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Background
The electrocardiogram (ECG) signal is a standard clinical tool for diagnosis and moni-
toring of cardio-electrical function. The ECG measures the electrical activity of the heart 
using different electrode lead configurations, placed on the body surface of the patient. 
Clinical interpretation of the ECG requires waveform data of high quality. However, ECG 
signals are commonly distorted by artifacts, both physiological (muscular activity, patient 
motion) and non-physiological (electromagnetic interference, cable and electrode mal-
function) in nature [1]. Thus, automatic estimation of ECG quality is of paramount impor-
tance, particularly in tele-monitoring applications where the ECG is commonly collected 
by untrained or inexperienced technicians; or even self-monitoring applications, where 
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the patient collects his ECG following some basic instructions. Tele-ECG applications will 
make a difference in developing countries lacking adequate primary care capacity. In such 
scenarios, automatic real-time assessment of ECG quality is required in order to alert the 
technician about the need to repeat the ECG while the patient is still present. This task 
could be performed by current cellular terminals (smartphones) able to capture and to 
instantaneously estimate the quality of the ECG [2].

Quality estimation of the ECG signals is a challenging problem, which has captured 
the attention of the scientific community. The PhysioNet/CinC Challenge 2011 was 
devoted to this issue [2], for which an extensive number of algorithms were developed 
for the competition [3–14] (see Table 1 for comparative performances). The Challenge 
was later followed by the special issue of Physiological Measurement, Volume 33, Num-
ber 9 [15], where some of the participants extended their work and results originally 
submitted to the Challenge [1, 16–20]. Most of the above mentioned studies aimed to 
classify the ECG quality as “acceptable” or “unacceptable” by using either machine learn-
ing techniques or threshold detectors (rule-based methods). From the machine learn-
ing approach, excellent classification results were obtained [4–6, 16]. Clifford et al. [4] 
proposed a support vector machine (SVM) classifier based on previously defined quality 
indexes [21] extracted from morphological, spectral and statistical features of the ECG. 
Using this approach Clifford et al. scored 0.926 on accuracy in event 1 of the Challenge. 
This method was further refined in [16] by incorporating an additional quality index, and 
balancing and relabelling the original data. With this approach Clifford et al. obtained an 
accuracy up to 0.970 in the test set. Kalkstein et al. [5] proposed a combination of KNN 

Table 1  Performance comparison of ECG signal quality algorithms

Physionet/CinC Challenge was divided into three events: event 1 (E1), where participants were not required to submit their 
code; event 2 (E2), where participant were required to submit the code; and event 3 (E3), where the open source code of E2 
was tested on a data set not available for participants. Accuracy scores for both E1 and E2 are calculated on the Dataset B by 
the Challenge organizers (see "Methods" section), while for E3 the accuracy was calculated on Dataset C.
a  The score reported in [3] is different from the official entry [2].
b  The test set is different from the Physionet/Cinc Challenge set.
c  The reported accuracy was calculated for the training set.

E1 E2 E3

Physionet/CinC Challenge (accuracy scores)

 Xia et al. [3]a 0.932 0.914 0.845

 Clifford et al. [4] 0.926

 Tat et al. [7] 0.920

 Hayn et al. [8, 17] 0.916 0.834 0.873

 Kalkstein et al. [5] 0.912

 Jekova et al. [9, 18] 0.908

 Zausender et al. [6] 0.904

 Noponen et al. [10] 0.900

 Moody [11] 0.896 0.896 0.802

 Johannesen et al. [13, 20] 0.880 0.880 0.791

 Langley et al. [12] 0.868 0.868 0.814

 Chudacek et al. [14] 0.828 0.833 0.872

Other studies (accuracy score in the test setb)

 Clifford et al. [16] 0.970

 Xia et al. [1]c 0.951

 Langley et al. [19] 0.914
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and random forest methods using 72 features calculated from the correlation between 
leads and the ECG signal energy, reaching a 0.912 accuracy in event 1. Zausender et al. 
[6] also used a random forest approach applied on simple spectral features, yielding an 
accuracy of 0.904 in event 1. Besides the challenge participants, Nasery et al. proposed 
an algorithm based on the energy, concavity and correlation of the ECG signals [22, 23]. 
The correlation is analyzed by comparing each ECG signal with an estimated version of 
it. The estimation of the ECG signal from one lead is obtained by fitting a Neural Net-
work classifier trained with the remaining leads and its derivatives.

