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Abstract 

Background:  During last decade the use of ECG recordings in biometric recognition 
studies has increased. ECG characteristics made it suitable for subject identification: it is 
unique, present in all living individuals, and hard to forge. However, in spite of the great 
number of approaches found in literature, no agreement exists on the most appropri-
ate methodology. This study aimed at providing a survey of the techniques used so 
far in ECG-based human identification. Specifically, a pattern recognition perspective 
is here proposed providing a unifying framework to appreciate previous studies and, 
hopefully, guide future research.

Methods:  We searched for papers on the subject from the earliest available date using 
relevant electronic databases (Medline, IEEEXplore, Scopus, and Web of Knowledge). 
The following terms were used in different combinations: electrocardiogram, ECG, 
human identification, biometric, authentication and individual variability. The electronic 
sources were last searched on 1st March 2015. In our selection we included published 
research on peer-reviewed journals, books chapters and conferences proceedings. The 
search was performed for English language documents.

Results:  100 pertinent papers were found. Number of subjects involved in the journal 
studies ranges from 10 to 502, age from 16 to 86, male and female subjects are gener-
ally present. Number of analysed leads varies as well as the recording conditions. 
Identification performance differs widely as well as verification rate. Many studies refer 
to publicly available databases (Physionet ECG databases repository) while others rely 
on proprietary recordings making difficult them to compare. As a measure of overall 
accuracy we computed a weighted average of the identification rate and equal error 
rate in authentication scenarios. Identification rate resulted equal to 94.95 % while the 
equal error rate equal to 0.92 %.

Conclusions:  Biometric recognition is a mature field of research. Nevertheless, the use 
of physiological signals features, such as the ECG traits, needs further improvements. 
ECG features have the potential to be used in daily activities such as access control 
and patient handling as well as in wearable electronics applications. However, some 
barriers still limit its growth. Further analysis should be addressed on the use of single 
lead recordings and the study of features which are not dependent on the recording 
sites (e.g. fingers, hand palms). Moreover, it is expected that new techniques will be 
developed using fiducials and non-fiducial based features in order to catch the best of 
both approaches. ECG recognition in pathological subjects is also worth of additional 
investigations.
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Background
Biometric recognition, often referred as Biometrics, is the science that uses statistical 
methods to uniquely identify humans by means of their physiological and behavioural 
characteristics. It is mostly used to solve problems of access control, providing reliable 
and secure alternatives to the conventional authentication methods [1–5].

Subject identification can be achieved using several human discriminants such as reti-
nal structure, fingerprint, face, palm print, etc. However, each one of them exhibits issues 
related to the specific hardware to use, the practicability of the measures and the robust-
ness against spoofing attacks. Retinal scan is a relatively quick and secure procedure 
(there are relatively few chances to forge it), however the technology is still expensive 
and more importantly the procedure is sometimes perceived as invasive and unpleas-
ant. Fingerprint is the most widespread biometric, it has been used in forensic for about 
100 years. Automated systems base their accuracy on a multispectral approach, however 
simple rolled fingerprint (inked impression images) can relatively easy be forged. The 
possibility to steal data directly from subjects and the relative ease to replicate them (e.g. 
silicone fingerprints, pictures or facial masks) posed serious challenges to researchers 
[6–10] and multimodal recognition systems have been suggested [2, 11–14].

In the last decade, the registration of the electrical activity of the heart on the body 
surface, namely the electrocardiogram (ECG), has been documented to be suitable for 
identity recognition [1, 13, 15]. Dedicated research on the ECG analysis has demon-
strated its advantages in biometrics: ECG is present in all living individuals, exhibits the 
typical characteristics of a biometric and it is hard to forge. In addition, ECG analysis is a 
robust method to detect the aliveness of the subject in authentication scenarios.

To date, many different approaches to human recognition via ECG have been reported 
in the scientific literature but no agreement exists on the appropriate methodologies. 
Moreover, the use of ad-hoc signal databases makes difficult the assessment of all exist-
ing techniques [16, 17].

This study attempts to provide a survey of the techniques used so far in ECG-based 
human identification. Here, we present a perspective on the progresses of the last 
decade’s research in the field and a discussion on the possible implications for future 
research.

Previous attempts to summarise ECG-based recognition techniques can be traced 
back to the work of Nasri [18], Odinaka [17] and Israel and Irvine [19].

Nasri briefly summarized the literature by 2008, Odinaka compared the performance 
of different algorithms testing them on a single database while Israel and Irvine sug-
gested a sensor-based perspective. More recently, some author investigated combination 
of ECG-traits with other signals (voice, phonocardiography, Laser Doppler Vibrometry) 
to enhance the identification rate [20–22].

The aim of this survey is to provide a pattern recognition perspective, giving a unify-
ing framework for interpreting previous studies and, hopefully, to guide future works. 
We concentrated on ‘features’ for ECG-based human recognition as well as classifica-
tion strategies. In addition, we evaluated a weighted mean accuracy of the found journal 
studies to assess the overall performance of the ECG biometrics techniques used so far.

This survey is organized as follows: section two reports on the search strategy, inclu-
sion criteria, and overall performance evaluation strategy; section three describes the 
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main principles underlying the use of ECG as biometrics, the most spread ECG-based 
features and the databases used to test algorithms performance; in section four we 
address the issues of feature selection and dimensionality reduction. Discussion and 
conclusions report the overall picture dealing with the open issues on ECG-based 
biometrics.

