studies.

Conclusions: With further modification, this system may serve as the first prototype
to investigate the superficial microvasculature in the expotential skin cancer loci, or a
micro-lesion of vascular dermatosis.

Keywords: Diffuse reflection, Angiographic imaging, Cutaneous tissue phantom

Background

Metabolism in the lesion of cancer, or vascular dermatosis is enhanced and therefore,
this region has to be supplied by more blood vessels to deliver oxygen. Monitoring the
microvasculature density in areas with increased angiogenic activity is one of the most
convincing criteria to determine the growth of a tumor in its initial/recurring stage, or
the deterioration of the angioma and vascular dermatosis in some cases [1, 2]. Non-inva-
sive means of vessel imaging mainly adopt the radiological and optical technics such as
computer assisted tomography (CT), functional magnetic resonance imaging (fMRI),
and optical coherence tomography (OCT) [3, 4]. Using these technologies, the number
of biopsies could be reduced by providing a first impression guidance. These approaches
have already been examined on in-vivo studies to facilitate the monitoring of the blood
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flow/metabolism in expotential lesion of breast cancer, traumatic brain injury, and heart
defect [5-7]. Focusing on their uses on the angiographic imaging of the cutaneous tissue,
a speckle-variance OCT (sv-OCT) could effectively map the pattern of microvascula-
ture/micro-circulation in the epidermis with a depth-resolution and assist the diagnosis
of skin cancer [8].

However, these modalities can hardly illustrate the blood oxygenation, while it is an
extraordinarily meanful optical biomarker to distinguish a tumor progression from e.g.
the normal inflammation [2]. Recent researches on OCT technics did not only involve
a task to feasibilize monitoring the oxygenation via an ultra-high-resolution OCT and
advanced means of pattern recognition [9], but also to evaluate the hemoglobin con-
centration (change) via a spectroscopic OCT [10, 11]. But none of these results could be
acquired without an intensive signal processing or sophiscated system alignment. Con-
sequencely, a disproportional investment on devices might obstacle their dissemination
from labs into clinics.

Diffuse optical technics have evolved as a powerful tool to functionally substitute the
expensive modalities in some specific diagnostic scenarios. It adopts the diffuse remitted
light out of the tissue, which is informative about the blood oxygenation (changes). Such
information is oftenly related to the chromspheres in the vasculature or extracellular
matrix [12]. In principle, diffuse optical technics allow for recovering specific chromo-
spheres in tissue, primarily the oxy- and deoxygenated hemoglobin. Especially the dif-
fuse optical imaging (DOI) could have substituted the approaches, like fMRI and CT, in
the lesion analysis of breast cancer [13, 14] traumatic brain injury [15] and heart defect
[16]. Technically, the diffuse optics has been transited from employing single-point
probe over source-detector pairs toward planar sensing array [12]. Research has also
been conducted onto different derivations of diffuse optics, like diffuse optical tomog-
raphy (DOT) [14], time gated scanning diffuse optical imaging method [17] etc. Com-
pared to other modalities, diffuse optical technologies provide an enhanced sensitivity to
absorbing targets in depth concurrently with an achievable temporal resolution and cost
efficiency. However, despite the impressive development in the technics, insufficiencies
still exist, including inadequate spatial resolution, challenges in artifacts removal, and
complicated inverse reconstruction [12, 18].

Our ultimate interest is to develop a diffuse reflection approach to provide an angio-
graphic imaging of the cutaneous microvascular pattern, or compromisingly the micro-
lesion (size ~100 wm) under skin. Relevantly for similar purpose, a novel modification
of Laminar Optical Tomography (LOT) could have given a high resolution 3-D recon-
struction of such a subsurface target, namely the vascular network. However, the con-
focal-type design of LOT is costly. Even under this cost, it is only capable to recover a
subsurface target in size of 100-200 pm [19]. Moreover, the use of CW spectroscopy
in diffuse optical study is deliberately avoided, for reason that the prediction of the light
propagation in depth of the turbidding tissue is difficult. Because of this, frequency
domain spectroscopy is more widely studied, even its algorithm might increase the cost
of hardware and computational power. In our study, the target to be recovered is located
superficially. This means, the path length of light is limited to the subsurface and could
be characterized by using CW spectroscopy. Mathematically, the path length of light
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through the turbidding media could be yield through the modified Beer—Lambert Law
(MBLL), if the scattering issue of the target is restricted.

