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Background
Over the past decade, near-infrared (NIR) biomedical optical imaging is a rapidly evolv-
ing field. It has the potential in a wide range of medical applications. The ongoing devel-
opment in this area is led by the cooperation of physicians, engineers, physicists, etc. [1, 
2]. Among the optical molecular imaging, fluorescent molecular tomography (FMT) is 
a promising tool, which is expected to have a substantial impact on the prevention and 
treatment of cancer and of other lethal diseases [3]. This emerging imaging modality can 
offer an opportunity for noninvasive visualization of biological processes at the molecu-
lar or genetic level, targeting the detection of abnormalities at the molecular stage [4, 
5]. FMT depends on the perturbation of electron densities of molecules through the 
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absorption of light at the fluorophore’s excitation wavelength. Upon radiative relaxa-
tion, fluorescent light is emitted and the fluorophore returns to its ground state with 
some characteristic time constant. The fluorescent photons are measured by the detec-
tors widely spaced over the surface of the object. From these data, one can detect and 
map the accumulation of indocyanine green in tissue. Compared to other tomography 
methods, FMT offers several distinct advantages in terms of sensitivity to functional 
changes, safety, and cost [6]. For model-based iterative image reconstruction, the light 
propagation model is utilized as a predictor of measurements. Typically, the model is 
described by coupled partial differential equations [7]. Besides the forward model, the 
inversion technique is also needed for image reconstruction [8]. These techniques take 
into account the diffuse nature of photon propagation to achieve the spatial distribution 
of fluorochromes in tissues.

Considering the fact that the fluorophore is excited by the excitation light from source, 
the source may be an important factor for yielding the reconstructed results. Intuition-
ally, more sources can result in improved reconstruction results. But on the other hand, 
it may lead to the matrix system with larger scale and hence higher computational costs 
for reconstruction [9]. A model-order reduction method was proposed in [10] to reduce 
the computational complexity in the system matrix calculation. However, the transfor-
mation matrix needs to be constructed with the basis vectors, which possesses relatively 
high computational requirements. In [11], an efficient algorithm was proposed to locate 
and characterize the object, where the B-spline model and appropriate parameterization 
were utilized to reduce the number of unknowns. However, this method addresses the 
problem with only one object.

To accelerate inverse problem of FMT, some compression approaches have been pro-
posed [e.g., wavelet transform, principal component analysis (PCA), etc.]. The most 
important feature of the wavelet transform lies in the fact that most information of the 
signal is contained in a small number of entries with other entries being very small and 
therefore can be neglected. PCA is one of the most widely used feature extraction meth-
ods, which aims to obtain the most compact representations of the high dimensional 
data. Some related research has been conducted in the inverse reconstruction. Ducros 
et  al. applied compression techniques to the measurements acquired with structured 
illuminations [12]. This method is based on the exploitation of the wavelet transform of 
the measurements acquired after wavelet patterned illuminations. Correia et  al. intro-
duced a method with wavelet-based data and solution compression to improve the effi-
ciency of image reconstruction for fluorescence diffuse optical tomography [13]. This 
approach preserves the resolution of the forward operator and compresses its represen-
tation. In [14], Zhang et  al. proposed to use PCA to reduce the dimension of the sub 
weight matrix, and thus to accelerate the reconstruction process of dynamic FMT. Cao 
et al. solved the inverse problem based on reducing the dimension of the weight matrix 
with PCA [15]. Furthermore, some other fast reconstruction techniques have been 
investigated, including sparsity regularization based on the iterated shrinkage method 
[16], acceleration strategy using graphics processing unit [17, 18], and sparsity adaptive 
subspace pursuit method [5]. In addition, a reconstruction method using permissible 
region extraction strategy was proposed in [19].
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Considering the compression characteristic of wavelet transform and PCA, to fur-
ther speed up the reconstruction process of FMT as well as improve the precision of the 
inverse solutions, a new method using the wavelet-based PCA is proposed in this paper. 
In our method, the original excitation light sources and those rotated in a certain angle 
are used for iteration of image reconstruction in turn. Simulation results demonstrate 
that the proposed method can significantly speed up the reconstruction process and 
achieve high accuracy of inverse solutions.

