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Abstract 

Background:  Respiratory motion in positron emission tomography (PET) is an 
unavoidable source of error in the measurement of tracer uptake, lesion position and 
lesion size. The introduction of PET-MR dual modality scanners opens a new avenue for 
addressing this issue. Motion models offer a way to estimate motion using a reduced 
number of parameters. This can be beneficial for estimating motion from PET, which 
can otherwise be difficult due to the high level of noise of the data.

Method:  We propose a novel technique that makes use of a respiratory motion 
model, formed from initial MR scan data. The motion model is used to constrain PET-
PET registrations between a reference PET gate and the gates to be corrected. For 
evaluation, PET with added FDG-avid lesions was simulated from real, segmented, 
ultrashort echo time MR data obtained from four volunteers. Respiratory motion was 
included in the simulations using motion fields derived from real dynamic 3D MR vol-
umes obtained from the same volunteers.

Results:  Performance was compared to an MR-derived motion model driven method 
(which requires constant use of the MR scanner) and to unconstrained PET-PET reg-
istration of the PET gates. Without motion correction, a median drop in uncorrected 
lesion SUVpeak intensity to 78.4± 18.6 % and an increase in median head-foot lesion 
width, specified by a minimum bounding box, to 179± 63.7 % was observed relative 
to the corresponding measures in motion-free simulations. The proposed method 
corrected these values to 86.9± 13.6 % (p < 0.001) and 100± 29.12 % (p < 0.001) 
respectively, with notably improved performance close to the diaphragm and in the 
liver. Median lesion displacement across all lesions was observed to be 6.6± 5.4mm 
without motion correction, which was reduced to 3.5± 1.8mm (p < 0.001) with 
motion correction.

Discussion:  This paper presents a novel technique for respiratory motion correction of 
PET data in PET-MR imaging. After an initial 30 second MR scan, the proposed tech-
nique does not require use of the MR scanner for motion correction purposes, making 
it suitable for MR-intensive studies or sequential PET-MR. The accuracy of the proposed 
technique was similar to both comparative methods, but robustness was improved 
compared to the PET-PET technique, particularly in regions with higher noise such as 
the liver.
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Background
Problems of motion in PET

Patient motion in PET has a detrimental effect on measured tracer uptake, lesion posi-
tion and lesion size. This results in errors in detectability and quantification, leading 
to problems in disease staging, radiotherapy planning and other clinical/research PET 
applications [1].

Respiratory motion in particular is an important problem since the motion is invol-
untary and constant throughout the scan. The long duration of PET scans makes breath 
holding impractical: a typical PET scanner requires about 3 minutes of data acquisition 
per bed position (approximately 15 to 20 cm axially). In [2], it was reported that maximal 
lung tumour displacement was observed to be as high as 22mm, with median displace-
ment of 4.5± 5.0mm across 22 subjects studied using radiography. This was verified by 
[3], who reported that tumours in the upper lung moved by up to 8.7mm, but that those 
in the bottom of the lung moved by up to 24.6mm. Other studies have shown that com-
puted tomography (CT) visible lung lesions can move by up to 9mm, causing a variation 
in standardised uptake value (SUV, a measure of peak uptake value within a specified 
region) of up to 30 % [4], and that respiratory motion can lead to a mean overestimation 
of 1 cm diameter lesion volumes of 130 % [5].

Respiratory motion also leads to artefacts in PET-CT attenuation correction, which 
are created by mismatches between the emission and attenuation data. Artefacts typi-
cally appear as a band of artificially altered uptake above the diaphragm [6].

Gating‑based approaches

Over the last two decades, addressing this problem has been the focus of much research 
in the PET literature as well as in other applications. A common approach is amplitude 
gating, in which PET data are binned, or ‘gated’, based on the amplitude of a respiratory 
signal. This signal can be acquired using external hardware, such as pressure sensors, 
spirometry, temperature sensors, or video-tracking markers placed upon the patient’s 
thorax or abdomen [1]. However, acquiring a respiratory signal using these methods can 
be impractical and the correlation between the external signal and the internal motion 
is not always strong [7]. If the subject is in an MR scanner, an internal respiratory signal 
can be measured using a pencil-beam navigator, typically positioned on the diaphragm.

An alternative solution is the use of signals derived from the imaging data itself. 
Techniques have been proposed to derive respiratory signals from PET [8, 9], PET-
CT [10, 11], or simultaneous PET-MR [12]. A comparative evaluation of some of these 
approaches has been presented by [13]. Signals derived using data-based methods are 
promising due to their direct relationship to the internal motion, but they depend heav-
ily upon the quality of the imaging data.

After acquiring the respiratory signal, the simplest amplitude-gating approach is 
to reconstruct an image from a single gate and discard all data in the remaining gates. 
Whilst this approach reduces motion artefacts, each gate only has a proportion of the 
measured data, resulting in higher image noise than the full, ungated data [14].



Page 3 of 23Balfour et al. BioMed Eng OnLine  (2015) 14:85 

Motion correction

Motion correction techniques have been developed which make use of all available data 
rather than simply rejecting those which are motion-affected. This is likely to be advan-
tageous for PET imaging, where the signal-to-noise ratio (SNR) is relatively poor.

Such techniques require an estimate of the motion undergone by the subject, which 
can then be used to transform all acquired data into a single image. In general a motion 
estimate describes the displacement of image features between a reference image and 
another image, and can take the form of a transformation matrix or vector field. In the 
latter case it is referred to as a motion field.

One approach is to estimate motion from the PET gates themselves. However, due to 
the high noise in individual gates, such estimates can lack accuracy and robustness [15, 
16]. Techniques have been proposed for estimating motion fields from 4D CT [17, 18]. 
However, since this involves additional exposure to ionising radiation, CT can only be 
used to track motion for a limited time.