The objective of this work focuses on improving the imaging resolution of the diffuse
optics to micron-scale, and meanwhile with a simple strategy of signal processing and
system alignment. In the previous study as reported elsewhere [20], we have introduced
the prototype system. We also provided a proof of conception of adapting the MBLL to
the local-off-axis alignment. As the result, the micron-scale target can be projected into
a 2-D planar image with high pixel density. In this work, we shall more specifically inves-
tigate how the imaging resolution could be correlated to the induced change in the scan-
ning scheme. Again to validate this, it is first used to recover a micron-scale superficial
vessel structure interiorly embedded inside a skin equivalent phantom. Further more, we
would give a modification of the MBLL algorithm to better address the impact from the
scattering issue of the phantom.

Methods

Experimental setup of sDRI

The local off-axis scanning diffuse reflection imaging system is schematically shown
in Fig. la. It consists of three modules: optical off-axis module, scanning module and
detection module. Components of these three modules are electromechanically cou-
pled together for a robotic 2-D planar scanning procedure. The optical off-axis module
attributes to a customized bifurcated optical fibre (Ocean optics Co., USA). This fibre
ensembles an illumination core and a detection core with a core diameter of 50 jum and
a aperture separation of 125 pm from central to central, with all arms terminated with
SMA 905 connectors. Steadily on each measuring point, light is coupled from a 20 W
halogen light source (HL-2000, Ocean optics Co., USA) through the illumination core
into the object sample, as it is then diffusely remitted into the detection core toward a
scientific grade spectrometer (QE 65000, Ocean optics Co., USA), as shown in Fig. 1b.
For the simultaneous scanning of the ensemble end of the optical fibre over a X-Y
plane upon the surface of the object sample, the optical fibre is adapted on the motor-
ized stages (M-663 ®motion stage, Physik Instrumente GmbH, Germany). This stage
has a travel range of 18 mm, 2 um minimal motion step length and provides a precise
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Fig. 1 a Schematic of the local off-axis scanning diffuse reflection imaging system: the bifurcated optical
fibre as off-axis module; the motorized stages as scanning module; and a spectrometer as detection module.
It consists of (1) motion stages, (2) bifurcated optical fibre, (3) halogen light source, (4) compact spectrometer,
(5) controller, (6) triggering cabel, and the other integrated control unit. b Schematic of the bifurcated optical
fibres. The apreture separation defines a geometric off-axis between the illumination and the detection cores
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motion capacity with a close loop motion cycle to take the inventory of the motion
accuracy. Two orthogonally aligned motion stages enable a combined scanning along x
and y direction. The spectrometer and the motion stages are synchronously triggered
with a controller (C-867.260 PILine ®Controller, Physik Instrumente GmbH, Germany)
through the digital I/O lines (TTL signal, analog: 0-5 V) to start/stop action. On each
measuring point, one acquisition is gated by a triggering signal after the stage braked. In
the prototype system, the entire cycling of motion, brake, trigger, acquisition and delay
on each single measure point lasts 30 ms.