Methods
Diffusion model

As it has been stated earlier, the forward model is used to predict the observable states 
at the measurement locations from knowledge of the excitation light source and spatial 
distribution of optical and fluorescent properties. The propagation of photons through 
a highly scattering medium with low absorption can be well described by the diffusion 
equation [20]. We employ the widely-used diffusion equation as a forward model that is 
appropriate for a variety of optical tomography schemes of tissues. Herein, the excitation 
field �x(r,ω) and the emission field �m(r,ω) are modelled with a pair of coupled diffu-
sion equations as follows

where the first equation depicts the transport of the excitation photons and the second 
one describes the excitation and transport of the fluorescent photons; ∇ is the grad oper-
ator, Sx(r,ω) is the source term for the excitation light; Dx,m(r) and kx,m(r,ω) denote the 
diffusion and decay coefficients at the excitation and emission wavelengths, respectively; 
α is the emission source coefficient. They are defined by:

where µax,mi(r) represent the absorption coefficients due to non-fluorescing chromo-
phore; µax,mf (r) represent the absorption coefficients due to fluorophore; µ′

sx,m(r) 
denote the isotropic scattering coefficients; fluorescence parameters η and τ (r) denote 
the fluorescence quantum efficiency and fluorescence lifetime, respectively; c is the 
speed of light in the media; i is the imaginary unit; ω stands for the angular modulation 
frequency of the input signal.

Here, we make use of the popular Robin boundary conditions for a bounded domain �,  
which take the form as

(1)−∇ · [Dx(r)∇�x(r,ω)] + kx(r,ω)�x(r,ω) = Sx(r,ω)

(2)−∇ · [Dm(r)∇�m(r,ω)] + km(r,ω)�m(r,ω) = α(r,ω)�x(r,ω)

(3)Dx,m(r) =
1

3[µax,mi(r)+ µax,mf (r)+ µ′
sx,m(r)]

(4)kx,m(r,ω) =
iω

c
+ µax,mi(r)+ µax,mf (r)

(5)α(r,ω) =
ηµaxf (r)

1− iωτ(r)

(6)�x(r,ω)+ 2Ax(r)Dx(r)n(r) · ∇�x(r,ω) = 0
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where n is the outer normal to the boundary, and Ax,m(r) is a parameter modelling inter-
nal reflection at the boundary.

Finite element approximation of the forward model

Like most others working in FMT, we are currently using the finite element method 
(FEM) for the computation of the forward model. FEM is versatile especially in regard 
to complex geometries and for modelling boundary effects [21]. In principle, FEM can 
be applied to any partial differential equations model of the transport process. In the 
FEM framework, the computational domain is discretized to a mesh with P elements 
and N vertex nodes [22]. The solution �x,m is approximated by the piecewise function 
�x,m =

∑N
i �xi,miϕi, with locally supported basis functions ϕi (i = 1, 2, . . . ,N).

Suppose Vh
0 = span

{

ϕj
}N

j=1
 and thus vh =

∑N
k=1 ckϕk. Let uh =

∑N
j=1�jϕj. To yield 

the weak solutions of the forward equations, we rewrite Eqs. (1) and (2) by the formula-
tion as

where

with the bounded domain �h and its boundary Ŵh.
Equation (8) can be written by the matrix formulation

where

The matrices Ax,m have elements

(7)�m(r,ω)+ 2Am(r)Dm(r)n(r) · ∇�m(r,ω) = 0

(8)a�h
(uh, vh)x,m = (fx,m, vh)�h

(9)a�h
(uh, vh)x,m =

∫∫

�h

[Dx,m(∇uh · ∇vh)+ kk ,muhvh]d�+

∫

Ŵh

bx,muhvhds

(10)(fx,m, vh)�h
=

∫∫

�h

fx,mvhd�

(11)fx = Sx, fm = β�x

(12)Ax,m�x,m = Sx,m

(13)Sx,m =







(fx,m,ϕ1)�h

...

(fx,m,ϕN )�h







(14)Ax,m =







a�h
(ϕ1,ϕ1)x,m · · · a�h

(ϕN ,ϕ1)x,m
...