It is nevertheless worth to highlight what this survey is not aimed at. We will not 
review ECG pre-processing, which is an established research area and a large number of 
studies report on efficient methods for noise removal, power-line suppression, baseline-
wandering removal etc. [8, 23, 24]. We will also not review the methods for QRS detec-
tion, although this is one of the most important issues in all algorithms for individual 
identification. QRS detection has been reviewed elsewhere and we refer the interested 
reader to specific papers such as [1, 25–27].

Search strategy
We searched for papers on the subject from the earliest available date using relevant 
electronic databases (Medline, IEEEXplore, Scopus, Web of Knowledge). We used the 
following terms in different combinations: electrocardiogram, ECG, human identifica-
tion, biometric, authentication and individual variability. The electronic sources were 
last searched on 1st March 2015. We also performed a hand search of bibliographies 
of the publications that were found. In our selection we included published research 
on peer-reviewed journals and conferences proceedings. The search was performed for 
English language documents. Finally, we retrieved 100 pertinent papers that met the 
reported criteria. Figure 1 reports the number and the type of research publications dur-
ing time.

To estimate an overall performance index for ECG biometrics we computed the 
weighted mean of identification rate by selecting journal publications (18 were con-
sidered appropriate due to data availability, use of ECG feature only, etc.). Weighted 
equal error rate for verification (authentication) scenarios was also computed. The two 
indexes were obtained by combining the performance of all the studies. Specifically, sin-
gle study’s performance were weighted (according with the number of subjects involved 
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Fig. 1  Temporal increase of the research interests on ECG-based biometric recognition.
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with respect to the total number of subject of the selected papers) and then added to 
obtain mean overall performance indexes.

ECG as a biometric
ECG is the electrical activity of the heart often recorded at the chest level. During its 
activity, the myocardium—the heart muscle—behaves as a series of connected electric 
dipoles in a unique fashion called functional “syncytium” [28–31]. Heart’s electrical 
activity is commonly described using an individual time-varying electromagnetic vector 
[28, 32–36], whose projections can be recorded onto the body surface [32]. Up to twelve 
specific electrodes positions (leads) are used to monitor heart functions [37, 38], and 
additional configurations have been proposed for specific purposes [37, 39].

Signals recorded from each lead contain different information; however, specific 
waves, namely P, Q, R, S, T, can be identified within a heartbeat cycle on the different 
leads (see Fig. 2). Nevertheless, both the time evolution of the dipole vector and its pro-
jections onto the subject’s body are influenced by the electrical conduction paths inside 
the heart, the geometrical characteristics of the heart itself, its position within the chest 
and also by the inhomogeneity of the conductor volume of the thorax [38].

Therefore, ECG seems to contain enough information for subject recognition. In past 
studies numerous ‘features’—temporal (locations and intervals among waves), amplitude 
(height of waves’ peaks) and morphological differences (shapes, proportions, slopes and 
angles)—have been proposed to recognise individuals.
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  V
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Time [s]
Fig. 2  Example of ECG traces from different recording configurations (leads).



Page 5 of 23Fratini et al. BioMed Eng OnLine  (2015) 14:78 

The hypothesis of the use of ECG as personal identification attribute was suggested 
by Forsen [40]; however, the first study on the ECG analysis for biometric purposes was 
carried out by Biel and colleagues [1, 41]: the authors investigated some combinations of 
features in 12-leads ECG recordings on a sample of 20 subjects.

In the same years moreover, Hoekema and Van Oosterom [42, 43] highlighted and 
quantified, to some extent, the relevance of the geometrical characteristics in the inter-
individual variability of ECG recordings.

Starting from these pioneering studies, ECG biometric literature has grown in the field 
of pattern recognition (see Fig. 1). Thus, the extraction of appropriate features as well as 
the classification procedures became both crucial issues.

Typical realization of an ECG‑based identification system

An ECG-based identification system is characterised by a well-defined workflow as 
depicted in Fig. 3. It firstly requires an enrolment phase, which serves to collect and store 
subject’s distinctive attributes. With the enrolment, specific pre-processing, for noise 
and artefacts rejection, as well as feature extraction/processing are implemented before 
the data storage. Once the characteristics of different subjects are stored the identifica-
tion phase can take place. During the identification, in fact, an unknown ECG is pre-
sented to the system. As in the enrolment, equal pre-processing and features extraction/
transformation are performed. In addition, a specific classification algorithm assigns 
the extracted features to a best matching subject’s data as stored in the database (see 
“Classifiers”).

Clearly, ECG attributes extraction, selection and transformation, as well as the clas-
sifier structure play a fundamental role to achieve the best identification performances. 
The following paragraphs report the details of each of the mentioned steps.

ECG features

ECG-based recognition approaches are numerous and very different. ECG attributes 
(features) are intended to classify the specific subject exploiting inter-subject variabil-
ity. In general, features are based on the morphology of the heartbeat, on peculiar time 
intervals derived from ECG waves or on specifically extracted features. The choice of the 

Fig. 3  Typical organisation of an ECG-based identification system.
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employed features is generally driven by the complexity of the recognizer, the need of 
real-time identification, the specific recording device, etc.

No agreement exists on the most appropriate technique or on the type/number of 
features to consider. Moreover, ECG analysis is often performed on in-house databases 
making arduous the comparison between techniques.

For the purpose of the present survey, existing approaches have been grouped in 
two main categories—fiducial based and non-fiducial based—depending on the need 
to identify precise points in the heartbeat. Each category can be further subdivided as 
depicted in Fig. 4 by means of the employed features.

