
Motor unit action potential 
conduction velocity estimated from surface 
electromyographic signals using image 
processing techniques
Fabiano Araujo Soares1,2*, João Luiz Azevedo Carvalho1, Cristiano Jacques Miosso2, 
Marcelino Monteiro de Andrade2 and Adson Ferreira da Rocha2

Background
In surface electromyography (surface EMG, or S-EMG), conduction velocity (CV) refers 
to the velocity at which the motor unit action potentials (MUAPs) propagate along the 
muscle fibers, during contractions. MUAPs propagate in the direction that causes the 
membrane voltage of muscle fiber cells to approach and surpass the threshold for excita-
tion, causing the action potential to move [1]. This propagation occurs along the direc-
tion of the muscle fibers, and originates from the innervation zone (IZ) in opposing 
directions, towards the tendinous regions. The CV is related to the type and diameter 
of the muscle fibers, ion concentration, pH, and firing rate of the motor units (MUs) 
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[1–5]. The CV can be used in the evaluation of contractile properties of MUs [6], and of 
muscle fatigue [7–9]. Typical values of CV are in the 3 to 5 m/s range, with an average 
of approximately 4 m/s [1]. In clinical applications, CV can be used to supplement the 
information at the muscle’s fiber level obtained with needle EMG [10]. For example, van 
der Hoven studied CV in patients with amyotrophic lateral sclerosis using needle and 
S-EMG and discovered that these patients presents increased CV and decreased median 
frequency [11].

The CV can be estimated from S-EMG signals measured using an array of electrodes, 
placed over the target muscle, and parallel to the muscle fibers. Signal conditioning is 
typically performed using four or more electrodes in a double differential configuration. 
This setting is used because it provides greater reduction of end-of-fiber components, 
when compared to the differential configuration [12]. However, the differential configu-
ration may also be used to estimate the CV, especially when the detection region is far 
from IZs and tendon regions [13].

A current approach generally used to estimate the CV is based on computing the ratio 
between the interelectrode distance (IED) and the delay between the S-EMG waveforms 
associated with two or more adjacent electrodes [12, 14–23]. The most popular methods 
for CV estimation are those based on maximum likelihood estimation (MLE) in the fre-
quency domain, which provide higher velocity resolution and lower variance than other 
approaches [12, 23]. Most of the CV estimation methods available in the literature pro-
vide only a mean CV value [14–17, 20, 21, 23]. However, methods for estimating the CV 
associated with a single MU have also been proposed [12, 23]. In 2004, Farina et al. com-
pared the MLE with these approaches and other common methods, and showed that 
MLE is the most accurate among them [23]. To the best of our knowledge, MLE is still 
the most used CV estimation method.

Two-dimensional (2D) features of multichannel S-EMG—where the two dimensions 
correspond to the electrode-array axis and the time axis, respectively—can be exploited 
to estimate the mean CV. Grönlund et al. has used 2D techniques to estimate the CV of 
a single MU, as well as muscle fiber orientation, using an optimal trajectory method [24]. 
The techniques in [25] are more precise and more usable in practice, but have some limi-
tations such as poorer performance in case of MUAP superposition and requirement of 
a priori knowledge of the direction of propagation.

This paper proposes a 2D method for estimating the mean of the CV from electrode-
array S-EMG signals, using digital image processing techniques. The proposed method 
is based on the processing of images constructed from the set of signals acquired with an 
array of electrodes, placed parallel to the muscle fiber. The analysis of such images allows 
the estimation of the delay between similar waveforms on adjacent S-EMG channels. 
Then, just as in the traditional methods for CV assessment, the CV is estimated as the 
ratio between IED and MUAP delay.

Methods
Multichannel S‑EMG signal displayed as an image

Multi-channel electromyography is a technique for recording S-EMG signals on several 
skin positions over a muscle, using an array or a matrix of uniformly-spaced electrodes. 
When the vector configuration is used (i.e., a one-dimensional array of electrodes), the 
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measured signals are stored as a matrix, in which the rows correspond to different chan-
nels, and the columns correspond to different time instants (or vice-versa). Such matrix 
may be displayed as an image, as follows.

Acquisitions using a (M+1)-electrode array in single-differential mode will result in 
M-channel S-EMG signals (Fig.  1a). A N-sample segment of such a signal will corre-
spond to a M × N  matrix. Such a matrix may be displayed as a M × N  image, by map-
ping the signal amplitude values onto a gray-scale color map. In such image, the vertical 
axis corresponds to the spatial position along the electrode array, the horizontal axis 
corresponds to time, and the gray levels represent the intensity of the measured electric 
potential (signal amplitude).