...

a�h
(ϕ1,ϕN )x,m · · · a�h

(ϕN ,ϕN )x,m






.
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Combining Eqs. (12) and (15), the forward equations within the FEM scheme become

where

Inverse problem

The inverse problem of FMT consists in estimating the optical parameters and fluores-
cent properties of the tissue by using the measured data as described earlier [23]. To 
generally pose the inverse problem, we first define the forward mapping as F . Therefore, 
the inverse problem reads

where y denotes boundary measurement, and x denotes optical or fluorescent 
properties.

The above non-linear problem can be linearized. To proceed, we can expand about x0 
in a Taylor series. Neglecting the higher order terms, we thus arrive at the linear prob-
lem as

where J is the Jacobian of the forward mapping.
Due to the fact that the inverse reconstruction problem is ill-posed and underdeter-

mined, we introduce the Moore–Penrose inversion in conjunction with Tikhonov regu-
larization, leading to the following formula:

where I represents the identity matrix, and ξ acts as a regularization parameter.
Equation (23) can be written in a succinct matrix form by

(15)
a�h

(ϕi,ϕj)x,m =

∫∫

�h

Dx,m∇ϕi · ∇ϕjd�+

∫∫

�h

kx,mϕiϕjd�+

∫

Ŵh

bx,mϕiϕjds.

(16)(Dx + Kx + Bx)�x = Sx

(17)(Dm + Km + Bm)�m = Sm

(18)Dij =

∫∫

�h

Dx,m∇ϕi · ∇ϕjd�

(19)Kij =

∫∫

�h

kx,mϕiϕjd�

(20)Bij =

∫

Ŵh

bx,mϕiϕjds.

(21)x = F−1
(

y
)

(22)y− y0 = J(x − x0)

(23)x − x0 =
(

JT J+ ξI
)−1

JT
(

y− y0
)
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where we define K =
(

JT J+ ξI
)

 and b = JT�y.

Image reconstruction with the wavelet‑based principal component analysis

We solve the inverse problem in the wavelet domain. To this aim, we take the wavelet 
transform on both sides of Eq. (24)

where K̂ = WbKW
T
x , �x̂ = Wx�x, b̂ = Wbb. However, the level-by-level implemen-

tation scheme in the conventional wavelet-based reconstruction method [24] not only 
is computationally expensive but also causes information lost in the system matrix of 
the reconstruction problem [25], which inevitably deteriorates the final reconstruction 
quality. In order to circumvent that problem, we propose to solve the global inverse 
problem as Eq. (24) based on wavelet in conjunction with the PCA instead of the level-
by-level wavelet transform scheme. To this aim, we briefly present the PCA principles. It 
is well known that PCA performs a dimensionality reduction by searching for a projec-
tion matrix with a small number of eigenvectors with respect to the largest eigenvalues. 
Assume that L is the covariance matrix of the given matrix K, that is,

L can be diagonalized via

where � is a diagonal matrix consisting of the eigenvalues of L, and � is the matrix of 
eigenvectors of L.

Thus the principal components of the matrix K can be achieved by

Multiplying (24) from the left with �, one has

where b̃ = �b.
Keeping the first q largest principal components, we can obtain a new matrix equation 

with reduced scale, namely

Therefore, the global matrix system as Eq. (24) can be approximately solved with the 
reduced-scale matrix system according to PCA.

The inverse reconstruction with the wavelet-based PCA is summarized in “Algorithm 
1”.

(24)K�x = b

(25)K̂�x̂ = b̂

(26)L = E
{

[K − E(K)][K − E(K)]T
}

(27)L = ���
T

(28)K̃ = �K.