Skin equivalent phantom model

The preparation of a single layer skin equivalent tissue phantom is reported else-
where [21]. Principally, we embed copper wires in the matrix material, and eliminate
them by using ferric chloride. The matrix of the phantom is constructed out of poly-
urethane, titanium oxide and India ink [22]. The matrix material allows for a reduced
scattering and absorption coefficients of 1, = 3.1 cm™! and u, = 0.13 cm™! at the
wavelength of 660 nm, which replicate the representatives values from the Cauca-
sian skin [22]. These optical parameters are not alteratedduring the fabrication proce-
dure [21]. To simulate the structure of the superficial microvasculature under skin, we
embed four separate rows of interior channels with an aimed diameter of 50 pm and
at an average depth of about 200 pm to the surface (the finished phantom is shown in
Fig. 2 [21]). Hillman has reported elsewhere [19] a similar phantom, where a human
hair was embedded as the targeted absorber. In our work, fresh oxygenated meta-hemo-
globin solution (hemoglobin human, Sigma-Aldrich. Co, USA) with a concentration of
120 g/L is included into the hollow vessel channels as the light absorber. These simulate
the micro-circulation in cutaneous vasculature.

Scanning scheme and paradigm

Experimentally, the geometry of the generated vessel structures is independently co-
checked by using a SD-OCT ( center wavelength 1300 nm, objective: LSM, Medium-
Sensitivity Mode: 48 kHz; Telesto-II-SP1, Thorlabs GmbH, Germany). Read from the
OCT B-scan image (see Fig. 3a) and 3-D volume view (see Fig. 3b) [21], the generated
vessels perforate through the phantom slab, and perpendicularly cross into the mounting
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Fig. 2 a Picture of skin equivalent tissue phantom with four separate rows of vessel channels indicated and
b OCT B-scan image of cross section passing along the vessel channel in tissue phantom and the overlaid
measured values of the geometry




Chen et al. BioMed Eng OnlLine (2015) 14:87 Page 5 of 14

Vessel channel

=
Vessel VesSeI

Mounting bracket

P

(b)

Fig. 3 a OCT B-scan image of the cross section passing along a mounting bracket across the the vessel
channels, the cross section of the vessel channels are circled by red rectangular. b OCT volume view of the
segmentated vessel structures. They include four separate rows of vessel channels perpendicularly crossing
over two rows of mounting brackets

bracket, thus forms a physiological complexities of perpendicular crossing. Likewise, we
scan over the area of interest with highest structural complexity, namely the perpendicu-
lar crossing, via sDRI, and compare to the OCT image. An orthogonal crisscross liked
pattern is assumed to be recovered to indicates this perpendicular crossing. Besides, to
investigate the influences from the motion step length of the scanning scheme on the
imaging resolution, we scan over a certain region with an induced change of motion step
length from 5 over 10-50 pm.

Data analysis and image recovering

The detection core of the optical fibre is manipulated to a scientific grade compact spec-
trometer to register the intensity-wavelength spectra. The values of intensity / from
these spectra are abstracted numerically at the wavelength of 660 nm. We convert them
into the key values of optical density OD by normalizing to the reference intensity Iy (see
Eq. 1), and correspond them into their position in the scanning scheme. Thus, an image
of gray scale is plotted by iteratively matching the values of optical density onto a 2D pla-
nar coordinate (see Fig. 4a).

o =n (2,00 —=1n (2 (1)
1 1

Figure 4b shows the optical density spectra of over around the scattering matrix mate-
rial and the absorbing vessel structure respectively. The contrast of the gray scale image
stems directly from the distance between these two characterizing spectra of optical
density. With this, the recovered image can differentiate the absorbing target against the
scattering background.

The values of optical density are further translated into the oxy-hemoglobin concen-
tration Ctp0, and the deoxy-hemoglobin concentration Ctgpy, {mT"l} by solving the modi-
fied Beer—Lambert Law (MBLL). The ‘91311702 and 82’}% {W}
the molar extinction coefficient of oxy- and deoxy-hemoglobin at specific wavelengths.