More recently, the introduction of simultaneous PET-MR scanners has opened up 
the possibility of using MR imaging to estimate subject motion during PET acquisi-
tion without the limitations imposed by radiation exposure. For example, in [19] MR 
images were registered to estimate motion transformations. These transformations were 
then matched to corresponding PET gates and used to transform them to a reference 
position. In [12], a respiratory signal was derived from MR and used to form gated MR 
images for correcting PET gates. In [20], gated MR images were formed from 2D slices 
using manifold alignment, and subsequently used for motion correction of simulated 
PET gates. These methods require sustained use of the MR scanner as a motion cor-
rection device. In [21], a technique was described that required less MR scanner time. 
A respiratory signal was derived from the PET data and used to gate the list–mode data 
into sinograms. The same signal was used to gate the MR data during a short, extra scan 
after the main PET acquisition. Motion was estimated from the MR gates and applied to 
the motion correct the PET gates.

Motion correction of PET data can be done in several ways. The two most straight-
forward are reconstruct-transform-average (RTA) [22] and motion-compensated image 
reconstruction (MCIR) [17, 18]. The former reconstructs and then motion corrects indi-
vidual gates before combining them, whereas the latter incorporates motion correction 
into the PET reconstruction so that all available PET data are used in the reconstruc-
tion of a single, motion-corrected PET image. It has been reported that RTA introduces 
bias into the final image, whereas MCIR produces increased image noise [23]. This can, 
however, be reduced by appropriate regularisation techniques [24, 25]. A quantitative 
comparison of the RTA and MCIR techniques has recently been published using real 
PET-MR data [26].

In addition to motion correction of acquired PET data, motion estimates can be 
used to transform the attenuation map (e.g. CT), reducing artefacts due to mismatches 
between emission and attenuation data and removing the need for additional exposure 
from dynamic CT.

Respiratory motion is complex, nonlinear and subject to variation, both between 
breathing cycles (known as inter-cycle variation) and between the inhale/exhale phases 
of each cycle (known as intra-cycle variation, or hysteresis) [27]. Therefore these 
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complexities make accurate and robust estimation of motion from gated images, par-
ticularly PET gates, challenging. It is important to note that, although many motion cor-
rection techniques have been proposed in the research literature, their clinical use is 
currently limited.

Motion models

An alternative approach to estimating motion from gated images, which has gained 
increasing attention in the literature, is the use of a motion model. Motion models are 
mathematical functions which describe complex motion based on simpler input param-
eters, referred to as ‘surrogate’ signals. The technique we present in this paper is based 
on the use of a motion model, so we include here a brief introduction to the underly-
ing theory and some notation. A known limitation of respiratory motion models is the 
implicit assumption that breathing during application does not significantly differ to that 
acquired during the calibration stage. The reader is referred to [27] for further details on 
motion models.

To create a motion model, a number of samples of the motion are required. In the fol-
lowing discussion, we assume that these samples are voxelwise 3D vector fields known 
as motion fields. We denote these motion fields by M, which parameterise the trans-
formations between a reference position and other respiratory positions. Motion fields 
constitute the dependent variables of the motion model. A surrogate signal is typically 
acquired simultaneously with the motion sample acquisition scan and is used as the 
independent variable of the model. The motion model therefore captures the relation-
ship between the surrogate signal and the motion fields. For an example of forming a 
motion model, refer to Fig. 1.

Fig. 1  Forming a motion model from dynamic MR volumes. The MR volumes are registered to a reference 
volume to generate motion fields. These are used with the corresponding values of the respiratory signal 
(which act as the surrogate when forming the motion model) to produce a voxelwise model of the motion
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Traditionally, when applying a motion model to produce motion estimates, most 
authors have used a ‘direct’ correspondence model to link a measured surrogate, s 
(which may be a one or higher dimensional signal such as displacement of a point or sur-
face), and the estimated motion fields MDC:

where φ is the motion model.
An alternative approach is to employ an ‘indirect’ correspondence model [27]. In this 

case, the surrogate acquired during model application is not the same as that acquired 
during model formation (in fact often no surrogate is acquired during model formation). 
Rather, the surrogate used during model application is often a dataset of higher dimen-
sionality (for example, an image). The model then makes use of a number of internal 
variables which are not measured directly. For example, in (2), an internal variable, x, 
is optimised to maximise the similarity between the surrogate image transformed by a 
model-estimated motion field and a reference image,

where T  is an operator which transforms the surrogate image, s, using motion field esti-
mate φ(x) and an internal variable, x. This transformed image is compared to the refer-
ence image, Iref, using a similarity measure, Sim(·).

In the case of a motion model describing respiratory motion, the internal variable, x
, could be correlated to the displacement of the diaphragm used in the formation of the 
model, but it is not required to measure x to apply the model. Rather, the motion fields 
for a given position are determined as a function of the surrogate image, s.

The optimal values of the internal variables, x̂, are used as before to estimate the 
motion field

The indirect correspondence method for obtaining the transformations necessary for 
motion correction can also be viewed as a constrained image registration. The internal 
variable x is optimised to choose the transformation that best matches the surrogate 
image with the reference image.

Direct correspondence motion models have previously been proposed for motion cor-
rection in PET [28, 29]. However, such an approach would require the use of the MR 
scanner throughout PET scanning in order to acquire the necessary surrogate data (e.g. 
as a pencil-beam navigator). There has also been one example of an indirect correspond-
ence motion model for PET motion correction, which used 2D MR images as surrogate 
data [30]. Although the results were promising, this approach would also require the use 
of the MR scanner throughout PET scanning.

To the authors’ knowledge, there has not yet been any use of an indirect correspond-
ence motion model that has used the PET data themselves as the surrogate. If such an 
approach could be demonstrated to be effective, it would have a significant advantage in 
that the MR scanner would only need to be used to acquire a short calibration scan for 

(1)MDC = φ(s),

(2)x̂ = arg max
x

Sim{Iref , T [s,φ(x)]}.

(3)M̂IC = φ
(

x̂
)

.
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motion model formation at the beginning of the simultaneous PET-MR scanning ses-
sion. After this, the MR scanner would be free for clinical use. The approach would also 
have the added advantage of being compatible with sequential PET-MR. The applica-
tion of an indirect correspondence model in this way results in one of the key novelties 
of our work: It offers a theoretical basis for enabling the use of both MR and PET data 
when estimating motion fields for PET motion correction. In this paper we describe and 
demonstrate such a technique, which uses an MR-derived motion model to constrain 
the range of possible PET-PET registrations, thus addressing the difficulties associated 
with estimating motion from low-SNR PET gates. Note that the PET data would still 
need to be gated. This can be achieved using the MR scanner, but there are alternative 
ways (some of which are deviceless), as discussed in “Gating-based approaches”. There 
have been very few joint MR+PET-based approaches in the literature (e.g. see [31, 32]).