(29)K̃�x = b̃

(30)K̃q�x = b̃q .
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Algorithm 1

1.	 Take wavelet transform with respect to K and b in Eq. (24) to achieve the approxima-
tion components K̂1 and b̂1;

2.	 Solve K̂1�x̂1 = b̂1 with PCA;
3.	 Prolongate �x̂1 by padding zeros to achieve an initial guess for �x̂ at the original 

resolution, i.e., �x̂(0) =
[

�x̂T1 , 0
T
]T ;

4.	 Solve K�x = b with the initial guess �x(0) = W T
x �x̂(0).

Iteration based on the strategy of excitation light sources rotation

The tomographic imaging involves placing sources and detectors over the available sur-
face of the tissue. Basically, the excitation light sources are arranged at the fixed posi-
tions during the process of image reconstruction. By means of increased number of 
sources, the image quality can be improved. However, such a strategy may result in the 
matrix system with larger scale and hence higher computational complexity. Although 
we can reduce the number of sources to safe the computation time, the information for 
image reconstruction will decrease, which may lead to the poor quality of reconstruc-
tion. As a result, there exists a contradiction between the reconstruction accuracy and 
the computational requirements. In order to address this tradeoff, we propose a new 
strategy for iterative calculation. In such a strategy, the original excitation light sources 
are used to reconstruct the image in the first iteration. Then, upon the sources are 
rotated by a certain angle, they are employed for the second iteration of reconstruction. 
This means that the whole iterative reconstruction is performed using the sources with 
different rotation angles in turn. This process is repeated until some stopping criteria 
are satisfied. This strategy is motivated by the fact that the excitation light sources from 
different angles can provide more information than those from some fixed angle during 
the iteration process, and thus the quality of reconstructed results can be improved. In 
our method, the number of excitation light sources is not increased, and thus it will not 
lead to higher computational cost. Moreover, the iterative results from the sources with 
one angle can provide a good initial guess for the next iteration from the sources with 
other angle. In this way, the precision of solutions can be improved with rotation of the 
lights. However, if the rotation angle of sources is too small, it may provide quite limit 
information for reconstruction. On the contrary, large rotation angle may lead to the 
superposition between the original and rotated sources. In such a case, it is unable to 
provide additional information for iterative reconstruction. Suppose the sources are dis-
tributed around the circumference of the tissue with equal angle between each source. 
To overcome those difficulties, in our work, the rotation angle is set as a half of the angle 
between each source. This strategy can be schematically illustrated as in Fig. 1.

For derivation of the algorithm, we minimize the residual error between the predicted 
data and measured data to acquire the solution to the reconstruction problem by

where M(x) is the objective function, y is the measured data, and F(x) is the predicted 
data with regard to a forward model. Let us suppose that β is a half of the angle between 
each source, and thus the resulting reconstruction algorithm is summarized in “Algo-
rithm 2”.

(31)M(x) =
∥

∥y − F(x)
∥

∥
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Algorithm 2

	 1.	 Initialize x = x0, i = 0;
	 2.	 Repeat
	 3.	 θ = i · β;
	 4.	 Compute �y and J at x based on the excitation light sources with the rotation angle θ;
	 5.	 i = i + 1;
	 6.	 Solve Eq. (24) with “Algorithm 1”;
	 7.	 Update x with x = x +�x;
	 8.	 Compute the objective function M(x) with the current x by Eq. (31);
	 9.	 Until M(x) < δ

	10.	 Output x.

Simulation results and discussion

In this section we performed simulation study using different phantoms to test the per-
formance of our algorithm and the obtained results. The forward model as Eqs. (1) and 
(2) is used to simulate the measured data. In order to better simulate the realistic condi-
tions, we add Gaussian noise with a signal-to-noise ratio of 10 dB to the calculated data. 
Actually, large regularization parameter may lead to low contrast and resolution of the 
image, while small parameter can result in increased contrast and resolution. However, 
small parameter also increases the high frequency noise in the image [26]. The regulari-
zation parameter ξ is set to 0.001 in the simulations for better results after a lot of simu-
lations. The termination criterion δ is set to 0.02.

In the first example, verification of the performance of the proposed method is inves-
tigated using the test phantom containing one inclusion as indicated in Fig.  2. Four 
excitation light sources are uniformly distributed around the simulated phantom. The 
measurements are sampled by thirty detectors uniformly placed on the boundary of the 
phantom.

To reduce the computational requirements without significant reduction of image res-
olution, we compute the reconstructions based on the mesh that is adaptively refined 
with respect to the a priori image as portrayed in Fig. 3. Figure 4 displays the mesh con-
taining 122 nodes and 212 triangular elements.