In addition, papers in the literature differ as regards the number of the leads used, the 
recording configuration and the time interval in which the recordings are collected.

Fiducial based approaches

By locating specific anchor points on the ECG recordings, namely fiducial points or fidu-
cials, numerous features can be extracted and used as recognizer inputs.

Wave’s peaks, boundaries, slopes or other measures serve as fiducials. Detectors can 
use adaptive thresholds [44], Fourier synthesis [45], wavelet transform [46, 47], and 
other approaches as in [48].

Clearly, the extracted features are strictly influenced by the accuracy of the detection. 
However, in some case, researchers have limited the number of required fiducials (often 
to the only R peak identification) [28, 31, 35, 47–63].

Fiducials based features can be further subdivided in temporal, amplitude and mor-
phological. Authors generally use these features in combination.

Temporal features  The temporal relationships between the various ECG waves (P, 
QRS, and T) reflect the epochs of heart’s stimulation along its electrical paths starting 

Fig. 4  Taxonomy of the ECG-based biometrics analysis.
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from the sino-atrial node to the Purkinje fibres and can be used as biometrics discrimi-
nants.

As depicted in Fig. 5, the localisation of specific fiducials allows the computation of 
several temporal intervals. The most used temporal features include heartbeat wave’s 
duration (i.e. P, QRS, T) and time intervals between them (PQ, RS, ST, etc.) [1, 2, 4, 5]. 
RR interval has also been used as fiducial [8].

Amplitude features  The inter-individual variability of the amplitude of the heartbeat’s 
waves can be easily recognised in individuals [2, 13, 14]. Amplitude features capture the 
relative amplitude between the peaks of an ECG’s wave; they are generally measured rela-
tive to the R peak.

Amplitude features also include the relative ST segment amplitude [1], the ampli-
tude of peaks of 1st or 2nd derivatives of heartbeat [16] and ratios between them [26]. 
Figure 6 shows an example of some amplitude features and their location along the ECG 
trace.

Morphological features  Morphological attributes are those carrying information on 
the shape of the ECG, either as a whole or as its constituent intervals (P-QRS-T). The 

Fig. 5  Temporal features: intervals are obtained by locating specific fiducials along the heartbeat signal.

Fig. 6  Amplitude features: relative amplitudes can be obtained with respect to the R peak
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simplest way to extract morphological features from a heartbeat is to perform the average 
of the sampled values of specific intervals (e.g. QRS) with respect to multiple aligned (i.e. 
centred on R peak) heartbeats [47, 48, 51, 52, 55, 57, 59, 64–67]. In this case, the morpho-
logical attributes can be considered as a simple extended set of amplitude features.

However, the study of the ECG’s morphology suggested various features: researchers 
have primarily used slopes among waves, such as ST and RS segment slopes, and angles 
described by Q, R and S waves [2, 5].

Past studies also concentrate on the specific shape of the whole QRS complex. Pala-
niappan and Krishnan [8] introduced a peculiar attribute computed from the morphol-
ogy of the QRS complex. The QRS form factor (FF) is defined as in Eq. 1:

where x is the QRS complex waveform, x′ is the first derivative of the QRS and x″ is its 
second derivative. Biel [1], Shen [26] and Zhang [27] evaluated the suitability of the QRS 
area. Wübbeler [31], Fang [28] and Sing [30] revealed the characteristic trait of the heart 
vector by means of studying the whole QRS on different leads.

Polynomial expansions have also been used to synthesize the heartbeat morphology. 
Khalil and Sufi concentrated on the discrimination feasibility of the Legendre polyno-
mials coefficients derived by fitting the QRS complex [35, 36]. Li [68] used the Hermite 
interpolation coefficients, Tsao [69] the first order interpolation coefficients while Jun 
Shen extracted the piecewise linear representation (PLR) coefficients of the entire heart-
beat [56]. Specific features (up to 98) were derived via the use of a pulsed triangular wave 
(Pulse Active Ratio) [70].

The morphology of ECG waves was also investigated by means of wavelet decompo-
sition, frequency analysis and correlation coefficients. Saechia and colleagues focussed 
on the discriminative characteristics of frequency content of P, QRS and T waves [71]. 
Hou used the only QRS frequency patterns [72] Tashiro the high frequency components 
(40–300 Hz) of the entire heartbeat [58]. Lately, Odinaka performed a short time Fourier 
transform to reveal the spectrogram shape over the heartbeat cycle [54].

Wavelet analysis has been introduced by Chan [48, 49]. Wavelet coefficients were also 
used by Yao and Wan (Biortogonal wavelets) [47, 59], Chiu (Haar wavelets) [50] and Ye 
(Daubechies wavelets) [60].

Discrete cosine transform coefficients were also proposed for use in ECG biometrics 
by Plataniotis et al. [73]. and used by Fattah et al. [74] and Hou et al. [72].

Heart rate: based normalization  All the above-described features exhibit a main 
drawback: the whole heartbeat wave changes with heart rate (HR). This, in turn, induces 
fluctuations in temporal, amplitude and morphological relationships among waves dur-
ing physical activity, drug assumption or strong emotions.

Many authors therefore attempted to normalize features with respect to HR changes.
Israel and colleagues [14] assumed the existence of a linear relationship between the 

heart rate and the features (temporal) computed with respect to the R peak. To remove 
the dependence on the heart rate, they use a simple normalisation of the features to the 

(1)FF =

√

var(x′′)
/

var(x′)

var(x′)
/

var(x)
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length of the entire P-QRS-T complex. Similar to Israel, Kim and colleagues [45] resized 
the entire heartbeat to a predetermined number of samples n using the inverse Fourier 
transform.