However, the number of channels in an array is generally not higher than 15. In this 
case, the image would be extremely narrow and difficult to visualize and process. This 
can be addressed by interpolating the multi-channel S-EMG signal along the channel 
axis (or along both axes), thus obtaining a matrix of a larger size, which may be more 
clearly visualized in image form (Fig.  1b). The interpolation in both dimensions also 
improves the performance of the image processing algorithm proposed in this work, 
by thickening the diagonal lines associated with conduction of the MUAPs, as dis-
cussed below. Generally, white and light gray pixels in the resulting images represent 
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Fig. 1  Steps of the proposed CV estimation algorithm. a 150-ms segment of a 7-channel synthetic S-EMG 
signal (without IZ). The horizontal axis represents time, and the vertical axis represents both channel number 
(i.e., spatial position along the electrode array) and signal amplitudes (scaled to the [−1,+1] range). b Image 
representation of the multichannel S-EMG signal shown in (a). Bi-cubic interpolation was applied along the 
temporal (two-fold) and spatial (100-fold) axes. The aspect ratio was changed for display purposes only. c 
Hermite-filtered image. Note that the conduction lines are softer and have been highlighted from the back-
ground. d Segmented (and cropped) image. The slope of each of the segmented lines provides the CV of one 
MUAP. The mean CV may then be calculated for the segment
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large positive amplitude values, while black and dark gray pixels represent large negative 
amplitude values; small amplitude values are represented by intermediary shades of gray.

The interpolated data, when displayed as a gray-scale image, allows the identification 
of the MUAPs, which form diagonal lines diverging from the rows associated with IZs. 
These lines represent the conduction of the MUAPs along the muscle fibers. The shapes 
of these conduction lines are affected by many morphological parameters of the corre-
sponding MU, such as: (1) length and width of the MUAP line, which is associated with 
the depth of the MU that originated the MUAP and the number of fibers of the MU that 
originated the MUAP; (2) the velocity in which the MUAP travels along the MU, i.e. the 
CV, which is the slope of the conduction lines; and (3) the location of IZs, which may be 
detected as pairs of conduction lines with opposite slope, originating from horizontal 
gray-colored regions of the image [26]. This work, however, focuses solely on estimating 
the CV from the S-EMG images.

The S-EMG image associated with each multichannel S-EMG signal (or with each seg-
ment of one) was constructed by resizing the 2D data using four-fold interpolation along 
the temporal axis, and 75-fold interpolation along the spatial (channel number) axis. 
These interpolation factors were chosen empirically and are the best pair for minimizing 
error, as can be seen in Fig. 2, this figure was created using 100 signals generated by the 
method described on section CV experiments using simulated S-EMG signals. Bicubic 
interpolation was used, as it generally does a better job of preserving fine detail than the 
bilinear approach [27].

MUAP‑enhancement filter

The images obtained from the multichannel S-EMG signal show several diagonal lines of 
varying intensity, associated with the MUAPs (Fig. 1b). Low-intensity conduction lines 
are generally associated with deep MUs, or with MUs of smaller size (with few mus-
cle fibers). Conduction lines generally do not have clear boundaries, and low intensity 
MUAPs may be lost if a binarization process is applied directly. In order to address 
this issue, a waveform-detection filter was used to intensify regions where MUAPs are 
present, by highlighting the edges of the conduction lines (Fig. 1c). We chose an Her-
mite filter for this task—after also experimenting with Gaussian and Gabor filters—, as 
it allowed a better delineation of the MUAPs, for the signals we tested. This approach 
was first introduced by us, for both CV estimation [28, 29], and IZ detection [26, 30]. 
More recently, Ullah et al. used Hermite filtering for MUAP-enhancement in multi-scale 
S-EMG processing [31].