In “Methods”, we describe our technique. “Experiments and results” describes evalu-
ation using PET data simulated from real volunteer MR data, including real respiratory 
motion fields. The results are discussed in “Discussion”.

Methods
In this section we present our proposed method. Specifically, we describe the forma-
tion of a respiratory motion model from dynamically-acquired MR volumes, and its 
application using an indirect correspondence model to constrain registrations between 
PET gates. We first provide details of the MR and PET imaging requirements in “Imag-
ing requirements”. “Motion model formation” describes how MR images are used to 
form the motion model. “Motion model application” outlines the application of the MR 
derived motion model using an indirect correspondence model and PET gates as the 
surrogate data.

Note that throughout this section we use the term ‘surrogate’ to refer to the input 
to the motion model. To form the model, the surrogate is a simple respiratory signal 
derived from the MR images. When applying the model, the surrogate is the PET data, 
and the respiratory signal acts as an internal variable to be optimised.

Imaging requirements

The MR imaging requirements for our proposed motion model are:

• • a short dynamic 3D MR scan of the thorax during free breathing, resulting in a tem-
poral sequence of near real-time 3D images (volumes) depicting the thoracic region 
at arbitrary respiratory motion states;

• • a simultaneously-acquired respiratory signal. This will be used as the independent 
variable (i.e. surrogate) when forming the motion model, and it will be treated as the 
internal variable to be optimised during model application.

For information on specific acquisitions used in our experiments, refer to “MR data 
acquisition”.

The PET imaging requirement is that respiratory-binned PET gates are acquired using 
a gating technique. This could, for example, be based on an external signal [1] or make 
use of the PET data itself [11]. In this paper we evaluate our technique using simulated 
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PET data and we provide details of our PET simulation procedure in “Simulating PET 
data from real MR images”.

Motion model formation

The formation of the motion model is illustrated in Fig. 1. The first stage is to estimate 
respiratory motion from each dynamic MR volume. This is done by applying a nonrigid 
voxelwise registration [33] of the tth dynamic MR volume to the reference MR volume 
(corresponding to the most exhaled image, selected using the respiratory signal), which 
results in a motion field, Mt. Mt is a matrix with a row for each voxel in the dynamic MR 
volume. The elements in each row represent the 3D displacement of that voxel. The dis-
placement in each row is denoted by 

(

�xijk ,�yijk ,�zijk
)

, where i, j, k are the indices of 
the voxel in the volume.

Each dynamic MR volume has an associated value of the respiratory signal, nt. These 
values are used as the independent variable in a regression analysis (i.e. the signal acts 
as the surrogate during model formation). The displacements �xijk �yijk and �zijk (∀ijk) 
are each modelled as separate 2nd-order polynomials of the respiratory signal value. The 
polynomial coefficients were determined by linear regression using the Vandermonde 
matrix method [34].

Motion model application

To apply the model, the end-exhale PET gate is designated as the reference gate, Iref. The 
PET gate to be corrected, Ig, is transformed using motion fields produced by the motion 
model applied with trial values, {xi}, of a scalar internal variable, x. This scalar variable 
corresponds to the respiratory signal, nt, that was used for model formation, and its trial 
values are evenly spaced between the minimum and maximum observed values of nt. 
Since there is only one internal variable in this implementation, the optimisation is per-
formed using 100 values in an exhaustive search. In more complex implementations, an 
automatic optimisation could be employed instead.

The resulting transformed image is compared to the reference PET gate. This compari-
son is performed in a volume of interest (VOI) placed over the lower right lung and the 
liver, as indicated in Fig. 2. In principle, the VOI could be any size or shape. This region 
was selected to maximise the contribution of high-contrast, high-motion regions to the 
similarity measure. This approach represents an exhaustive-search implementation of 
(2), using a scalar, x, as the internal variable x, and the PET gate, Ig, as the surrogate 
image, s. Equation (2) then becomes

Figure  3 illustrates how the motion model, φ, is used in an indirect correspondence 
model approach to estimate the motion for each PET gate, Ig (the same procedure is 
used for the other gates) and to use it for PET motion correction. The internal variable, 
x, of the model, φ, takes the place of the respiratory signal n that was used in the model 
formation. The range of possible values of x is determined by the observed range of val-
ues of n, but the correct value for x is found by optimisation, so the respiratory signal 
does not need to be acquired to apply the model. This fact is an important feature of our 
technique and has a number of potential advantages that we discuss in “Discussion”.

(4)x̂ = arg max
x

Sim
{

Iref , T
[

Ig ,φ(x)
]}

.
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All PET gates are blurred using a Gaussian smoothing filter prior to this procedure. 
We found in preliminary experiments that a Gaussian kernel with a standard deviation 
of 8mm performed well. Note that this is only possible because the small-scale motion 
information is contained within the MR-derived motion model. Standard PET-PET 

Fig. 2  A coronal slice through a PET emission map showing the lesion positions (left) and an example of a 
dynamic MR volume (right). There are 9 lesions in total, 3 in the top of the lung (1–3), 3 above the diaphragm 
(4–6) and 3 in the liver (7–9). These numbers will be used for referring to lesion positions. The VOI used for 
computing the similarity measure is also displayed. Note that the lesion position image is illustrative: only one 
lesion is present in each simulation

Fig. 3  Schematic illustration of how the motion model is applied to motion correct a single gate of PET data, 
Ig. The input of a trial value for the internal variable, xi, into the motion model, φ, generates a trial motion field, 
M. The gate to be corrected is transformed using the motion field and quantitatively compared to the refer-
ence PET gate using a similarity measure. This process is repeated over a range of trial values for x. The value,  
x̂, which produces the maximum similarity is then used with the motion model to motion correct Ig
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methods would not have this freedom to reduce noise in the PET data without affecting 
motion estimation accuracy.