Rule-based methods also provided remarkable results [1, 3, 7, 8, 10–14, 17, 19, 20], 
being the set of computed ECG parameters the main difference among these studies. 
Xia et al. [1, 3] reached the highest score of the competition, 0.932 in event 1. They com-
bined different features, such us flat baseline detection, missing lead identification, and 
auto and cross correlation among ECG signal leads. Tat et al. [7] scored 0.92 in event 1 
by combining QRS parameters, flat line detection, noise detection and ECG amplitude 
distribution measurements. Hayn et al. [8, 17] used basic signal properties (amplitude, 
saturation and flat baseline), number of crossing points between leads, and QRS qual-
ity metrics. Hayn et al. scored 0.916 in event 1 and 0.873 (1st place) in event 3. Jekova 
et  al. [9, 18] proposed an algorithm based on scoring the noise level by analyzing the 
ECG amplitude and slopes in different frequency bands. They attained a score of 0.908 
in event 1. Noponen et al. [10] estimated each lead signal as a linear combination of any 
other three leads, and the prediction residuals were used to assess the quality of the 
ECG. In addition to the residuals, they also included information about the amplitude 
variation of the ECG, achieving an accuracy of 0.90 in event 1. Moody [11] defined three 
simple heuristic rules based on ECG amplitude criteria. This algorithm attained a score 
of 0.896 in event 1. Johannesen et al. [13, 20] proposed a threshold detector based on 
ECG amplitude metrics (saturation, flat baseline) and the quantification of the noise 
content of the ECG which scored 0.88 in event 1. Langley et  al. [12] used basic ECG 
amplitude metrics to develop an algorithm yielding an score of 0.868 in event 1. This 
work was later improved [19] by including QRS quality metrics and noise characteriza-
tion achieving an accuracy of 0.914. Chudacek et al. [14] used five simple rules based on 
common ECG measurements (flat baseline, amplitude, baseline drift). They scored 0.828 
in event 1 and a remarkable 0.872 in event 3 (2nd place).

Although the cross-correlation among leads has been used as a single metric to classify 
the quality of the ECG, the structure of the covariance matrix of the ECG signal leads 
has not been explored in the scientific literature. The 12-lead ECG signals are different 
projections of the same electrical activation process of the heart, and consequently the 
covariance matrix of the leads should have a particular structure. Cross-covariance of 
signals has been widely used in other signal processing applications, such as spectral 
estimation, antenna beamforming, equalization or pattern recognition, among many 
others. Also, it has been successfully used in ECG signal processing [24, 25], including 
data compression and filtering [26], ST-T segment analysis [27], and ventricular repo-
larization analysis [28].

The objective of this work is to provide a novel technique to classify the quality of the 
ECG signal based on the covariance matrix of the leads using a simple and computation-
ally low-cost algorithm. Eigenvalues of the covariance matrix are fed into three different 
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supervised binary classifiers: two tree inducers, namely CART [29], and C4.5 [30], and a 
propositional rule learner, namely RIPPER [31]. These algorithms are simple and provide 
useful interpretable models for the classification process, thus allowing us to gain bet-
ter understanding about the relationship between data and the classification outcomes. 
To analyze the performance of the proposed methodology, we used the PhysioNet/CinC 
Challenge 2011 data [2], so the presented results can be compared to the work of chal-
lenge participants (Table 1) using the same database.