Let x be the horizontal axis of the S-EMG image (time), and y be its vertical axis (spa-
tial position along the electrode array). The kernel of the Hermite filter is the first deriva-
tive of a Gaussian with respect to the x-axis:

where σx and σy are the standard deviations (in number of pixels) about the x and y axes, 
respectively, and define the kernel width [32].
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This filter will emphasize MUAP conduction lines that are above or below an IZ, 
without the need to consider the direction of propagation of the MUAPs. We used 
σx = σy = 60 pixels; these values are consistent with the typical duration of MUAPs [33] 
and proposed interpolation factors. With this configuration, the Hermite filter is able to 
highlight the differences between regions of inactivity and regions where MUAPs are 
present (Fig. 1c). These values were chosen based on a compromise between the size 
of the filter, and edge effects created by the filter response (ripple artifacts). We found 
this setting to be the most suitable for all the experiments we conducted. The proposed 
values can be changed according to the needs of a particular experiment or applica-
tion. To validate the filter tuning, we estimate CV of 100 simulated S-EMG signals, the 
simulation process is described in the section CV experiments using simulated S-EMG 
signals. In this validation process σx and σy values were changes from 10 to 100 in steps 
of 5 independently, and the value of 60 for both parameters was the one that provides 
most precise results.
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Fig. 2  Estimation of the root mean squared error for the IPE algorithm using 100 synthetic signals with force 
level of 20 % of the MVC and 16 dB SNR. a Comparisson of the IPE performance using 1, 2, 4, and 8-fold time 
interpolation, and 5, 10, 15, 20, 25, 35, 50, 75, and 100-fold spatial interpolation. b Detail on the IPE perfor-
mance evaluated in (a). It is possible to see that the best interpolation factor is 4-fold time interpolation, and 
75-fold spatial interpolation
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Conduction velocity estimation

The proposed image processing estimation (IPE) algorithm for CV estimation is based 
on calculating the slope of the MUAP conduction lines on segmented S-EMG images. 
The algorithm consists of the following steps:

	(a)	 The S-EMG image is constructed from a multichannel S-EMG signal (or a segment 
of one), using the previously described process (Fig. 1b).

	(b)	 An Hermite filter is used to improve the contrast of the MUAP conduction lines 
(Fig. 1c).

	(c)	 The image is binarized. This eliminates background noise, and allows the use of 
binary morphological operations. The threshold is set to the median amplitude value 
of the Hermite-filtered image.

	(d)	 A morphological opening operation is performed. This operation aims to erase noisy 
(irregular and grainy) lines, typically associated with problematic regions of the 
image (e.g., motion artifacts).

	(e)	 A morphological thinning operation is performed, in order to reduce the width of 
the MUAP conduction lines. Morphological thinning removes pixels from an object, 
until a line where all pixels are connected is obtained. This results in diagonal lines 
that can be used to estimate the CV (Fig. 1d).

	(f )	 All objects shaped like the letter “H” are broken, in order to remove connections 
between two conduction lines.

	(g)	 Isolated pixels are removed.
	(h)	 The image is cropped (edges are removed), in order to avoid distortions due to filter-

ing and interpolation (e.g., Gibbs artifacts).
	(i)	 Conduction lines are automatically labeled by an object detection algorithm, which 

finds and labels each image element that is not connected to other elements.
	(j)	 The slope of each conduction line is estimated, using least squares linear regression. 

This is the measured CV for the associated MUAP.
	(k)	 All MUAPs with mean squared error (MSE) (with respect to the corresponding 

regression line in the channel direction) greater than 0.6 mm2 are eliminated. This is 
because lines with MSE larger than this threshold are usually associated with false, 
noise-related objects.

	(l)	 Lines shorter than the value of the inter-electrode distance (5 mm) are discarded.
	(m)	 Vertical lines (slope greater than 20  m/s) are discarded. These lines do not repre-

sent MUAP propagation, and therefore must not be considered. (typical CV values 
ranges from 3 to 5 m/s).

	(n)	 The mean CV is calculated as the weighted average of the CV values of all conduc-
tion lines which were not discarded. The weight of a conduction line is directly pro-
portional to the square of its length (total number of pixels in the line)—i.e., smaller 
weight is attributed to conduction lines that were detected by few electrodes—, and 
inversely proportional to the sum of the variances of the x-axis and y-axis regres-
sion errors, respectively—i.e., smaller weight is attributed to conduction lines that 
are composed by pixels that deviate significantly from a line.
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Note that classification algorithms could be used (prior to binarization) to identify dif-
ferent MUs, and thereby estimate the CVs of individual MUs. The shapes, intensity, and 
position of each MUAP could be used for this classification. We propose this idea as a 
potential future work.