Fig. 1  Illustrative explanation of the strategy of sources rotation. a Sources before rotation, and b sources 
after rotation
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The details for optical and fluorescent parameters in different areas of the test phan-
tom are provided in Table 1. In order to compare the reconstructed object with the true 
one, we define an image quality metric by introducing the mean square error (MSE), 
given as

Fig. 2  Simulated phantom with one inclusion. The value of absorption coefficient µaxf  of the inclusion is 
0.4 mm−1, and the value of absorption coefficient µaxf  of the background is 0.06 mm−1

Fig. 3  Prior image for phantom with one inclusion. The prior image is utilized to guide the generation of the 
adaptively refined mesh for one-inclusion reconstruction

Fig. 4  Adaptively refined mesh for reconstruction of one-inclusion phantom. The adaptively refined mesh 
contains 122 nodes and 212 triangular elements
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where the superscript rec denotes the values obtained using reconstruction algorithms, 
and act denotes the actual distribution of the optical or fluorescent parameters which is 
used to generate the synthetic image data set.

The reconstructed images of µaxf  for one-inclusion phantom with two sources and 
four sources are depicted in Fig. 5a, b, respectively. Both of them are obtained without 
using the wavelet-based PCA. The results presented in Fig. 5 can be explained by consid-
ering that reconstruction with the increasing number of sources can enhance the quality 
of image, whereas the time requirements for reconstruction may increase.

In Fig.  6 we show the resulting reconstructions using the different algorithms. 
Figure  6a displays the reconstructed result using the proposed method with four 
sources. Figure 6b, c depict the traditional reconstructed result with four sources and 
that with eight sources, respectively. We see that the method proposed is capable of 
yielding the reconstructed target with improved contrast and contour comparatively to 
the traditional method.

We demonstrate the benefits of the proposed method by comparing the performance 
of our method to the traditional method. For quantitative validation, the performance 
of reconstructions in terms of the computation time and MSE is tabulated in Table 2. 
We remark, that the computation time for the proposed algorithm is much faster than 
the traditional method, which demonstrates that our method is time efficient. Although 
the increased number of sources can improve the quality of reconstruction, it will slow 
down the speed of reconstruction. In addition, the MSE of the proposed method is 

(32)MSE =
1

N

N
∑

i=1

[xrec(i)− xact(i)]2

Table 1  Optical parameters used for one-inclusion phantom

µaxf

(

mm
−1

)

µaxi

(

mm
−1

)

µ
′

sx (mm
−1

) µamf

(

mm
−1

)

µami

(

mm
−1

)

µ
′

sm(mm
−1

) φ τ(ns)

Inclusion

 0.4 0.03 4.0 0.2 0.02 3.0 0.2 0.6

Background

 0.06 0.03 4.0 0.005 0.02 3.0 0.2 0.6

Fig. 5  Reconstructed images of absorption coefficient µaxf  for one-inclusion phantom. a Reconstructed 
image with two sources, and b reconstructed image with four sources
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smaller than that of the other compared method. Therefore, the above results suggest 
that the algorithm proposed can substantially speed up the reconstruction process and 
possess high accuracy.

The phantom for the second test case is shown in Fig. 7. It consists of two inclusions 
of different shapes. As before, the phantom is illuminated by four equally spaced sources 
located on its boundary. The detector readings are obtained from 30 different points 
from the boundary of the circular domain. The distance between the successive detector 
positions is the same through the boundary.

Figure  8 displays the a priori image as a guidance for generation of the adaptively 
refined mesh. The resulting mesh with 148 nodes and 264 triangular elements is depicted 
in Fig. 9. Table 3 lists the values of optical and fluorescent parameters of the simulated 
phantom.