The similarity between the two images within the VOI is quantified by normalised 
cross correlation (NCC) [35]. NCC was chosen because amplitude-gated PET images 
have varying numbers of counts between gates, determined by the breathing pattern of 
the subject. Therefore, it is important to use a similarity measure that is less dependent 
on changes in image intensity.

The motion field that results in the maximum value of the similarity for each gate is 
selected as the optimal motion field, found using M̂g = φ

(

x̂g
)

. The final motion-cor-
rected PET volume, ĨIC is formed by applying the estimated motion fields to each of the 
original, unfiltered PET gates and averaging them according to RTA:

where G is the number of PET gates acquired, including the reference gate.

Experiments and results
To evaluate our proposed approach, we used simulated PET data created from real MR 
data. This allowed us to perform a quantitative evaluation of the performance of our 
technique using realistic motion fields. MR data was acquired from four healthy male 
volunteers (ages 22–33). Details of data acquisition are provided in “MR data acquisi-
tion”. The PET simulation procedure is described in “Simulating PET data from real MR 
images”. “Evaluation using simulated PET data” describes the evaluation of our technique 
using these data, and qualitative and quantitative results are presented in “Qualitative 
results” and “Quantitative results”.

MR data acquisition

Two different MR sequences were acquired in the same scanning session for each vol-
unteer. An ultrashort echo time (UTE) sequence was used to acquire images for forming 
emission and attenuation maps for PET simulation (see “Simulating PET data from real 
MR images”). A 3D dynamic sequence was used to acquire images for two purposes. 
Half of the data were used to calibrate the motion model (see “Motion model forma-
tion”). The other half were used to transform the emission and attenuation maps into 
real breathing positions for PET simulation. All data in these experiments were acquired 
using a Philips Achieva 3T MR scanner.

For the UTE sequence, two images were acquired in an interleaved fashion (each with 
different echo times) with respiratory gating, as described in [36]. The field of view was 
400× 400× 400mm at a resolution of 2× 2× 2mm, with TR/TE1 = 6.5/0.14ms and 
TE2 = 4.6ms. A flip angle of 10° was used. Gating was achieved using a pencil-beam 
navigator positioned on the right hemidiaphragm. Scan duration was typically 10 to 
30 min, depending on the subject’s breathing pattern and the efficiency of respiratory 
gating. The two resulting UTE images were subtracted to create a third image, which 
shows increased cortical bone contrast [36].

(5)ĨIC =

G
∑

g=1

T
[

Ig ,φ
(

x̂g
)]

,
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35 dynamic 3D MR volumes were acquired in quick succession for each subject during 
normal tidal breathing. These were used to estimate motion fields for model formation as 
described in “Motion model formation” and to transform the PET maps into real breath-
ing positions. The sequence used to acquire the volumes was: T1-weighted FFE using 
SENSE protocol with SENSE factor 8, flip angle = 10◦, field of view 500× 450× 245mm 
with acquired image resolution 1.5× 4.1× 5mm (FH, RL, AP) and reconstructed image 
resolution 1.5× 1.5× 5mm and a time resolution of 0.7 s per image. For more informa-
tion on this protocol, refer to [29]. An example of a single dynamic MR volume from this 
protocol is shown in Fig. 2.

The position of the right hemidiaphragm in the head-foot direction was estimated 
from each dynamic MR volume using cross-correlation of intensities within a manually-
defined, cuboidal VOI [37]. This position value was used as the surrogate data, nt, for 
motion model formation. It was subsequently optimised as the internal variable in model 
application, where the PET images themselves were considered to be the surrogate data 
of the motion model. Refer to “Motion model formation” and “Motion model applica-
tion” respectively for more information on model formation and application. The respir-
atory signal was also used to select a reference end-exhale image for motion estimation.

Note that in our experiments the signal for model formation was image derived, but in 
practice it could easily be acquired as a pencil-beam navigator by the MR scanner.

Simulating PET data from real MR images

The simulations were based on real anatomical and respiratory motion information 
derived from volunteer MR images, an approach which has been implemented in previ-
ous studies [36, 38].

The original UTE images and the difference UTE image (see “MR data acquisition”) 
were used to create two segmented maps for each volunteer. Segmentation was per-
formed semi-automatically using ITK-SNAP [39]. These maps contained anatomical 
regions relevant to PET emission and attenuation respectively and formed the basis of 
the PET simulation, which is described briefly below. For a more in-depth explanation of 
this simulation procedure, refer to [38].

The simulation was intended to model a typical [18F]-fluorodeoxyglucose (FDG) scan, 
where tracer uptake is directly related to cellular glucose uptake. To study the effects of 
motion clearly, a spherical, FDG-avid lesion was inserted into the emission maps in addi-
tion to the other anatomical features. The lesion was positioned in nine different loca-
tions in the right thorax, with two different diameters: 10 and 14mm. These are referred 
to as the ‘small’ and ‘large’ lesions respectively. The positions are shown in Fig. 2. Note 
that this figure is illustrative, and that each PET simulation only contained one lesion in 
one of these positions. Separate emission and attenuation maps were produced for each 
lesion size/position combination, and separate PET simulations performed for each.

Each emission/attenuation map was transformed to different motion positions using the 
transformations derived by registering dynamic MR volumes. As described in “MR data 
acquisition”, 35 dynamic MR volumes were acquired for each volunteer, corresponding to 
approximately 6 breathing cycles. For each volunteer, 17 volumes were used for simulat-
ing PET gates. The remaining unused 18 volumes were used to create the motion model 
for motion correction. The volumes were assigned to either PET simulation or model 
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formation according to order of acquisition, but with the constraint that a similar distribu-
tion of respiratory states should be present within each group. This ensured that separate 
data were used for producing the PET test data and for forming the motion model in our 
experiments. The most-exhaled volume of the 35 (based on the value of the respiratory 
signal, see “MR data acquisition”) was chosen as the reference volume. All other volumes 
were nonrigidly registered [33] to this reference volume to generate motion fields between 
each volume and the reference volume. The right hemidiaphragm in volunteers 1, 2, 3, and 
4 was observed to displace by up to 25.2, 20.7, 13.3, and 38.7mm respectively.