represent respectively for

To calculate the oxy- and deoxyhemoglobin concentration, data processing must be per-
formed at two or more different wavelengths around the isosbetic point. In this case,
we choose the wavelengths of 660 and 940 nm, as they are commonly used in pulse

oximeter.
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Fig.4 a A 2-D planar imaging of optical density arranged to their corresponding position in the coordinate
of scanning scheme. b An OD-wavelength spectra showing the contrast of of the optical density between
over around the scattering matrix (blue curve) and vessel included with hemoglobin solution (red curve),

the red curve shows a lower value of optical density with the wavelength dependency, as the hemoglobin
absorbs more light

y A b A
OD% = Erbo, * Ctrpo, + expgp * CtRH;,} * L * fppr + Goptode-

The L f,;‘l’ép in the equation stands for the differential path length of light inside
the tissue. This path length is mostly determined by the scattering issues of a turbid-
ding material as well as the spatial separation between illumination source and detec-
tor. The translation through MBLL also undergoes an approximation of the geometric
path length from illumination to detection. In this study, we simplify this path length
as source-detector distance, which means, the geometry factor G,pzoqe is neglected, and
the values of Ctyp0, and Ctgpyp, on the calibration scale bar are not yet calibrated to their

exact values.

Results
Planar image of optical density
We scan over around the region of perpendicular crossing with a motion step length of
20 pm. This motion step length gives the best balance between the resolution (as stated
later) and the time duration for 1 scan. As the result of this procedure, we receive an
image with a field of view (FOV) of 1 x 2 mm. Figure 5 illustrates this planar top view
over the area of interest. The obtained pattern is stitched out of three regions: perpendic-
ular area, vessel pattern 1 and vessel pattern 2 along one vessel channel (as labelled from
left to right in Fig. 5). The region perpendicular area contains 100 x 100 pixels (from 100
x 100 measure points in scanning scheme), the region vessel pattern 1 and vessel pattern
2 contains 50 x 50 pixels. For each pixel, the length and the width equal to the motion
step length in the scanning scheme (20 um). The gray scale grades the absorbance from
high level in dark to low level in white, with no spatial filtering or smoothing applied.
First, we discuss on this general top view, the gray shaded zone demonstrates that the
optical fibre scans over an absorbing target, mainly the vessel channel and the mounting
bracket. Read from the image, we recognize a vessel channel horizontally perforating
through the three segmentation regions with a contrast against the scattering back-
ground. The geometry of the perpendicular crossing is patterned in region perpendicular
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Fig. 5 Recovered image of vessel pattern around the area of interest with a motion step length of 20 wm.
The boundary highlights the possible interface from the absorbing vessel channel to the scattering back-
ground of matrix material; an estimated OCT image is shown at right bottom

area on the left, where we find the vessel in horizontal and the mounting bracket in ver-
tical direction. These two patterns cross perpendicularly into each other, thus form a
crisscross liked pattern, as we assumed. Figure 5 also shows an estimated image recov-
ered with OCT at right bottom. In the OCT image, brighter pixels indicate the target
with higher reflectivity, while the darker pixels for lower reflectivity. This image show the
same perpendicular cross, whose morphology matches to that in the sDRI image.

sDRI versus SD-OCT image

Notably, there exists a dark spot in the middle of the OCT image (see Fig. 6a). This
shadow could be caused by the local condensation of the included hemoglobin solution
in vessel, which absorbs more portion of light. Principally, hemoglobin solution flows
flows into the air bubbles in phantom matrix (micron-scale), which are opened to the
vessels. These air bubbles, where the condensation occurs, are mistakenly introduced.

Local condensation

N

Y coordinate (um)

0 100 200 300 400
X coordinate (um)
(a) (b)
Fig. 6 a OCT topview of a 50 pm diameter vessel channel with a labeled fleckle induced by condensation of

hemoglobin solution and b the vessel channel recovered by sDRI around the same area of local condensa-
tion with two labeled spots representing the condensation of hemoglobin

Page 7 of 14
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However, this could be a good target to test, whether the sDRI could capture the small
target. As a matter of fact, this local condensation could have mimicked the structure of
e.g. tumor nodules in skin. The sDRI image (see Fig. 6b) enlarges this dark spot on the
same position, that consistents to the shadow in OCT image. In both sDRI and OCT
image, this fleckle is located at about 1200 pm away from the main body of the mounting
bracket. In the sDRI image, the pattern of the local condensation is even more detailed
splitted into two corresponding loci on the left and on the right (as labelled in Fig. 6b).