The approaches adopted by Israel and Kim are however partial. HR influences the tim-
ing of heart pulse but it does not homogeneously affect ECG’s waves.

Shen [5, 26] and Singh [30, 75–77] utilized Bazett’s formula to normalize QT interval, 
while Tawfik [66, 78] and Sansone [79] applied the regression based approach proposed 
by Sagie [80].

Fatemian and Hatzinakos addressed the heart rate ECG normalization by resampling 
the T wave to fit a duration of 120 ms (the typical time extension of the T-wave under 
rest conditions [38, 81]). After T-wave resampling they combined the obtained segment 
with P and QRS waves in order to compose the whole heartbeat. Finally, the entire heart-
beat is resampled to fit 850 ms [64].

Non‑fiducial based approaches

Temporal, amplitude and morphological features require accurate detection of fiducials 
and the achieved results are clearly dependent on the recognition procedure. To over-
come the problem, new approaches, that do not require fiducials recognition, have been 
reported.

All the described techniques are based on the assumption that the ECG is a highly 
repetitive (quasi-periodic) signal. Scientific literature analysis revealed various 
approaches that we subdivide in three main categories: autocorrelation based, phase 
space based, and frequency based analyses.

Autocorrelation based features  The first attempt to non-fiducial approaches has been 
proposed by Plataniotis and Hatzinakos [73]. In order to extract valuable attributes, they 
randomly select 5 s from an ECG recording and estimate the normalized autocorrelation 
(AC) over a window of m lags (see Eq. 2). AC embeds information about ECG’s peculiar 
characteristics: it is shift invariant and highlights non-random patterns [82]. The QRS 
complex, in particular, maintains a strong invariance in shape and time width. With this 
approach, samples that would have to be influenced by fiducials detection, are combined 
into a sequence of sums of products as given in Eq. 2 reported below:

In the equation, r[m] is the AC, s[i] is the signal at time i and m is chosen greater than 
the mean QRS duration (in samples).

Following this first study, Agrafioti [83–86], Wang [87, 88] and other researchers [81–
83] also proposed the use of normalized autocorrelation coefficients.

Phase space analysis  As for AC based approach, the ECG signal can be characterised 
in a two-dimensional or even three-dimensional space by using the time-delay technique. 
The analysis of the phase-space trajectory in fact, can highlight unexplored peculiarities 
of cardiac activity.

(2)r[m] =
1

r[0]

∑

i
s[i]s[i +m]
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Fang [34] extended the set of features by looking at the three-dimensional 
vectors of single-lead, time-delayed (4–36  ms), amplitude normalised ECGs 
(s(t), s(t + dt), s(t + 2dt)).

Then, partitioning the phase-space to a 30 × 30 × 30 grid, he reduced the multi loop 
trajectory to a coarse-grained features space lowering the computational effort and the 
loop variability due to noise or ECGs’ irregularity.

Chen [33], and then Coutinho [51] analysed the ECG by characterising its chaotic 
behaviour. In detail, Chen and colleagues converted three seconds ECG trace to a phase 
space-plane by using a time delay equal to 20 samples. Then, they computed concise 
indicators like correlation dimension and Lyapunov exponents as well as the root mean 
square of the ECG amplitude.

Conversely, Coutinho analyses the recordings similarities using string matching and 
parsing algorithms. Each recording is converted by applying an 8-bit uniform quanti-
sation, which produces a sequence of symbols (strings) from an alphabet with 28 sym-
bols. Then, a Ziv-Merhav cross-parsing (ZMCP) algorithm [89] is used to evaluate the 
cross-complexity between different strings. The key idea behind the use of ZMCP is that 
the cross-complexity becomes lower when the two sequences are similar. Chen et  al. 
explored the use of Lyapunov exponents and correlation dimension [90].

Frequency based features  Other authors concentrate on the analysis of ECG’s fre-
quency characteristics [91–95].

Loong et  al. [93] utilized a linear predictive technique (linear predictive coding or 
LPC) to model the frequency content of the ECG recordings. In detail, the model of 
the spectrum for each subject is obtained considering the first forty points of the linear 
reconstruction of the ECG spectrum using Eq. 3:

where the ai coefficients are evaluated by minimizing the error e[n] (see Eq. 4) using the 
Levinson–Durbin recursion [96]:

where x[n] represent the actual value.
Kouchaki [92] and Zhao [94] used procedures similar to the Hilbert–Huang transform 

to obtain instantaneous ECG frequency data. The recordings set is reduced to a collec-
tion of functions (namely intrinsic mode functions or IMF) with an adaptive process 
called Empirical Mode Decomposition (EMD) [97]. Each IMF is different among indi-
viduals and it is not fixed as in Wavelet or Hermitian expansion. IMFs represent sim-
ple oscillatory modes of the system under investigation, which can be characterized by 
means of the Hilbert spectral analysis.

Kouchaki [92] observed that the slowest component of the EMD carries the most of 
the discriminative information in comparison with other IMF’s.

Zhao and colleagues [94] proposed a modified version of the EMD by using averaged 
versions of IMFs to raise robustness with respect to noise sources [97]. A consistent 

(3)x̂[n] = −

p
∑

i=1

aix[n− i]

(4)e[n] = x[n] − x̂[n]
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number of decompositions is collected for the same ECG by randomly adding white 
noise to the original signal trait. The corresponding IMFs are then averaged to become 
noise independent. Finally the spectrum of each IMF is evaluated by Welch analysis. The 
technique is named Ensemble Empirical Mode Decomposition.