Methods
ECG collection

We used the PhysioNet/CinC Challenge 2011 data [2], which comprise a collection of stand-
ard 12-lead ECG recordings (leads I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, and V6) with 
full diagnostic bandwidth (0.05 through 100 Hz). The recordings were collected using con-
ventional ECG machines, instead of using the equipment originally planned, which was 
intended to replicate the conditions to record and transmit ECG from rural patients for their 
remote analysis [32]. The leads are recorded simultaneously for 10 seconds; each lead is sam-
pled at 500 Hz with 16-bit resolution. These signals were manually annotated by a group of 
23 volunteers, giving each ECG a reference quality classification of Acceptable (AC) or Unac-
ceptable (UN). ECGs signals are publicly available for download at Physionet database [32].

Note that ECG quality classification is not based on an objective quality metric, such 
as the Signal-to-Noise-Ratio, the percentage of detectable QRS waves, or the dynamic 
range among other possibilities. Instead, the annotated ECG quality classification was 
the result of a combination of subjective criteria that somehow tried to estimate the 
usability for clinical purposes of a given ECG. Volunteer annotators, having different 
levels of clinical knowledge, graded each ECG on a five letter scale: A (an outstanding 
recording with no visible noise or artifact; B (a good recording with transient artifact 
or low level noise that does not interfere with interpretation; all leads recorded well); C 
(an adequate recording that can be interpreted with confidence despite visible and obvi-
ous flaws, but no missing signals); D (a poor recording that may be interpretable with 
difficulty, or an otherwise good recording with one or more missing signals); or F (an 
unacceptably poor recording that cannot be interpreted with confidence because of sig-
nificant technical flaws). Letter grades were mapped to numerical values (A = 0.95, B = 
0.85, C = 0.75, D = 0.6, and F = 0), and scores from different annotators were averaged 
to a final value. An ECG was classified as AC if two or more grades were available, the 
average grade larger than 0.7, and no more than one grade was F. ECGs having an aver-
age lower than 0.7, were labeled UN.

Each of the ECGs available for the Challenge was randomly assigned to one of three 
groups: the training set A (Dataset A) containing 998 ECGs; the test set B (Dataset B) 
containing 500 ECGs used in events 1 and 2 of the Challenge [2], for which classification 
labels were withheld; and set C (Dataset C) containing 500 ECGs used in event 3 but not 
available to challenge participants.

ECG signal model

According to the Volume Conductor Theory [33], the ECG signal xl(t) recorded by 
lead l can be approximated by the sum of the bioelectric signals si(t) generated by the 
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myocardium that travel through the volume conductor under quasi-static conditions 
(instantaneous propagation). Thus, the signal xl(t) can be modeled as

where ali is the attenuation suffered by the bioelectric component i when it propagates 
through the volume conductor to reach lead l [34]. Thus, the morphology of the signals 
recorded from different leads will differ due to the factor ali. However, since xl(t) meas-
ure the same bioelectric phenomena they should be statistically correlated in absence of 
noise and/or artifacts.

The model described in (1) can be extended to consider L simultaneous leads as [35]

where x(t) = [x1(t), x2(t), . . . , xL(t)]
T is the L× 1 vector of ECG signals, 

s(t) = [s1(t), s2(t), . . . , sN (t)]
T represents the N bioelectric sources at the heart, and A is 

the L× N  matrix which can be expressed as

where the columns of A correspond to the attenuation suffered by bioelectric com-
ponent i when propagating through the volume conductor to reach lead l [34]: 
ai = [ai1, ai2, . . . , aiL]

T .
In the presence of noise and/or artifacts (2) becomes

where n(t) = [n1(t), n2(t), . . . , nL(t)]
T is the L× 1 vector containing the noise contribu-

tion for each lead.
Lead signals in a standard 12-lead ECG are computed in ECG equipment by linear 

combination of 9 signals captured by electrodes, so the rank of any data structure built 
from the 12 leads cannot be larger than 9. Moreover, the bipolar lead signals are con-
structed by using as reference a specific lead signal (for limb leads) or a combination 
of them (for precordial leads). Thus, the bipolar configuration of lead signals imposes 
the rank of the data structure defined on (2) to be equal or lower than 8. Consequently 
we have considered L = 8. We checked (simulations not shown) that the inclusion of 
the signals from leads III, aVR, aVL and aVF did not add any useful information to ECG 
quality estimation, but just added low level quantification noise generated internally by 
the ECG equipment.