Impact from the scanning scheme

The amount of the measuring points in scanning scheme decides the pixel density in
the recovered image. We further discuss the impact from the scanning scheme on the
recovering capacity. Figure 7 demonstrate the recovered images of the local condensa-
tion peripherally with a changing of the motion step length of the scanner. The location
of the local condensation is regarded as the mark to assess, whether the sDRI has the
capability to capture the small target. Therefore, both spots of the local condensation are
deliberately observed to rate the imaging resolution. The image recovered with a motion
step length of 5 um is shown in Fig. 7a. The boundary of targeted vessel channels and
spots of the local condensation are properly recovered with a clear contrast against the
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Fig. 7 Recovered image of the 50 wm diameter vessel channel measured with an induced change of the
scanning scheme of a 5 um step length, b 10 wm step length and € 50 wm step length
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scattering background. The shadow zone, which represents the vessel channel, ranges
from 200 to 300 pm on Y coordinate. Inside this shadow, it is showing more elevated
values of optical density against the background.

We increase the motion step length to 10 pm and scan over around the same region.
Compared with the image recovered with a step length of 5 um, this image (see Fig. 7b)
reveals more blur. It loses, or even shifts a detailed reconstruction of the boundary
between the absorbing and scattering area. The spots of the local condensation preserve
only partially, as the loci on the right is almost vanishing from the image (as labeled in
Fig. 7b). In both Fig. 7a, b, the optical density decreases from a peak value of 0.25 a.u.
upon the absorbance maximun to the absorbance minimun of around 0.1 a.u., with
a drop of 60 %. Therefore, the gray scale differentiation of the image is turned out to
be high. Contrastly in the Fig. 7c, the blur is totally becoming a mosaic under a larger
motion step length of 50 wm. Under this motion step length, the scanning system could
have even lost its capacity of resolving both two spots of the local condensation.

Planar distribution of Ctgyp, and Ctypo,

After our initial tests on recovering the microvascular pattern, we attempt to recover the
distribution of the hemoglobin concentration. The measured values of optical density are
converted into the absolute values of Ctz0, and Ctgyyp, through the modified Beer—Lam-
bert Law. Figure 8 shows the recovered image of Ctcypo, and Cippyy distributions with a
motion step length of 5 wm. Image of Ctcppo, (see Fig. 8a) indicates very slight changes
compared with the image of optical density distribution in (Fig. 7a). The recovering of
the local condensation survives after the translation and dovetailes. On the other side,
both spots of local condensation fade in the image of Ctzyy, (see Fig. 8b) compared with
those in image of Ctyp0, .

As the native function of diffuse optics, the sDRI system implements a reconstruction
of HbO; and RHbD concentration distributions. Based on the fact, that the injected hemo-
globin in the phantom is mostly oxygenated with its exposure to air, the spots of the local
condensation in Ctgyy;, image is expected to be alterated compared to that in the image
of Ctypo,. This inference is warranted by the facts by comparing Fig. 8a, b. It means,
sDRI system can distinguish the oxygenation status of the included hemoglobin, but
only qualitively since the path length factor has not yet been calibrated. Nevertheless,
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Fig. 8 Recovered image of vessel channel demonstrated as the distribution of a Ctypo, and b Ctpyp
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the sDRI system provides more information about tissue oximetry, than it can be gained
from OCT without spectroscopic alignment, or functionally less processing intensive
compared with a spectroscopic OCT, like described in Ref. [11].