Aghakabi [91] and Zokaee [95] use the Mel-Frequency Cepstrum Coefficients 
(MFCCs) [98]. More in detail, they first select a frame of N samples by using a Hamming 
window. Then, the Fast Fourier Transform converts the frame from the time domain into 
frequency domain. A triangular band pass filter bank is applied in the frequency domain 
to reveal the mel-frequency components [99].

Multi‑lead vs single‑lead features

Almost all studies reported in this review addressed the problem of subject identifica-
tion via ECG using single ECG’s leads. This is mainly due to the usability of ECG-based 
identification systems. However, since in pattern recognition problems a larger amount 
of information could raise the probability of a successful recognition [100], multi-lead 
systems have also been studied.

Biel investigated amplitude and temporal features in 12-leads ECG recordings [1, 
41]. He concluded that a single lead is sufficient in assuring good recognition perfor-
mances, favouring the practical application of the technique (at least three electrodes are 
needed).

Following the study of Biel, Zhang and colleagues compared the results obtainable 
with the use of different leads as a single recording [27]. Based on their outcomes they 
also concluded that the use of few leads is sufficient and in detail, lead V1 and lead V2 
can give the best accuracy. These leads grasp a larger ECG signal with respect to other 
leads since electrodes are placed closer to the heart site.

Moreover, Agrafioti [83, 84] explored the use of the integration of feature extracted 
from all of the 12 standard measurement leads. However, he found that information 
integration raises the identification performance only when combining the outcomes of 
different classifiers at the decision level. Fang et  al. [34] used three leads in his phase 
space trajectory analysis while obtaining comparable results also with a single lead only. 
Recently Raj and Hatzinakos [101] studied the feasibility of a specific single-arm single-
lead on 23 subjects with discrete results (EER 4–12 %).

Databases

The wide study of ECG signal for clinical purposes favoured the research on the feasi-
bility of ECG as biometric. ECG databases (DBs) have been utilized in the analysis of 
features and classification performances either public or private (see Table 1). The most 
used DBs for ECG biometric algorithms testing are available at the Physionet repository 
[102]. Many researchers used normal and pathological signals DBs: in detail, MIT/BIH’s 
Normal Sinus Rhythm Database [102], MIT/BIH’s Arrhytmia Database [103], MIT-BIH 
Supraventricular Arrhythmia Database [104], QT Database [105], Long Term ST Data-
base [106], European ST-T Database [107], Paroxysmal Atrial Fibrillation Challenge 
Database [108], PTB Database [109]. Conversely, other papers concentrated on private 
DBs built by recording ECGs with specific devices [1, 14, 16, 28, 35, 45, 47, 48, 54, 59, 65, 
86, 93, 110–116].
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Feature selection
As described in the previous sections, the number of features extracted from the ECG 
analysis can be very large [1, 28, 34, 52, 60, 74, 93, 112, 117]. However, the information 

Table 1  Features of the databases used in past studies

NS number of subjects, NL number of leads (NLU actually used), SF sampling frequency (SFU actually used), NB number of 
bits per sample, DU duration, DB database used, na indicates that information is not available or computable.

References NS NL NLU SF (Hz) SFU NB DU (s) DB

Agrafioti and Hatzinakos [85] 14 12 + 3 1 1,000 1,000 16 na PTB

Agrafioti and Hatzinakos [83] 13 1
1
12 + 3

1 128
360
1,000

360 16 10 MIT-BIH-NSR
MIT-BIH-ARR
PTB

30

13

Biel et al. [1] 20 12 12 na na na na na

Boumbarov et al. [120] 9 1 1 128 128 12 20 na

Chan et al. [48] 50 1 1 1,000 1,000 12 90 na

Chan et al. [49] 60 1 1 1,000 1,000 12 na na

Chen et al. [90] 19 1 1 na na na 60 na

Fang and Chan [28] 100 2 2 250 250 na 30 na

Fatemian and and Hatzinakos [64] 13 1 1 128
1,000

128
1,000

16 na MIT-BIH
PTB14

Israel et al. [14] 29 1 1 1,000 1,000 na 120 na

Khalil and Sufi [35] 10 1 1 na na na na na

Kim et al. [45] 10 1 1 200 200 na 30 na

Kyoso and Uchiyama [4] 9 1 1 500 500 12 200 na

Loong et al. [93] 15 1 1 256 256 na 65 na

Lourenco et al. [65] 16 1 1 1,000 1,000 na 120 na

Odinaka et al. [54] 269 1 1 10,000 1,000 na 300 na

Pathoumvanh et al. [132] 10 1 1 500 500 12 200 na

Pereira et al. [112] 77 1 1 256 na na 600 na

Safie et al. [70] 112 1 1 1,000 1,000 na 30 PTB

Shen and Tompkins [26] 168 1 1 500 500 na 90 MIT-BIH-ARR

Silva et al. [113] 1 1 1 na na na 600 na

Singh [77] 50 na na na na na na E-ST
MIT-BIH
MIT-BIH-ARR
MIT-BIH-NSR
QT

Singh and Gupta [76] 73 na na na na na na E-ST
MIT-BIH
MIT-BIH-ARR
MIT-BIH-NSR
QT

Sriram et al. [114] 17 1 1 na na na 720 na

Tawfik and Kamal [78] 22 1 1 500 500 na 10 na

Wan and Yao [59] 38 1 1 na na na 240 na

Wang et al. [87] 13 12 + 3 1 1,000
128

na 16 na PTB
MIT-BIH13

Wubbeler et al. [31] 74 3 2 500 na 16 10 PTB

Yao and Wan [47] 20 1 1 na na na na na

Zhang and Wei [27] 502 4 1 500 na na 10 na

Zhao et al. [94] 28 na na na 250 na na MIT-BIH-ST
Lomg-term-ST
PTB

86

294



Page 13 of 23Fratini et al. BioMed Eng OnLine  (2015) 14:78 

obtained from an extensive set of features is generally redundant. Real-time applications 
moreover, require a limited number of features in order to allow faster classification. Fea-
ture selection is proven to reduce the building and testing time of a classifier by 50 % [118].