Each PET simulation was binned into respiratory gates, with the gates corresponding 
to 6 equally-spaced intervals within the observed range of respiratory signal values. The 
17 motion fields were separated into these 6 bins based on the values of their respira-
tory signals, nt. In these experiments, we used nt to perform the binning for conveni-
ence, but in reality any other suitable gating technique could be used (e.g. [1, 11]). The 
emission/attenuation maps for each PET gate were generated by transforming the seg-
mented maps using each motion field within the corresponding bin, and then averaging 
all transformed maps. This averaging approximates the blurring artefacts introduced by 
the motion that would occur within each PET gate during continuous data acquisition. 
Note that motion modelling was not used during this simulation procedure.

The averaged, transformed maps were used to simulate realistic PET images with the 
Software for Tomographic Image Reconstruction (‘STIR’, [40]). Following the method 
described in [38], the images were modelled as being acquired on a Phillips Gemini TF, 
with a reconstructed voxel size of 2× 2× 2mm3. Prior to simulation, emission maps 
were smoothed with a 4mm, isotropic Gaussian filter to approximate resolution effects. 
A total of 50 million counts were simulated for each scan (typical for a 5 min FDG scan), 
with each gate having a fraction of these proportional to the period each volunteer was 
observed to spend in each respiratory gate. These fractions were computed by counting 
the number of volumes (out of the 35) within each gate based on their respiratory signal 
value. Finally, each gated sinogram was individually reconstructed using the ordered-
subsets expectation maximisation algorithm (23 subsets, 10 iterations).

A total of 72 motion-included simulations were created (9 lesion positions, 2 diam-
eters and 4 volunteers). Some examples of the simulated PET gates can be seen in Fig. 3. 
Note the different noise characteristics in each image due to different count totals in the 
gated sinograms. The ‘ideal’ motionless (ML) image was also created for each simula-
tion, with the same physical effects and processes. For this, the simulation procedure 
was identical to the simulations involving motion, except each ‘motionless’ gate was the 
reference PET gate used in the motion-included simulations, repeated 6 times (i.e. once 
for each PET gate), each simulated with the same aforementioned noise levels propor-
tional to breathing amplitude. This was done to maintain any effects of reconstruction 
bias resulting from using the RTA technique. These motionless simulations allow char-
acterisation of best achievable performance of all methods presented in this study.

Evaluation using simulated PET data

To characterise the performance of our proposed indirect correspondence model based 
method (IC) in correcting for the effects of motion on the simulated PET data, we com-
pared it to three alternative approaches to combining multiple PET gates:
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• • Uncorrected (UC): All 6 motion-affected PET reconstructed gates were averaged 
without including any motion correction.

• • Direct correspondence model (DC): The same motion model as we have described in 
“Motion model formation” was employed to motion correct the simulated PET gates, 
but a direct correspondence model based technique was used for model application. 
Specifically, the MR image-derived respiratory signal described in “MR data acquisi-
tion” was used directly as the surrogate input to the model to estimate the motion 
field for each gate (i.e., in (1), the respiratory signal, n, was used as the surrogate, s). 
This is the technique described in [29] and would require continuous use of the MR 
scanner to acquire the pencil-beam navigator.

• • Unconstrained PET-PET Registration (PT): Nonrigid registration [33] was used to 
register each PET gate to the reference PET gate. The estimated motion fields were 
used to motion correct each gate and the transformed gates were subsequently aver-
aged.

We used visual inspection plus three methods of quantifying the performance of our 
technique, which represented peak lesion uptake, width, and position relative to the 
equivalent measure in the motionless (ML) image.

Peak lesion uptake value

The first quantitative measure was the percentage correction of lesion peak uptake value 
relative to the corresponding value in the motionless simulations. Peak lesion uptake 
values of the lesions were calculated as SUVpeak. SUVpeak was found by using a small 
VOI (in this case, a central voxel and its 6 nearest neighbours) and taking the mean voxel 
value of the small volume. This average was then attributed to the central voxel. The 
voxel with the highest mean defined in this way within a larger VOI was designated as 
the SUVpeak of the lesion. For this work, the larger VOI was a user-defined volume of 
approximately 20× 20× 20mm centred on the location of each lesion in the motionless 
image. Manual definition was required in some cases to avoid noise features within the 
image. Intensity recovery was quantified as a percentage of SUVpeak of each lesion, with 
100 % defined as the respective value in the motionless simulation.

Lesion width

Respiratory motion can cause significant changes in apparent lesion volume and shape. 
This is seen predominantly in the head-foot (HF) direction since this is the primary 
direction of displacement for respiratory motion. However, the use of profiles through 
the lesion does not adequately characterise the shape of the activity distribution. This 
makes full–width at half–maximum (FWHM) derived from line profiles a poor quanti-
fier of PET motion correction.

Instead, a minimal bounding box was defined within the VOI used to find SUVpeak of 
each lesion. This box minimally fit the whole surface defined by the lesion’s FWHM in 
the 3 directions of the image planes. This was automated using Matlab, then checked 
manually. The automation algorithm created a 3D binary image around each given 
lesion, in which voxels were assigned a value of 1 if their intensity value was equal to or 
greater than half the value of the peak intensity. The algorithm then identified the small-
est box required to enclose the binary image. The widths of the box were then used to 



Page 13 of 23Balfour et al. BioMed Eng OnLine  (2015) 14:85 

quantify lesion width in each of the three image directions: head-foot, anterior-poste-
rior, and left-right. Lesion width recovery was defined as a percentage of the size of the 
minimum bounding box in the motionless simulations, in each direction.

Lesion position

Finally, the error in lesion position was computed as the third measure. This was done 
by calculating the magnitude of the 3D displacement of the lesion SUVpeak relative to the 
motionless case.

Note that different Poisson noise realisations were used for each simulation (i.e. the 
seed for the random number generator was selected randomly between 1 and 1000 for 
each PET gate), so even if perfect motion correction transformations were applied there 
would be differences in noise character between any given lesion and its motionless 
equivalent.