Discussion

The recovered sDRI image maps the defined vessel channels against the scattering back-
ground and reconstructs the geometric complexity of perpendicular crossing in tissue
phantom. By comparing to a simultaneous study using a SD-OCT, it is proved that the
system can resolve a micron-scale target, i.e. the pattern of the local condensation, under
a fine incrementation of the scanning scheme. This dimensional scale has not yet been
discovered by other diffuse optical approaches, according to our knowledge [13-15].
Compared to our previous study as reported elsewhere [20], we have proved that the
motion step length is an influential aspect. The imaging resolution is inversely propor-
tional to the motion step length of the scanning scheme. With such a simplified setup,
it could achieve an equivalent resolution, as that of the LOT [19]. The core competence
is not the hardware, instead, it is stated as the recall back of the modified Beer—lamber
Law upon the local off-axis aperture separation. Within the MBLL based algorithm, it
is becoming practicle to recover the light attenuation in the superficial target by using a
CW spectrometer. CW spectrometer is cheaper and requires less expensive assisoires,
like laser/coherrent light source. This means, it would help to avoid a disporportional
investiment, while the other skin angiographic imaging apporaches, such as OCT or
LOT, can't.

Furthermore, the most established diffuse optical approaches measure the values
of the oximetric parameters §Ctypo, and §Cirpyp instead of their absolute value, since
the factor of opotode geometry and the scattering issue can not be neglected. As the
result, it is almost meanless to calibrate the differential path lenght factor when the dis-
tance between opotodes exceeds about 2.5 cm, quoted from G. Strangman’s clearance
in his review work [18]. A local off-axis of the two ensembled cores with a separation
of 125 pm is subversive to the common boundary condition of MBLL. Calibrating the
path length factor, or assigning an absolute value of hemoglobin concentration through
MBLL is theoretically possible, and therefore, becomes a purposeful topic for future
works.

However, this method does not come without limitations. Firstly, vessels are dimen-
sionally overestimated than the actual defined values of 50 pm in diameter. The width
of the gray shaded vessel pattern is over around 100 wm on Y axis, almost double size of
the actual width. This problem is commonly found in other diffuse optical approaches
[13, 18]. To address this challenge, images should be de-convoluted individually accord-
ing to their calibration criteria of optical properties, e.g. absorption coefficient u, and
reduced scattering coefficient u.

Different from our previous work, we reformed the scattering issue Fseqy in the
extended form of MBLL (see Eq. 2) in this work. The general equation of the MBLL is
shown as the following.

A A A A A
oD = [%boz * Crivo, * fppermon + €mp * Chb * L * fpperpy | + Goptode + Fscatt - (2)
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where the differential path length factor DPF in the scattering issue Fqs could be char-
acterized through the variation of the diffusion equation (see Eq. 3) In the previous work
[20], we have simply excluded the F4, as it was writen as a constant and integrated into
the geometry factor G, 4.. To distinguish from the previous work, we re-programm the
MBLL by replacing the constant value of Fy4 by the equation as shown in the following.
The parameters of absorption coefficient u, and reduced scattering coefficient u| are
read from the spectrum of, in this case, the phantom slab. The reconstructed image does
not show significant morphological difference by comparing the figure to those in our
previous publication [20], as the Fsc+ remains constant for the single equation. How-
ever, each pixel includes a better calibrated value of hemoglobin concentration after the
reformation. The Fy4 shall no longer be a simple unchanged value. Instead, the Fycqs
shall be then correlated to the skin type (their optical parameters). With its variation
under different skin types, the MBLL could give us the exact absolute values of the oxy-
metric parameters of the hemoglobin concentration. It would be the orientation of our
work in the upcoming period, to fix the Fy4s within the change of skin (phantom) types.

L 13\ V2 1
DPF* = — # |l = 3)
2 (1 +dBuans'™)

Experimentally, the work shall be conducted onto evaluating the dimension of vessel
channel experimentally on tissue phantoms, with optical properties that cover the range
from those of caucasian to the negroid type. In details, the Fy.4 shall be calibrated with
the change of the optical parameters of the phantoms, which simulate caucasian to the
negroid skin cutis (epidermal and dermal). Computational simulations (Monte Carlo
inversion) of light propagation in turbid media shall be proceeded to verify the differen-
tial path length of light in tissue/digital phantom.