Evaluation of the proposed algorithm

The performance of the proposed IPE algorithm was quantitatively and qualitatively 
evaluated by comparison with the MLE algorithm proposed by Farina et al. [12]. This 
algorithm estimates the CV by finding the waveform delay between adjacent channels 
that minimizes the MSE between the channels’ waveforms and a template signal, which 
is modeled as the mean of the waveforms measured on all channels, after delay compen-
sation. It is important to mention that the initial CV value for the MLE algorithm was set 
to 4 m/s, and that we assumed that the propagation direction was known. IPE, however, 
does not require a choice of initial CV value, nor a priori knowledge about propagation 
direction; in fact, IPE estimates the CV for both directions of propagation, and does not 
require any kind of initialization.

CV experiments using simulated S‑EMG signals

A total of 750 synthetic signals were generated, using the simulation method proposed 
by Farina and Merletti [34]. Each simulated signal contains seven differential channels. 
The signals were designed based on a hypothetical muscle with 200 mm length, fat layer 
of 6  mm, skin layer with 1  mm, and 30  motor units, each with a random number of 
muscle fibers (ranging from 50 to 550 fibers) and MU recruitment threshold of 100 % of 
the MVC. All signals were simulated far from tendinous regions and innervation zones, 
and based on a single narrow IZ, so that the simulated MUs are innervated at the same 
location. The simulated IZ was positioned far from the electrodes. The sampling rate was 
2048 Hz (per channel). The simulation was based on a set of 8 linear electrodes contacts 
with 5 mm IED. The total duration of each signal was 3 s.

These signals were separated into eighteen groups of 50 synthetic signals, which were 
used to compare the two algorithms. Signals from each group had different CV values 
(3, 4, or 5 m/s), null standard deviation, different signal-to-noise ratio (SNR) values: ∞ 
(noise free), 30, 20, 16, or 12 dB and different force levels (20, 40 and 60 % of the MVC). 
The CV for each signal from each group was estimated using both MLE and IPE algo-
rithms. The results were then quantitatively and qualitatively compared between algo-
rithms, and with the true CV for each signal, by means of scatter plots and root mean 
squared error (RMSE) levels.

The S-EMG signal may be segmented into several windows prior to CV estimation. 
This may be particularly useful in studies on muscle fatigue, in which the temporal 
behavior of the S-EMG estimators (including CV) during an exercise is evaluated [35]. 
The CV for a window is estimated as the average of the CVs of the individual MUAPs 
within that window. Reducing the window length improves the algorithm’s temporal 
resolution. However, such reduction may have the drawback of reducing the algorithm’s 
precision and/or accuracy, because fewer CV measurements would be averaged in each 
window, i.e. the sample size would be reduced. The influence of the window length on 
the algorithms’ precision was evaluated using the same simulated signals used in the 
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previous experiment, but performing the CV estimation process multiple times, each 
time with a different window length. The results were evaluated by comparing RMSE 
levels. Just 4 m/s noise free and 16 dB SNR signals were used for this analysis. The win-
dow length used were 0.5, 0.75, 1.0, 1.5, or 3 s, the RMSE was calculated from the CV 
values estimated in all windows—6, 4, 3, 2, or 1 window, respectively—from all 50 sig-
nals in the set.

We also analyzed the influence of the number of channels used to estimate the CV for 
both algorithms. The number of channels was varied between 4 and 7. In this experi-
ment, the CV was 4 m/s, and the window length was 3 s, for all signals. This evaluation 
was performed at two different noise levels: noise-free and 16 dB SNR. The results were 
evaluated by comparing RMSE levels.

When analyzing the results of these CV experiments using simulated S-EMG signals, 
we will consider that the CV estimates are accurate and precise if (and only if ) the RMSE 
is lower than 0.1 m/s. Such low RMSE allows evaluating statistically significant differ-
ences between the CV estimates of different MUs, thus allowing the estimation of the 
CV of a single MU [12]. Therefore, we define our “high-goodness threshold” at 0.1 m/s. 
If the RMSE is higher than 0.1 m/s, but lower than 0.5 m/s, than it may not be possible 
to distinguish different MUs, but it is still possible to detect variations of the average CV 
[12]. Thus, we define our “low-goodness threshold” at 0.5 m/s; i.e., we will consider that 
the CV estimates are inaccurate and/or imprecise if (and only if ) the RMSE is greater 
than 0.5 m/s.