Fig. 6  Reconstructed images of absorption coefficient µaxf  for phantom with one inclusion. a Reconstructed 
image based on the proposed method with four sources, b reconstructed image based on the traditional 
method with four sources, and c reconstructed image based on the traditional method with eight sources

Table 2  Method performance comparison for phantom with one inclusion

Method Our algorithm Conventional method 
with four sources

Conventional method 
with eight sources

Computation time 150 (s) 215 (s) 401 (s)

MSE 4.267 × 10−4 4.794 × 10−4 4.663 × 10−4

Fig. 7  Simulated phantom with two inclusions. The value of low absorption coefficient µaxf  of the inclusion 
is 0.3 mm−1, the value of high absorption coefficient µaxf  of the inclusion is 0.4 mm−1, and the value of 
absorption coefficient µaxf  of the background is 0.06 mm−1
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In Fig. 10 we show the reconstructed images of µaxf  for two-inclusion phantom with 
2 sources (see Fig. 10a) and that with four sources (see Fig. 10b). We also notice that one 
can obtain better reconstructed results with increasing sources. Nevertheless, recon-
struction with more sources may lead to a heavy computation burden.

The reconstruction from our method with four sources is shown in Fig. 11a and those 
from the traditional method are depicted in Fig. 11b, c. Particularly, the reconstructed 
images are obtained with four sources (see Fig. 11b) and eight sources (see Fig. 11c).

We find that the contrast of image can be enhanced with our method. The reconstruc-
tion with more sources can improve the reconstruction accuracy while result in a heavy 

Fig. 8  Prior image for phantom with two inclusions. The prior image is utilized to guide the generation of the 
adaptively refined mesh for two-inclusion reconstruction

Fig. 9  Adaptively refined mesh for reconstruction of two-inclusion phantom. The adaptively refined mesh 
contains 148 nodes and 264 triangular elements

Table 3  Optical parameters used for two-inclusion phantom

µaxf

(

mm
−1

)

µaxi

(

mm
−1

)

µ
′

sx (mm
−1

) µamf

(

mm
−1

)

µami

(

mm
−1

)

µ
′

sm(mm
−1

) φ τ(ns)

Inclusions

 0.3, 0.4 0.03 4.0 0.02, 0.03 0.02 3.0 0.2 0.6

Background

 0.06 0.03 4.0 0.003 0.02 3.0 0.2 0.6
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computation burden. More importantly, we also note that the proposed method can 
improve the quality of reconstruction with more accurate shape and position of both 
targets.

We provide the quantitative comparisons of different reconstructions presented 
in Table  4. As can be clearly seen, improvement in quality of reconstruction can be 
achieved by proposed algorithm. Additionally, it is evident from Table 4 that our method 
requires less reconstruction time as compared with the traditional method. Therefore, 
the main conclusion we can draw from these simulation studies is that the approach pro-
posed has comparable computational efficiency to the traditional method and high capa-
bility to achieve accurate reconstruction.

Fig. 10  Reconstructed images of absorption coefficient µaxf  for two-inclusion phantom. a Reconstructed 
image with two sources, and b reconstructed image with four sources

Fig. 11  Reconstructed images of absorption coefficient µaxf  for phantom with two inclusions. a Recon-
structed image based on the proposed method with four sources, b reconstructed image based on the 
traditional method with four sources, and c reconstructed image based on the traditional method with eight 
sources

Table 4  Method performance comparison for phantom with two inclusions

Method Our algorithm Conventional method 
with four sources

Conventional method 
with eight sources

Computation time 209 (s) 283 (s) 537 (s)

MSE 2.406 × 10−4 2.817 × 10−4 2.714 × 10−4
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To illustrate the superiorities of the proposed algorithm, we show the reconstructed 
results from the different algorithms (see Fig. 12). Figure 12a–c display the reconstructed 
images with the proposed approach, wavelet method, and PCA method, respectively. 
Table  5 summarizes the quantitative performance of reconstruction. From Table  5, it 
can be clearly seen that the proposed algorithm has better performance on accuracy and 
speed of reconstruction than algorithms only using wavelet method or PCA method.