The selection of appropriate feature subsets is a critical step in pattern recognition 
problems; although not all the authors provide feature space dimensionality reduction 
for ECG based features.

In addition, extracted features are often transformed into new sets by means of linear/
nonlinear operators.

Reducing the number of features means identifying the most representative attributes 
to describe the underlying system/phenomenon.

Israel [14] and Wang [88] used a stepwise canonical correlation [119]. The algorithm 
starts from one feature adding a new one per iteration; the significance of the features is 
evaluated by means of Wilks’ Lambda distribution.

Other authors used Principal Component Analysis (PCA) [27, 47, 60, 72, 110, 120] or 
Linear Discriminant Analysis (LDA) [5, 83, 84, 86, 110, 120, 121] as a feature selection 
procedure.

PCA reduces the feature space dimensionality by performing Eigen-analysis on the 
covariance matrix of the original features. The covariance matrix S of a set of data x can 
be computed as reported in Eq. 5:

where N is the number of samples, C is the number of classes, Ci is the number of sam-
ples in the corresponding class, and x = 1

N

∑C
i=1

∑Ci
j=1 xij is the average of the ensemble. 

The eigenvectors and associated eigenvalues can be then calculated.
Sorting the associated eigenvalues from the highest to the lowest gives the compo-

nents in order of significance. Thus, ignoring the components with less significance 
reduces the feature space dimension.

LDA is a different approach to decrease the dimensionality of a feature set. Given a set 
of labelled (see “Classifiers”) samples x1,…,xN, where xj = [xj1,…,xjp] j = 1,…,N is a vector 
of p features, the aim of LDA is to project them on a subspace of M < p dimensions pro-
ducing the best possible separation between classes maximizing the Fisher’s ratio. In the 
case of K classes, maximisation of this ratio is equivalent to solving the problem of find-
ing eigenvectors and eigenvalues of the matrix SW

−1SB and taking the first M larger eigen-
vectors as the directions of the subspace. As SW is the within-class covariance matrix, 
and SB is the between-class covariance matrix, this criterion is roughly equivalent to 
searching for the direction from which the classes have well-separated means and small 
intra-class covariance. It should be emphasised that LDA must be operated on labelled 
data (i.e. the class of each element must be known in advance) while PCA can be used 
when labels are not known. Li [68] introduced a generalized LDA (HLDA) to handle het-
eroscedasticity of classes in mixed ECG and accelerometer data analysis.

Feature reduction has also been obtained using the information gain ratio analysis 
(IGR) [122–124]. IGR has been utilized in decision trees learning algorithms to select 
amongst feature while growing the tree [125]. IGR is based on the concept of entropy: 

(5)S =
1

N

C
∑

i=1

Ci
∑

j=1

(xij − x̄)(xij − x̄)T
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if the feature can assume c different values, then the entropy of S relative to this c-wise 
classification is defined as in Eq. 6: where pi is the proportion of S belonging to class i.

Thus, IGR can be defined as the expected reduction in entropy caused by partitioning 
the examples according to this attribute. The formal definition of the information gain of 
a feature A, relative to a collection of examples S, is defined in Eq. 7.

Values (A) is the set of all possible values for attribute A, and Sv is the subset of S for 
which attribute A has value v (i.e., Sv = [s ε S|A(s) = v]). Thus, the features are ranked 
according to their IGR. The selection algorithm begins with an empty set F of best fea-
tures and then proceeds to add features from the ranked set of features until the classifi-
cation accuracy begins to drop or it reaches a specific selected value.

Discrete Fourier Transform (DFT), discrete wavelet transform (DWT) or discrete 
cosine transform (DCT) have also been used to provide concise set of coefficients. With 
these approaches, the selected features are the coefficients of the transformation that 
result significantly different from zero [50, 73, 83, 84, 87].

Classifiers
In pattern recognition problems, classification strategies are the ways with which a vec-
tor of analysed features is assigned to a specific subject. Given a vector x = [x1,x2,…,xp] 
composed by features extracted from the ECG of an unknown subject, the aim of the 
classifier is to assign x to the correct subject. To this aim, a data-set of samples should 
be available. The data-set is constituted of labelled feature vectors (xj, L) where L is the 
class (subject) label of the sample j = 1,…,N. Typically, a large number of samples should 
be available per each subject. In order to evaluate the performance of the classifier (error 
rate) typically the data-set is divided into a training-set and a test-set. The training-set 
is used for classifier design while the test-set is used for performance assessment (see 
“Discussion”).

Distance based classification

Classifiers can be designed on the basis of several approaches. One common approach 
leads to assign the unknown sample to the class of the closest sample in the features 
space. [5, 28, 31, 35, 45, 48–50, 53, 65, 66, 71, 73, 75, 78, 83–85, 87, 88, 95, 111, 112, 114, 
122–124, 126–129].