CV experiments using biceps brachii signals

Finally, both algorithms (IPE and MLE) were used to estimate the CV in biceps brachii 
S-EMG signals. Twenty-three females and eighteen males volunteered to participate in 
the study. Due to withdrawal, hormonal problems, failing channels, fail in sustain iso-
metric strength level and high levels of noise in the S-EMG recordings, only sixteen 
female volunteers (24.1 ± 2.5  years old) and eleven male volunteers (25.8 ± 2.6  years 
of age) were included in the analysis. All subjects were right-handed and had no known 
neurological disease. All female subjects had regular menstrual cycles, did not practice 
regular exercise, and were not using any medication or hormonal contraception for at 
least 6 months. Male volunteers also did not practice regular exercise. All volunteers 
read and signed an informed consent form. The experimental protocol was approved by 
the research ethics committee of the University of Brasília.

The same experimental protocol was executed with all the volunteers. Each female 
subject performed the experimental protocol in four sessions, with a one week interval 
between sessions. Male volunteers underwent a single session. Each volunteer sat on a 
chair, specially adapted to secure the elbow, so that the only possible movement of the 
arm was isometric elbow flexion (Fig. 3a). This was done to minimize muscle contrac-
tions that could impact the results of the experiment.

In order to acquire the EMG signals, we used the EMG 16 electromyograph by OT 
Bioelettronica snc, Italy, connected to a laptop through a PCMCIA card. The EMG 16 
uses a 4th-order bandpass Bessel filter with passband between 10 and 500 Hz, and pro-
vides a maximum sampling frequency of 2048 Hz. A model-TS 50-kgf load cell (Aeph 
Brazil, São Paulo, Brazil), connected to a MISO II biomechanical signal amplifier (OT 
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Bioelettronica snc, Italy), was used to measure the strength level of the subjects. The 
amplification gain was set to 1.

Three 3-second isometric contractions were performed at the beginning of each ses-
sion to determine the volunteer’s MVC. However, for female volunteers, the MVC meas-
ured during the first session was adopted as the MVC for all sessions; MVC values of 
other acquisitions were measured only to ensure the repeatability of the protocol in all 
sessions. Strong verbal encouragement was used for each MVC. After each MVC esti-
mation, the subject rested for 1 min.

Then, in each session, an array of 16 electrodes (Ag, size: 10 × 1  mm, 5  mm inter-
electrode distance, OT Bioelettronica snc, Italy) was used to map the ideal region of the 
biceps brachii muscle for the acquisition of the S-EMG signals [36]. For this assessment, 
the sampling rate was 2048 Hz per channel, the gain was set to 1000, an analog differen-
tial configuration was used, and the strength level was 30 % of the MVC. Three-second 
signal acquisitions were used for mapping the ideal position. After this mapping proce-
dure, the volunteer rested for two minutes.

After mapping, S-EMG signals were acquired with a semi-disposable linear array of 
eight surface electrodes (5  mm inter-electrode distance, OT Bioelettronica snc, Italy), 
which was placed on the optimal region (between IZ and tendon regions) of the biceps 
brachii short head (Fig.  3b). The skin was cleaned and conductive gel was applied 
between the skin and each electrode. The differential configuration was used, resulting 
in a 7-channel S-EMG signal for each acquisition. A reference electrode was placed on 
the right wrist. The sampling rate was 2048 Hz, and an the analog gain was set to 1000. A 
10-second acquisition using 20 % of the MVC was performed. The subjects rests than for 
2  min and finally, a 90-s acquisition using 40 % of the MVC was performed.

A total of 27 signals were selected from those measured during the 10-s contractions 
(signals from the IZ mapping procedure were not used for CV estimation tests). Signals 

Fig. 3  Experimental setup. a Position of the subject during exercise. A chair was adapted so that the elbow 
joint was flexed at an angle of 90°, and to secure the elbow so that the only possible movement of the arm 
was isometric elbow flexion. The load cell was attached to an adjustable cable, and placed next to the chair. 
b Placement of the 7-channel electrode array, on the ideal region of acquisition of the biceps brachii short 
head, after innervation zone identification
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that presented poor quality in at least one channel—60 Hz interference, movement arti-
facts, loss of electrode contact (intermittent or constant)—were discarded. The signals 
were not segmented (i.e., 10-s window length), and seven channels were used for obtain-
ing the S-EMG images. In these experiments, the true CV is unknown. Thus, CV esti-
mates obtained with the proposed method were compared with those obtained with the 
MLE algorithm, by means of correlation coefficient, linear regression, and scatter plots 
analysis.

Results
CV experiments using simulated S‑EMG signals

Figure 4 and Tables 1 and 2 show the results of the CV estimation comparison between 
the proposed IPE algorithm and the MLE algorithm proposed by Farina et al. [12], using 
simulated signals with different levels of noise, different CV values and different force 
levels.