The constructed sDRI system is yet still the first prototype. The primary problem
is that the scanning procedure must be accelerated, so as to provide an efficient FOV
within a shorter duration. As described in the report, a delay of at least 30 ms is needed
upon each measuring point in the scanning scheme. During this 30 ms, despite the dead/
rise time of the compact spectrometer, the most duration is spent on reading the GSC
command (the machine language that drives the motion stage) from the software panel
onto the motion controller. The GSC language is written as the function in Dynamic-
Link library (DLL), which could be directly extracted by using MATLAB. By doing this,
the delay for reading command could be evitable. In the latest test on sDRI system,
we have succeeded shortened this delay to less than 5 ms. In the future work, we shall
attempt to modify the sDRI by using a compact NIR spectrometer module (CCS175/M
NIR compact spectrometer, Thorlab, Germany) with shorter dead/rise , or integration
time. This helps to further accelerate the scanning procedure.

The skin equivalent phantom is unique. This phantom features the scattering nature
of skin cutis and meanwhile the vascular geometry. This helps to provide a better insight
into the imaging capability of recovering the oximetry parameters and resolution. In one
sense, we do not only present the diffuse reflection imaging approach, but also introduce
a novel methodology to perform the phantom validation. However the phantom can not
simulate a real cutaneous tissue on all aspects. For instance, the fingerprints can affect
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the reflectance of light. Unfortunately, to fabricate such a surface topography to mimic
the fingerprint is challenging. Besides, the defined structure of the superficial micro-
vasculature in the phantom is comparatively simple with a homogeneous inclusion and
matrix material. Ex-vivo and in-vivo studies require more considerations about the het-
erogeneity of other physiological structures and chromospheres in skin. For example, the
epidermis of a real human tissue contains melanin, which has a constant extinction coef-
ficient that affects on the reflectance of skin. Those disruption could be reduced through
a data acquisition within a proper wavelength selection. Furthermore, overlay of the vas-
cular network under tissue is not uncommon, but can not be modelled with the previous
phantom of ours. Existing multilayer/micro-fluidic chip based phantom with embossed
vascular structure could have simulated this nature. But most of them include an adhe-
sive sealing material between layers, that disrupt the optical properties [23]. A crucial
topic for the future works will be to fabricate a self-packaging phantom with multiple
layers to mimic the cutaneous cutis and vascular network.

Conclusion

We have presented the instrumental setup of our new approach of sDRI and the results
on recovering the superficial vascular pattern through the phantom validation. The
scanning scheme with a fine motion step enabled a reconstruction of the vessel chan-
nels (¢ = 50 wm) and a geometric complexity. It is to be noticed that the reconstructed
pattern is slightly overestimated than the exact size of target. Nevertheless, the results
proved a modified imaging resolution correlated to a fine motion step length of the scan-
ning scheme. Our system could be regarded as a promising prototype to improve the
imaging resolution of the diffuse optical technics.

With further modification, our system could prospectively be used to image the
microvasculature and the associated oximetry in skin. Or compromisingly, it can already
recover a micron-scale absorbing superficial target under turbidding media, such as a
micro-lesion of the expotential skin cancer. Unlike the formal research on diffuse optics,
we recall back the use of the modified Beer-Lambert Law and the application of the CW
spectroscopy. The oximetry parameters of Ctzp0, and Ctgpyp, is mapped into a 2-D pla-
nar image irregardless of the uncalibrated path length factor. Anyway, the local off-axis
of the illumination-detection pair subverses to the boundary condition of the modified
Beer-Lambert Law directly, and enables an assignment of the absolute value of Ctyp0,
and Ctppyp. The scattering issue could be addressed by the general equation for differen-
tial pathlength factor.

The future works include a series of phantom studies to calibrate the differential path
length factor and its variance with the optical properties of the turbidding material. To
adapt an inverse reconstruction algorithm to the local off-axis setup for depth discrimi-
nation is planned. Last but not least, to construct a micro-fluidic based multilayer phan-
tom with overlaying microvascular network is a part of the future work as well.
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