The distance between two feature vectors x1, x2 is typically measured using Euclidean 
norm d(x1, x2) = ||x1 − x2||2. A variant of this approach involves preliminary computa-
tion of a template (or prototype) μj per each class j (typically a samples average): the 
unknown sample is assigned to the class of the closest template (template matching).

(6)Entropy(S) =

C
∑

i=1

−pi log2 pi

(7)IG(S,A) = Entropy(s)−
∑

v∈Values(A)

|Sv|

|S|
Entropy(Sv)
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However, Euclidean norm does not account for sample distributions with unequal var-
iances in different directions. In that case, assuming that all classes share a single covari-
ance matrix Σ, a better approach could be to use the minimum Mahalanobis’ distance 
d(x,µi) = (x − µi)

TΣ−1(x − µi) between the unknown vector x and μi is the mean 
(template) of the ith class [16].

Another common approach is to construct N ‘discriminant functions’ gi(x), i = 1…N, 
one per each class: the unknown vector is assigned to class k if gk(x) > gi(x) i = 1…N. The 
discriminant functions can be constructed, for example, using a Bayesian approach. As 
known, the Bayes formula relates the a posteriori probability that to the a priori distribu-
tion of classes and to the likelihood of the features, given a specified class k (see Eq. 8)

Using this approach with a Gaussian distribution of features, we obtain the discrimi-
nant function [27] reported in (9):

where x is an unknown feature vector, Σi is the covariance matrix of the features of ith 
class, μi is the template of the ith subject.

Another comparison metric is the maximum correlation between two signals (vec-
tors) [64], which exhibits the amount of similarity between two signals. The correlation 
is defined as in Eq. 10

where x[i] and y[i] i = 1,…,P, represent two different ECG signal windows of length N, 
Ex =

∑N
i=0 x

2[i] is the energy of the signal. It achieves the maximum value for m = 0.
Israel [14] and Shen [5] used the LDA technique [130]. LDA was born as a method for 

dimensionality reduction; however it can also be used for classifier design.
Chan [48] used three different distances: percent residual difference (PRD) that quan-

tifies the amount of differences between two ECG with respect to the variability con-
tained in the unknown ECG; correlation coefficient (CCORR) that measures the least 
squares fitting of the two ECG to be compared and WDIST that measures the difference 
between the discrete wavelet coefficients of the two ECGs.

Neural networks

In the context of subject recognition by ECG processing, Neural Networks (NN) have 
been used in [8, 33, 58, 59, 66, 69, 71, 78, 90, 93, 120, 124, 131]. The most successful 
NN is the Multi Layer Perceptron (MLP). In contrast to the conventional approaches 
seen in the previous section, MLP is capable to solve complex non-linear classification 
problems.

(8)p(ωk |x) =
p(x|ωk)p(ωk)

p(x)
.

(9)gi(x) = −
1

2
(x − µi)

T
−1
∑

i

(x − µi)−
1

2
ln |Σi|

(10)ρxy[m] =

∑N−|m|−1
i=0 x[i]y[i +m]

√

ExEy
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Figure  7 depicts a typical MLP: each node (i.e. neuron) has a non-linear activation 
function acting upon the (features) inputs x =  [x1,…,xp]: in particular, each input has 
a (synaptic) weight wj

T =  [wj1,…,wjp], in order that the output zj of the neuron j is the 
action of the activation function on a linear combination as zj = h(wj

T x). Therefore, the 
output of the system is given by zj = σ(wj

(2)T h(wj
(1)T x)) where the superscript (1) refer to 

the first (hidden) layer of neurons, and the superscript (2) refer to the second (output) 
layer of neurons.

While a single layer NN can solve only linearly separable problems (sample are sepa-
rable via a hyperplane in the features space), a hidden layer is typically added to give the 
MLP the capability to solve non-linearly separable problems (Fig. 7).

Non‑conventional approaches

Wang et  al. [87] used nearest neighbour (NN) classifiers in combination with Euclid-
ean distance. However, they used a hierarchical approach and features integration. More 
importantly, they introduced a new approach in this field: the hierarchical approach that 
divides the problem in two sub problems (large class to small class problem): first, they 
used a first-level classification based on analytic features only (time + amplitude of fidu-
cial points), then used PCA based classification module to classify subjects that can be 
potentially confused by the first stage!!

Singh and Singh used a different approach [30]. Per each subject j in the data-
base they constructed a Pattern Matrix P(j) in the following way. Per each sub-
ject they ‘arbitrarily’ selected a number m of heartbeats. Per each heartbeat they 
extracted p features x(j)k =

[

x
(j)
k1, . . . , x

(j)
kp

]

 where k  =  1,…,m: the latter are the rows 
of the Pattern Matrix. Given an unknown vector x the distance score measure 
s(j) = 1

m

∑m
k=1 s

(j)
k = 1

m

∑m
k=1

∑p
r=1

∣

∣

∣
x
(j)
kr − xr

∣

∣

∣
 a smaller score indicates a good match.

Discussion
The field of biometric recognition via the use of ECG characteristics is certainly engag-
ing and results seem encouraging. According with Table  2 the weighted mean identi-
fication rate is equal to 94.95  % and the overall equal error rate (in an authentication 
scenario) to 0.92 %.

Our results pointed out that subject identification depends primarily on the choice 
of the utilised feature(s). Fiducial based approaches benefit of well-established 

Fig. 7  A schematic structure of a multi-layer perceptron (MLP) neural network.
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normalization algorithms to compensate for changes in ECG signal due to the heart rate 
variability [111, 132] but they are commonly affected by the performance of the fiducials 
detection algorithms.