In Fig. 4, we show MLE versus IPE scatter plots for each noise level, with groups with 
different nominal CV values shown in different colors in each scatter plot. The black 
diagonal dashed lines represent the identity line; therefore, if the dots are grouped near 
the diagonal line, this indicates that the two algorithms provided similar CV estimates.

Tables 1 and 2 present the same results in a different fashion, by evaluating the effects 
of the noise level and force level on the RMSE for each algorithm, and for each CV 
value.

a

f

k l m n o

g h i j

b c d e

Fig. 4  CV estimation comparison between the proposed IPE algorithm and the MLE algorithm proposed by 
Farina et al. [12], using simulated signals with different CV values—3 m/s (medium gray), 4 m/s (light gray), and 
5 m/s (dark gray)—, different levels of noise: a noise free; b 30 dB SNR; c 20 dB SNR; d 16 dB SNR; and e 12 dB 
SNR, and different level of force: 20 % MVC, 40 % MVC and 60 % MVC. The black diagonal dashed lines are the 
identity lines. Each MLE–IPE pair of CV measurements (one dot) is associated with one simulated signal
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These results show that, when assessing signals with high SNR (≥16 dB), both methods 
were able to estimate the CV for all signals with high accuracy and precision (RMSE ≤ 
0.1 m/s) i.e. the results in this SNR range are within the high-goodness threshold defined 
in the methodology.

At low SNR (≤12  dB), the MLE method presented results within the low-good-
ness threshold, defined in the methodology (0.08 m/s ≤ RMSE(MLE) ≤ 0.24 m/s, with 
RMSE(MLE) the root mean squared error of the MLE). In some MLE estimations it is 
possible to see the spreading of the estimated CV value in Fig. 4e, j, o. This is due to local 
minima problems associated with the Newton–Raphson method, which is used in the 
MLE algorithm. The proposed IPE method does not use iterative optimization methods, 
therefore it is not susceptible to this type of error. The IPE method has a slightly better 
performance for 12 dB SNR (0.05  m/s ≤ RMSE(IPE) ≤ 0.17  m/s, with RMSE(IPE) the 
root mean squared error of the IPE). However, there is no spreading behavior in the IPE 
case, as opposed to the MLE results.

Table 1  RMSE of IPE algorithm for synthetic signals with CV equal to 3, 4, and 5 m/s, force 
level equal to 20, 40 and 60 % of the MVC and SNR of ∞ (noise free), 30, 20, 16 and 12 dB

CV (m/s) ∞ dB SNR 30 dB SNR 20 dB SNR 16 dB SNR 12 dB SNR

Force level = 20 % MVC

 3 0.02 0.03 0.04 0.04 0.05

 4 0.09 0.09 0.10 0.10 0.10

 5 0.03 0.03 0.04 0.09 0.14

Force level = 40 % MVC

 3 0.03 0.03 0.04 0.05 0.05

 4 0.09 0.09 0.09 0.09 0.08

 5 0.03 0.03 0.04 0.08 0.17

Force level = 60 % MVC

 3 0.03 0.03 0.04 0.04 0.05

 4 0.08 0.09 0.09 0.10 0.09

 5 0.03 0.03 0.04 0.07 0.12

Table 2  RMSE of MLE algorithm for synthetic signals with CV equal to 3, 4, and 5 m/s, force 
level equal to 20, 40 and 60 % of the MVC and SNR of ∞ (noise free), 30, 20, 16 and 12 dB

CV (m/s) ∞ dB SNR 30 dB SNR 20 dB SNR 16 dB SNR 12 dB SNR

Force level = 20% MVC

 3 0.03 0.03 0.04 0.04 0.15

 4 0.04 0.04 0.04 0.04 0.12

 5 0.05 0.05 0.05 0.06 0.15

Force level = 40% MVC

 3 0.03 0.03 0.03 0.04 0.13

 4 0.04 0.04 0.04 0.05 0.24

 5 0.04 0.04 0.04 0.06 0.08

Force level = 60% MVC

 3 0.03 0.03 0.03 0.04 0.16

 4 0.04 0.04 0.04 0.04 0.08

 5 0.04 0.05 0.05 0.06 0.09
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Another important aspect we observed is the fact that the applied force level seems 
to have little effect on the performance of both the IPE and the MLE methods, specially 
for high SNRs. In fact, Tables 1 and 2 show that for signals with 30 and 20 dB, there is 
no difference between the measured root mean squared errors for different force lev-
els, within the considered numeric precision. In the case of signals with 12  dB, there 
were different RMSE (for the MLE only) for different tested force levels, but the error 
sometimes increased and sometimes decreased with the force level. We believe that the 
local minimum problem previously mentioned has an impact on the MLE performance 
in this high-noise scenario, and we did not identify a monotonic relation between the 
force level and the measured error.