Qualitative results

Visual inspection

Some results of applying these three approaches, together with the ‘ideal’ motionless 
(ML) simulation are shown in Figs.  4, 5 and 6. Visually, our proposed approach and 
both comparative techniques improve the visibility of the lesions. In Fig. 4, which dis-
plays a small lesion in position 4, the uncorrected PET image has an indistinct patch of 
increased activity within the right inferior lobe of the lung. It is questionable whether 
this would be identified as a lesion by a clinician inspecting this scan. Upon motion 
correction, this patch becomes a distinct, higher contrast lesion above the diaphragm. 

Fig. 4  Coronal views of a small lesion, position 4 for volunteer 2, displayed with a 4mm Gaussian filter. The 
intensity scale is shown to the right. The lesion (indicated with an arrow) is relatively indistinct in the UC case, 
but clear in the IC case. In this example, the PET-PET registration (PT) has performed moderately well, whereas 
the direct correspondence method (DC) has performed poorest of the 3 correction methods. Also notice the 
blurred appearance of the liver-lung boundary in the UC image
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Compared to the motionless case, the motion correction techniques qualitatively 
recover lesion size and position, but not full contrast.

Quantitative results

Quantitative results for our experiments are shown in Figs.  7, 8 and 9. Note that all 
results are quoted in median and interquartile range since skew was observed in the data 
distributions. A 2–tailed Wilcoxon signed rank test was applied to test the statistical sig-
nificance of the results in all experiments. Tests were performed to compare all motion 
correction techniques to the uncorrected case. A value of p ≤ 0.01 (i.e. 99 % confidence) 
was taken as a statistically-significant result.

Peak lesion uptake value

Recovery of peak uptake value was found using SUVpeak. These values are percentages 
with the motionless lesion at 100  %. Values will thus generally be lower than 100  %, 
although sometimes they may be slightly higher due to image noise.

Fig. 5  The effects of motion correction on large lesions in positions 2, 5, and 8 in coronal views of volunteer 
4. Refer to Fig. 3 for lesion positions. Effects are shown for the uncorrected PET (UC), the indirect correspond-
ence model proposed in this paper (IC), the direct correspondence method from [29] (DC), unconstrained 
PET-PET registration (PT) and the gold-standard set by motionless PET (ML). Note that L2 does not move 
much. This agrees with the observation reported by [3] that lesions in the upper lung move by around 2mm: 
below PET image resolution. However, L5 and L8 have lost contrast due to respiratory motion, which is recov-
ered with varying success by correction methods IC, DC and PT. Profiles of these lesions are displayed in Fig. 6

Fig. 6  Head-foot profiles through large lesions in positions 2, 5, and 8 respectively for volunteer 4 Coronal 
slices of these lesions are displayed in Fig. 5. Notice the similarity of all profiles for the lung lesion (2, left), but 
the significant spreading of the UC lesion profile on the diaphragm (5, centre) and in the liver (8, right). In all 
cases, the IC, DC, and PT correction methods recover a significant proportion of the ML peak uptake value
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Fig. 7  Peak uptake value as a percentage of equivalent motionless lesion SUVpeak as a box plot. Labels cor-
respond to: (UC) Uncorrected PET, (IC) Our proposed indirect correspondence technique, (DC) The direct 
correspondence technique, and (PT) unconstrained PET-PET registration

Fig. 8  Width of the minimum bounding box of each lesion in the head-foot direction, as a box plot. Note 
that widths are quoted as a percentage of the corresponding motionless lesion value. Labels correspond to: 
(UC) Uncorrected PET, (IC) Our proposed indirect correspondence technique, (DC) The direct correspondence 
technique, and (PT) Direct PET-PET registration. Note that for IC and DC in the All Lesions graph and DC in the 
Lung Lesions graph, the median corresponds to the lower quartile

Fig. 9  Displacement of each lesion centroid in millimetres as a box plot. Labels correspond to: UC, uncor-
rected PET; IC our proposed indirect correspondence technique; DC the direct correspondence technique; PT 
direct PET-PET registration
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The distribution of changes in SUVpeak compared to the motionless case are presented 
as box and whisker plots in Fig. 7. In the ‘All Lesions’ graph of Fig. 7, the overall changes 
in SUVpeak of each method are displayed: uncorrected (UC) PET, PET motion corrected 
with the indirect correspondence technique proposed in this paper (IC), direct corre-
spondence motion model (DC), and direct application of a nonlinear registration algo-
rithm to each PET gate (PT). Subsequent graphs in the figure correspond to each region 
of the thorax with simulated lesions: the lung (i.e. lesions 1 to 3), diaphragm (lesions 4 to 
6) and liver (lesions 7 to 9).

Uncorrected, all lesions were observed to only recover a median of 78.4 ± 18.6 % of 
the motionless lesion SUVpeak. The indirect correspondence motion modelling method 
proposed in this paper recovered a median of 86.9± 13.6 % (p = 1.9× 10−9), whereas 
the direct correspondence application of the same motion model yielded 86.3± 12.1 % 
(p = 9.9× 10−6) of the motionless SUVpeak peaks. Nonlinear registration of the PET 
gates recovered 87.2± 16.9 % (p = 3.8× 10−7) of the peak intensities on average.

The lowest observed uncorrected lesion intensity was 40.6 % of noiseless activity. The 
IC, DC, and PT methods recovered this to 78.4, 64.8, and 77.3 % respectively. The scat-
ter plots in Fig.  10 show the behaviour of individual lesion measurements before and 
after correction. The dashed line y = x defines the point at which no improvement is 
achieved. Points below this line have worsened under the correction method, whilst 
those above have improved. These plots are discussed further in “Robustness analysis”. 

Lesion width

The changes in the head-foot width of the minimum bounding box for each lesion 
FWHM are shown in Fig.  8. Once again, the respective motionless lesion profile was 
used to define 100 %. Contrasting to the results for correction in peak uptake value, the 
values in Fig. 8 tend to be greater than 100 %.