To validate the proposed approach in the 3D case, the methods previously defined for 
triangular elements are extended to tetrahedral elements. The integration of products of 
shape functions over the volume of the elements, and surface integrals over a side of the 
element is performed by numerical integration rules. Herein, a cylindrical phantom as 
illustrated in Fig. 13 is utilized for 3D simulations. A small cylindrical inclusion is sus-
pended in this phantom. The dashed curves represent the planes of measurement. Six 
sources and sixteen measurements are employed for each plane. The data are collected 
in all three measurement planes. The mesh for 3D reconstruction containing 3208 tet-
rahedral elements as well as 858 nodes is shown in Fig. 14. Figures 15 and 16 display the 
3D reconstructed images based on the proposed approach and the traditional method, 
respectively. These are 2D cross sections through the reconstructed 3D images. The 
quantitative performance of the above two methods is given in Table 6 to further evalu-
ate the reconstruction quality. As one can see from Table 6, our proposed algorithm can 
also significantly speed up the reconstruction process and improve the quality of recon-
struction in the 3D case.

Finally, we test the reconstruction algorithms with the Monte Carlo method. As most 
commonly used stochastic technique, Monte Carlo method is regarded as gold standard 
for modelling the light propagation and has a long pedigree in transport theory. We uti-
lize the Monte Carlo method to generate the measurement data, which is employed to 
reconstruct the image of FMT. Figure 17 shows the model for reconstruction and Fig. 18 

Fig. 12  Reconstructed images of absorption coefficient µaxf  using different methods. a Reconstructed 
image based on the proposed method, b reconstructed image based on the wavelet method, and c recon-
structed image based on the PCA method

Table 5  Performance comparison of different methods

Method Our algorithm Wavelet method PCA method

Computation time 209 (s) 231 (s) 217 (s)

MSE 2.406 × 10−4 2.639 × 10−4 2.823 × 10−4
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Fig. 13  Simulated phantom for 3D reconstruction. The phantom of radius 10 mm and height 40 mm with a 
uniform background of µaxf = 0.005 mm−1 is located at x = 10 mm, y = 0 mm and z = 20 mm. The small 
cylindrical inclusion has a radius of 2 mm and height 6 mm with µaxf = 0.01 mm−1. The inclusion is located at 
x = 5 mm, y = 0 mm, and z = 20 mm. The dashed curves represent the measurement planes, at z = 15 mm, 
z = 20 mm, z = 25 mm

Fig. 14  Mesh for 3D image reconstruction. Mesh for 3D image reconstruction contains 858 nodes and 3208 
tetrahedral elements
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shows the corresponding reconstructed results with four sources. The reconstructed 
results are obtained from the proposed algorithm (see Fig.  18a) and the conventional 
method (see Fig. 18b). The quantitative performance is listed in Table 7, from which we 
can also see that both the speed and precision of the reconstruction can be improved 
with the proposed algorithm.

Fig. 15  Reconstructed images based on the proposed algorithm. The right-hand side corresponds to the top 
of the cylinder (z = 40 mm), and the left-hand side corresponds to the bottom of the cylinder (z = 0 mm), 
with each slice representing a 10 mm increment

Fig. 16  Reconstructed images based on the traditional method. The right-hand side corresponds to the top 
of the cylinder (z = 40 mm), and the left-hand side corresponds to the bottom of the cylinder (z = 0 mm), 
with each slice representing a 10 mm increment

Table 6  Performance comparison of 3D reconstruction methods

Method Computation time MSE

Our algorithm 2503 (s) 3.361 × 10−3

Conventional method 3647 (s) 3.859 × 10−3

Fig. 17  Simulated phantom based on Monte Carlo method. The value of absorption coefficient µaxf  of the 
inclusion is 0.06 mm−1, and the value of absorption coefficient µaxf  of the background is 0.025 mm−1
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Conclusions
In this work, we have developed a highly efficient method for image reconstruction of 
FMT by means of wavelet-based PCA combining the new strategy for iterative calcula-
tion. During the process of reconstruction, the excitation light sources are rotated for 
each iteration. The proposed algorithm is tested by numerical experiments based on 
simulated data obtained both from the deterministic forward model and the stochastic 
Monte Carlo simulation. We see from the results shown in the previous sections that our 
method can considerably reduce the time taken for the computation of inverse problem 
in FMT. Furthermore, the approach proposed is also shown to largely outperform the 
traditional method in terms of the precision of inverse solutions. Therefore, we expect 
that, this study might be used both to improve current reconstruction methods and also 
as a guidance for clinical studies.
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