The results in Fig. 4 and Tables 1 and 2 were obtained from simulated S-EMG signals, 
using 3-s windows—i.e., the entire signal length—, and seven S-EMG-channels. We now 
evaluate the influence of window length and number of channels on CV estimation.

Influence of window length

Figure 5 shows the results of the experiments which evaluated the influence of window 
length on CV estimation, considering a force level of 20 % of the MVC. For noise free 
signals, the result for the MLE shows RMSE reducing slightly as the window length 
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Fig. 5  Evaluation of the influence of window lengths on CV estimation in the MLE and IPE methods, for 
a force level of 20 % of the MVC. The root mean squared error is shown as a function of the length of the 
window used to estimate the CV, for simulated signals with CV of 4 m/s, at different noise levels: a noise free; 
and b 16 dB SNR
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increases, the IPE method has a constant behavior. At 0.75 s, both algorithms have simi-
lar behavior. For 16 dB SNR signals, results for the MLE and IPE algorithms were very 
similar, with the RMSE reducing slightly as the window length increases. Overall, the 
performance of the MLE method was slightly superior to that of the proposed algo-
rithm, which performed better than MLE only for windows lengths of 0.5 s (Fig. 5a). As 
expected, the use of long windows is more advantageous when the SNR is low. At high 
SNR, the window length may be decreased in order to improve the temporal resolution.

Results are shown only for 4 m/s signals, because the results for different CV values 
were similar in bevahiour. Similarly, results are shown only for noise free and 16 dB SNR 
signals.

Influence of the number of channels

Figure 6 shows the results of the experiments which evaluated the influence of the num-
ber of channels on CV estimation, considering a force level of 20 % of the MVC. For 16 
dB SNR signals (Fig. 6b), both, MLE and IPE methods have similar behavior, with RMSE 
decreasing while the number channels used to CV estimation increases. For noise free 
signals (Fig. 6a), both algorithms presents the RMSE increasing with channel (except for 
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Fig. 6  Evaluation of the influence of the number of channels on CV estimation in the MLE and IPE methods, 
for a force level of 20 % of the MVC. The root mean squared error is shown as a function of the length of the 
window used to estimate the CV, for simulated signals with CV of 4 m/s, at different noise levels: a noise free; 
and b 16 dB SNR
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5 channels in MLE method). In all cases, it is evident that the use of 5 or more channels 
is recommended to avoid RMSE higher than the high-goodness threshold.

CV experiments using real biceps brachii S‑EMG signals

Figure  7 shows a scatter plot comparing MLE- and IPE-measured CV values from 22 
S-EMG signals measured on the biceps brachii muscle of healthy volunteers, during 10-s 
isometric contractions, at 20 % of the MVC. Five more signals were evaluated with both 
algorithm but due to outlier results on the MLE method, this number was reduced to 
22 and the outliers were evaluated separately. The green dashed line is the regression 
line and the red dashed line is the identity line. The results show a strong linear correla-
tion between the two algorithms (correlation coefficient was 0.99, p < 0.01), which indi-
cates good agreement. The slope of the regression line was 1.06, and its linear coefficient 
was −0.24 m/s. If we include the outliers, the correlation coefficient drops to 0.77. In all 
outlier cases, the MLE method results in non-physiological CV values—6.3, 7.6, 8.0, 8.9 
and 9.4 m/s, whereas the IPE method estimated values were respectively 4.5, 4.3, 5.6, 7.0 
and 5.0 m/s. These IPE estimates are closer to physiological values, which suggest lower 
errors, but we don’t know the real mean CV for these signals. In all cases of outliers we 
noted a high number of MUAP superpositions, which may be the reason for the MLE 
error. These results suggest that the IPE method is less sensitive to MUAP superposi-
tions than MLE.