Overall, the uncorrected PET images exhibited a median increase in width to 
150± 82 % of that of the motionless lesions. The IC motion correction reduced this 

Fig. 10  Illustrating method robustness with scatter plots of SUVpeak recovery. These scatter plots show the 
improved robustness of the two MR-derived motion model based techniques (DC and IC) compared to the 
direct registration PET-PET registration technique (PT). Each plot compares distributions of SUVpeak for each 
lesion in positions 4–9 for all volunteers, both before correction and after correction by the IC, DC and PT 
methods. The dashed line represents y = x. Any point on this line was unaffected by the correction attempt. 
Points above the line have had their SUVpeak increased (with 100 % corresponding to the motionless peak 
uptake), whereas points below the line show a reduction in SUVpeak. Note in particular that whilst none in 
the IC case are significantly below the line, 8 lesions dropped in SUVpeak with the PT method (16.7 % of the 
points shown)
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to 100± 29 % of the motionless lesion width (p = 4.4 × 10−15). Similarly, the DC 
motion correction technique reduced this to 100± 23 % (p = 3.4 × 10−11), whereas the 
direct PET-PET registration reduced the minimal bounding box width to 114 ± 30 % 
(p = 3.9× 10−15).

Lesion position

The displacement magnitudes of lesions from their motionless positions are pre-
sented in Fig. 9. Note that the original position of a lesion is at 0mm. Uncorrected PET 
lesions showed a median offset of 6.6± 5.4mm. The IC method reduced this median to 
3.5± 1.8mm (p = 2.4 × 10−17). The DC method reduced the median displacement to 
2.7± 2.8mm (p = 2.0× 10−15). The PT method reduced the median displacement to 
2.7± 1.9mm (p = 3.6× 10−18).

Robustness analysis

The IC technique matched the results achieved by the DC technique, therefore it should 
be able to achieve correction in any situation for which the DC technique has already 
been tested, such as those in [29]. Similarly, the IC technique matched unconstrained 
PET-PET registration, but was more robust in certain cases:

• • The range of errors on each PT all-lesion average are larger than those in the IC case, 
with (occassionally many) outliers on the box plots in Figs. 7, 8, and 9.

• • The PT method underperformed for most liver lesions, and in some cases lesions 
were not recovered, such as in Fig. 11. There are no cases where a lesion was notably 
worse due to the IC technique, as can be seen by the scatter plots in Fig. 10. Note 
that this latter figure only shows lesions in positions 4–9 for clarity; the lung lesions 
(positions 1–3) are mostly unaffected by the attempts at motion correction due to 

Fig. 11  A case in which image quality deteriorates after unconstrained PET-PET registration based motion 
correction. Here, the PT method has failed to recover a small lesion in position 9 of volunteer 1. As can be 
seen, a small, indistinct lesion is indicated by an arrow in the UC image. This is clearly recovered using our 
method (IC) to a visual quality comparable to the motionless case. However, unconstrained registration (PT) 
has actively made the lesion harder to see, with two possible candidates indicated by arrows. These are com-
parable to the levels of noise seen elsewhere in the liver, and could easily be missed. All images are shown on 
the same intensity scale
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their small displacement as a result of respiratory motion, and so fluctuate around 
y = x.

• • Registration for the IC and DC cases are constrained to realistic biomechanical posi-
tions, as defined by the MR. The same cannot be said for the PT method, especially 
when a greater number of respiratory gates are used, due to lower SNR.

Discussion
We have demonstrated a novel technique for motion correction of PET gates that would 
not require sustained use of the MR scanner during a simultaneous PET-MR scanning 
session. Performance was comparable with an MR-derived motion model technique 
that would require such use of the MR scanner. Experiments indicated that overall our 
technique could recover median lesion peak uptake value up to 86.9± 13.6 % (from 
78.4 ± 18.6 % for uncorrected PET), and median lesion size down to 100± 15.7 % (from 
179± 63.7 % in uncorrected PET) of the affected head-foot width. Lesion displacements 
were improved from 6.6± 5.4mm prior to correction to 3.5± 1.8mm. All of these 
improvements were statistically significant—below the p = 0.01 threshold.

Whilst the average lesion intensity only improved by an additional 8 %, this could be 
due to the depth of breathing of the volunteers. The maximal observed displacements of 
the right hemidiaphragm in volunteers 1, 2, 3, and 4 were 25.2, 20.7, 13.3, and 38.7mm 
respectively. Since the lesion sizes were 10 and 14mm, these displacements span 1 to 3 
times the lesion size, which could cause different behaviour under motion.

Advantages

The indirect correspondence motion model based technique has some advantages over 
other motion correction techniques. The main advantage is that the motion correction 
only requires the MR scanner for a short, initial motion model calibration scan to pro-
vide a method for robust PET-PET registration. After this scan, the motion model can 
be formed and applied without any further requirement of the MR scanner, maximising 
its availability for other clinical or research purposes. This independence from MR also 
makes this method of respiratory motion correction suitable for sequential PET-MR. It 
may also have the potential to correct for some spatiotemporal misalignments between 
the PET and MR coordinate systems. In addition, errors in surrogate signal acquisition 
for direct correspondence model based methods are avoided. This final point could 
explain why the IC method occasionally outperformed the DC method in our experi-
ments, resulting in a larger spread of values for lesions corrected by the DC method. 
Note that our technique does still require a respiratory signal to be measured during 
MR scanning (for model formation) and also during PET scanning (for gating purposes). 
However, the two signals do not need to be the same. The requirement to acquire the 
same or a similar signal, which is a feature of many alternative techniques (such as [28, 
29]), introduces several potential difficulties. First, if the signal is measured using the 
MR scanner, it restricts the use of the technique to simultaneous PET-MR, and further-
more it limits the use of the scanner for clinical purposes during PET scanning. Second, 
if the signal is measured using an external device such as an optical or magnetic tracker 
the measurement device must be MR-compatible and any line-of-sight issues must be 
resolved. Use of an external signal also increases the cost of the solution and complicates 
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clinical work flows. The fact that our technique eliminates this requirement is therefore 
an important feature, and could result in greatly simplified clinical work flows. In addi-
tion, using the PET data itself as the surrogate enables our technique to use informa-
tion about PET-visible lesions in the motion correction process, potentially improving 
motion correction accuracy in areas of clinical interest. However, the biomechanical 
constraints of motion model based techniques are preserved, leading to more robust 
results than the direct PET-PET registration technique.