Non fiducial based approaches, conversely, offer a promising alternative to reduce 
error rate and computational effort. They do not require the identification of ECG waves 
and have the advantage to potentially take into account fine features which could be lost 
using fiducials.

The choice of number of leads influences the recognizer outcomes. Many authors 
investigated the performances of multi lead systems, others have also investigated ECG 
related signals [20, 22, 133]; however, we believe that the feasibility of biometric identifi-
cation via ECG analysis could only be obtained by limiting the number of required leads/
signals: to this regard, single ECG lead systems would be desirable.

Table 2  Estimation of the overall performance of the use of ECG as biometric

IR identification rate, AEER equal error rate for authentication scenarios, IRW IR weights, AW AEER weights, WIR weighted IR, 
WA weighted AEEE, na indicates that information is not not available or not computable.

References IR (%) AEER IRW AW WIR (%) WA (%)

Agrafioti and Hatzinakos [85] 100.00 na 0.010 na 0.61 na

Agrafioti and Hatzinakos [83] 96.20 0.87 0.020 0.10 2.35 0.08

Biel et al. [1] 98.00 na 0.010 na 0.86 na

Boumbarov et al. [120] 86.11 na 0.000 na 0.34 na

Chan et al. [48] 89.00 na 0.020 na 1.94 na

Chan et al. [49] 100.00 na 0.030 na 2.62 na

Chen et al. [90] 91.20 na 0.010 na 0.76 na

Fang and Chan [28] 95.00 na 0.040 na 4.15 na

Fatemian and Hatzinakos [64] 99.63 na 0.010 na 1.17 na

Israel et al. [14] 100.00 na 0.010 na 1.27 na

Khalil and Sufi [35] na na na na na na

Kim et al. [45] Na na na na na na

Kyoso and Uchiyama [4] 94.20 na 0.000 na 0.37 na

Loong et al. [93] 100.00 na 0.010 na 0.66 na

Lourenco et al. [65] 94.30 10.10 0.010 0.03 0.66 0.28

Odinaka et al. [54] 99.00 0.37 0.012 0.46 11.63 0.17

Pathoumvanh et al. [132] 97.00 na 0.000 na 0.42 na

Pereira et al. [112] 99.00 0.70 0.030 0.13 3.33 0.09

Safie et al. [70] 93.60 na 0.050 na 4.58 na

Shen and Tompkins [26] 95.30 na 0.070 na 6.99 na

Silva et al. [113] na na na na na

Singh [77] 82.00 0.10 0.030 0.13 2.61 0.01

Singh and Gupta [76] 99.00 na 0.020 na 2.16 na

Sriram et al. [114] 97.00 15.00 0.010 0.03 0.72 0.44

Tawfik and Kamal [78] 99.08 na 0.010 na 0.95 na

Wan and Yao [59] 100.00 na 0.020 na 1.66 na

Wang et al. [87] 100.00 na 0.010 na 1.14 na

Wubbeler et al. [31] 99.00 0.03 0.030 0.13 3.20 0.00

Yao and Wan [47] 91.48 na 0.010 na 0.80 na

Zhang and Wei [27] 97.40 na 0.220 na 21.35 na

Zhao et al. [94] 95.00 na 0.180 na 16.93 na

Total 96.22 1.16
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The time span in which the selected features are effective is also an important matter 
of research. Most of the published studies considered the capacity of a system to identify 
a subject only at a specific time; few papers addressed the variability of ECG features 
with time or with physiological (e.g. subject’s aging, stress, activity, etc.) or pathological 
conditions [79, 134–140].

Lastly, studies generally rely on post hoc analyses, although some real time examples 
have been reported [136, 141, 142].

Conclusions
Four major issues must be highlighted regarding the adequacy of the studies conducted 
so far. First, while a great effort has been spent in feature selection and classifier design, 
it is not yet clear what is the best set of features and classification scheme for ECG biom-
etrics (hierarchical, ensemble etc.). Non-fiducial based techniques can reduce the com-
putational effort as well as the error rate due to the ECG waves recognition. Therefore, it 
is expected that the new techniques to be developed will use fiducials and non-fiducial 
based features in order to catch the best of both approaches. Further analysis should be 
addressed on the use of single lead recordings and the study of features which are not 
dependent on the recording sites (e.g. fingers, hand palms).

Second, as regards the population size, the majority of the studies have been con-
ducted on a small population (about a few tens of subjects). Therefore, the applicability 
of ECG biometric recognition on a large scale (real life authentication scenario) it is not 
yet proven.

Third, almost all studies (except for [17] and [31] ) ignored the variability of the ECG 
during life span (i.e. variability induced by work, ageing, iterate sport activity etc.); more-
over, only few studies [57, 83, 136] considered the applicability of these techniques when 
subjects suffer from pathological conditions. ECG recognition in pathological subjects is 
another aspect worth of additional investigations.

Fourth, it must be emphasised that, while guidelines are available for ECG acquisition 
in the clinical scenario, there is still a lack of standardisation on ECG acquisition (num-
ber of leads and their positioning, sampling frequency, number of bits, filtering, type of 
electrodes, number of leads etc.) for biometrics applications. However, ECG databases 
for biometric recognition should ideally include recordings, at a given sampling fre-
quency and conditions, from the same subjects in different circumstances (e.g. relaxed, 
during and after physical training) and along a period of several years.

If addressed, the mentioned challenges will contribute to move this promising tech-
nique from its state of adolescence to a proper daily life adoption.
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