Discussion
The experiments using simulated signals showed that it is possible to robustly estimate 
the average CV of multichannel S-EMG signals using image processing techniques. 
When the CV was 3, 4 or 5 m/s, and the SNR was high (≥16 dB), the proposed IPE 
algorithm was as precise and accurate as the MLE method proposed by Farina et al. [12]. 
When the SNR was low (=12 dB), the MLE method performed not as well as the IPE 
method, but generally provided acceptable results (RMSE <0.5  m/s, which still allows 
detecting variations of the average CV  [12]). The performance of the IPE algorithm 
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Fig. 7  Scatter plot comparing MLE- and IPE-measured CV values from 22 S-EMG signals measured on the 
biceps brachii muscle of healthy volunteers, during 10-s isometric contractions, at 20 % of the MVC. The red 
dashed line is the identity line and the green dashed line is the regression line. The correlation coefficient was 
0.99 (p < 0.01), the slope of the regression line was 1.06, and its linear coefficient was −0.24 m/s
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degrades when the SNR is low, because false conduction lines due to noise remain even 
after morphological transformation. However, IPE algorithm performed better than 
MLE for these SNR.

It is important to note, however, that signals with SNR lower than 20 dB are not com-
monly used. Noise levels in adequately-performed S-EMG experiments are typically on 
the order of 2–10 µVrms, while typical amplitude values for S-EMG signals are on the 
order of 4–5 mVpp [37].

The fact that IPE method performed better than the MLE method may be because the 
IPE algorithm does not rely on an initial guess for the CV. The issue of CV initializa-
tion can be critical when using the MLE method, especially when the SNR is low. When 
the true CV is considerably higher than the user-defined initial guess, the MLE method 
tends to provide incorrect CV estimates. Similarly, if the wrong direction of MUAP 
propagation is assumed, the MLE algorithm tends to provide highly imprecise estimates. 
These issues with the MLE algorithm are due to local minima problems associated with 
the Newton–Raphson method. The proposed IPE method does not use iterative optimi-
zation methods, therefore it is not susceptible to this type of error, and does not require 
any a priori information about the direction of MUAP propagation.

For all the simulated signals we used, the channels were away from the IZs. In pre-
liminary experiments with simulated signals containing one IZ, the proposed method 
showed better results than the MLE method. However, neither method should be used 
to estimate the CVs on signals containing IZs, without modification. The MLE algo-
rithm, as originally proposed by Farina et al. [12], estimates the amount of delay between 
adjacent channels by minimizing the MSE between signals present in these two chan-
nels. This delay, however, is positive for the channels positioned before the IZ and nega-
tive for the channels positioned after the IZ. The MLE algorithm does not take this 
into consideration, and therefore is not able to accurately estimate the CV for signals 
containing IZs. The IPE method is potentially able to accurately estimate the CVs from 
conducting lines on both sides of the IZ. However, the conduction lines are generally 
curved near the IZ because of non-propagating potentials. Since the CV is calculated 
from the slope of the conduction lines, the image’s rows corresponding to channels near 
the IZs should be discarded before calculating the CV. An automatic IZ tracking process 
[26, 30], followed by removal of the channels containing IZs, could be incorporated into 
the IPE algorithm in order to allow its use with signals containing IZs. This idea will be 
explored in future works.

When applied to biceps brachii signals, the proposed method showed a similar per-
formance of CV with respect to the MLE method. However, the MLE method estimated 
non-physiological CV values for 5 real signals. For this motive these signals were dis-
carded, however, IPE method was able to estimate physiological values for these cases.

Conclusion
This work proposed, demonstrated, and evaluated an image-based S-EMG analysis 
algorithm for estimation of MUAP conduction velocity. We showed that it is possible to 
robustly estimate the average CV of multichannel S-EMG signals using image processing 
techniques. The proposed IPE algorithm is as precise and accurate as the MLE method 
proposed by Farina et al.  [12] in typical conditions of SNR and CV. The proposed IPE 
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method does not use iterative optimization methods, therefore it is not susceptible to 
errors associated with MUAP propagation direction or inadequate initialization param-
eters, which are common with the MLE algorithm. An automatic IZ tracking process 
could be incorporated into the IPE algorithm in order to allow its use with signals con-
taining IZs.

Image processing-based approaches may be useful in S-EMG analysis to extract differ-
ent physiological parameters from multichannel S-EMG signals. A wide variety of new 
methods based on image analysis could be developed to estimate parameters that are 
difficult to assess using traditional methods, such as CV. Problems that could be inves-
tigated using image processing techniques (in combination with pattern recognition 
methods) include: estimating the CV for individual MUs, IZ localization and tracking, 
EMG decomposition, and study of MU recruitment strategies.
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