Relation to other work

The technique we have described represents a novel approach to PET motion correction, 
but has some similarities with related approaches from the literature. Several papers 
have recently proposed the use of MR to obtain motion estimates to correct PET [12, 
19]. These works registered MR gates to directly obtain motion estimates, which were 
then used to motion correct gated PET images prior to averaging them [12, 19]. A simi-
lar approach was taken by Manber et al [21], in which the respiratory signal used for gat-
ing was derived from the PET data. This allowed the MR scanner to be free for clinical 
use, apart from a short calibration scan (similar to our technique). However, in Manber 
et al’s work, the PET data were not directly used in the motion estimation procedure. In 
our work, the PET data are directly employed in the motion estimate, but this is con-
strained using an MR-derived motion model.

4D registration approaches (e.g. [41]) involve a similar ‘constrained registration’ 
approach, in that sets of transformations that are not smooth between gates are effec-
tively excluded from the motion estimation process. However, our approach uses con-
straints estimated from another, more reliable, modality (i.e. MR). We do not currently 
use between-gate smoothness as a constraint, but this would be an interesting extension 
of our technique.

Other related works include [31], who used a probabilistic model based on a mixture 
of Gaussians to make use of MR data to jointly estimate activity and motion parameters 
in a single PET reconstruction. More recently, [32] used a combined MR and PET simi-
larity measure when registering gated MR and PET images.

Limitations and future improvements

The motion fields used in our PET simulations were derived from real MR scans. The 
motion should therefore be very realistic. However, deriving motion from low resolution 
dynamic 3D MR scans has known weaknesses: in particular, contrast inside the lungs 
can be poor. Thus motion fields inside the lungs are, effectively, interpolated from those 
at the high-contrast lung boundaries. This fact makes our results for lung lesions (i.e. in 
positions 1–3) less reliable than those close to the diaphragm (positions 4–9). Also note 
that the UC errors in the lungs are smaller than in the other regions. This is likely due 
to the unreliable motion fields as well as the smaller magnitude of motion in this region.

Our method uses a region of interest to compute the similarity measure from the PET 
gates. This volume is extended across the lower lung and much of the liver. In our exper-
iments, a lesion in positions 4 through 9 could therefore provide additional information 
to the IC constrained registration, which could aid the registration process. In contrast, 
lesions 1 to 3 are outside of this region of interest. We used a smaller region to maximise 
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the proportion of high-contrast structure within the VOI. This made it easier to estimate 
the optimal value of the internal variable, x̂. Theoretically, the IC registration would find 
the same motion fields for each of these 3 lesion positions (i.e. 1 to 3) for any given vol-
unteer, since the anatomical information available is identical. However, the noise char-
acteristics of each simulation differ, causing fluctuations in the registration result. Due to 
this, the IC method performs slightly differently for each lung lesion.

In our experiments, perfect attenuation correction was assumed. Attenuation was 
included in the simulations, but anatomically accurate attenuation maps were assumed 
to be known for each respiratory position. This allowed us to focus our evaluation on the 
effects of our algorithm on motion correction alone. In future work, we plan to incor-
porate our approach into an MCIR-based motion correction algorithm. This will neces-
sitate formulating the optimisation of an iterative reconstruction to update the internal 
respiratory signal values for each gate. It would then be relatively straightforward to 
incorporate attenuation correction into the reconstruction procedure in such a way that 
this assumption is no longer required.

Moving towards an MCIR approach has a number of other benefits. Firstly, MCIR is 
desirable due to its improved ability to provide quantitatively-accurate results. Since 
iterative PET reconstruction is an optimisation process, it naturally fits with the opti-
misation part of the indirect correspondence motion model. Moreover, the low SNR of 
gated sinograms becomes less of a problem as it will not introduce bias into the recon-
struction (a limitation imposed by the non-negativity constraint of iterative reconstruc-
tion algorithms).

The motion model we employed in this work was a relatively simple ‘average-cycle’ 
model, which would not be able to capture any intra-cycle motion variation and only 
limited inter-cycle variation. Use of this simple model allowed us to demonstrate a 
proof-of-principle for our proposed motion correction approach, but more sophisti-
cated types of motion model could result in improvements in performance. For exam-
ple, multiple internal variables could be employed, such as signals derived from other 
anatomical positions like the chest/abdomen or even statistical dimensionality reduction 
approaches such as principle component analysis [11].

A further limitation of our work is the fact that the MR data used for model formation 
and PET simulation were acquired in the same scan. It would be more realistic to acquire 
the data in separate scans to simulate the long scan time of PET imaging. We also plan to 
evaluate our technique on real PET data in the future.

Our technique used an indirect correspondence model approach using PET gates as 
the surrogate. We compared this with a direct correspondence model approach using 
an MR-based respiratory signal as the surrogate, but an alternative approach would have 
been to use a respiratory signal derived from PET data as the surrogate (e.g. [10, 11]). 
However, such an approach would introduce uncertainty as to how to relate the different 
(but similar) surrogate signals used to form the model (i.e. MR-based signal) and apply it 
(PET-based signal). Our approach has no such problem since we effectively optimise the 
value of the signal used to form the model based on the richer information contained in 
the PET gates used as surrogate images.
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Conclusion
The proposed method represents a proof-of-principle of what the authors believe to 
be a new class of PET motion correction techniques. More complex implementations, 
using some of the improvements outlined in the previous section, are possible. In addi-
tion, this technique is one of the first attempts to use both PET and MR data to estimate 
motion fields for PET motion correction, which the authors believe is a potentially fruit-
ful area for future research.

In summary, we believe that the technique we have described represents an important 
addition to the literature on PET-MR motion correction, in that we have demonstrated 
that good, reliable PET motion correction performance can be achieved without con-
tinuous or repeated use of the MR scanner. This potentially makes incorporating motion 
correction into clinical protocols much more feasible.
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