Lead covariance

According to the signal model (2), and assuming zero-mean ECG signals and the absence 
of noise, the covariance matrix among the signals x(t) can be obtained as

(1)xl(t) =

N
∑

i=1

alisi(t),

(2)x(t) = As(t),

(3)A =
[

a1 a2 · · · aN
]

,

(4)x(t) = As(t)+ n(t),

(5)Rx = E
[

x(t)xT (t)
]

= E
[

As(t)sT (t)AT
]

= ARsA
T ,
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where E[·] stands for expected value operator, and where Rs is the covariance matrix of 
bioelectric sources at the heart. Since we have assumed there are N independent sources, 
the rank of the matrix Rs is necessarily N. Therefore, the eigendecomposition of matrix 
Rx would provide N non-zero eigenvalues.

In the case of the signal model (4), in the presence of noise and artifacts the covariance 
matrix of x(t) becomes

where Qn is the matrix containing the power received at each lead due to noise and 
artifacts (i.e., components coming from sources as 50/60 Hz power leakage, muscular 
artifacts, movements of the electrodes...). Consequently, in this case Rx will have 8− N  
eigenvalues describing noise and artifacts, and N eigenvalues corresponding to the heart 
electrical signals. Also, and in the absence of noise three eigenvalues are expected to be 
high [36]. Note that in  (6), we have assumed that the signal and the noise spaces are 
uncorrelated. Therefore, this model can be used under different noise source conditions, 
such as white noise corruption, missing leads (or saturation effects) or signal artifacts. 
As a machine learning approach is followed, Qn estimation and separation of signal and 
noise spaces are not required but replaced by the learning of the mapping of Rx eigen-
value distribution to the labels given by the experts.

Taking into account the aforementioned considerations, the quality of an ECG can be 
estimated by analyzing the covariance matrix structure of the 8-leads ECG. Assuming 
ergodicity, covariance matrix Rx can be easily estimated from the samples. In contrast 
to other signal processing applications, note that generally some leads are much nois-
ier than others, and artifacts variability is large, consequently, we cannot assume a sim-
plistic statistical model for them. So standard statistical hypothesis tests to detect the 
number of “signal eigenvalues” from a sample covariance matrix (AIC, MDL) [37–39] 
are not applicable for this scenario because they assume an a priori stochastic model for 
the noise and artifacts. Specifically those algorithms assume an i.i.d. (independent and 
identically distributed) model for noise and/or interference, which does not apply for 
most common degradation causes for the ECG lead signals. Thus, we propose the use of 
supervised machine learning algorithms to classify the quality of ECGs from the eigen-
values of their covariance matrix, as follows:

1.	 Form the X-Lead ECG data matrix, X, by stacking up the 8 rows containing K time-
samples of the 8 leads.

2.	 Estimate the sample covariance matrix R̂x =
1
K XXT .

3.	 Compute the eigenvalues, �i from R̂x, for i = 1, 2, . . . , 8.

During these computations and for the classification process, neither signals nor 
eigenvalues were scaled or normalized.

(6)

Rx = E
[

x(t)xT (t)
]

= E
[

(As(t)+ n(t))
(

sT (t)AT + nT (t)
)]

= ARsA
T +Qn,
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Machine learning algorithm

Given a training dataset D = {(xi, yi)}
M
i=1, where xi = [�i1, . . . , �

i
8]

T ∈ R
8 are the predictors 

of the i-th record and yi ∈ {AC ,UN } denote its label, supervised binary classification [40] 
considers the selection of a model f in a space H that minimizes a criterion (usually the 
classification error) on D and provides good generalization (i.e., good performance on 
unseen data). Among the available methods to design classifiers, exploratory-data-analy-
sis classification procedures were selected to give both an insight in data structure and to 
provide easy-to-interpret models. Namely, we selected two tree inducers, CART [29] and 
C4.5 [30], and a propositional rule learner, RIPPER [31]. While simple, these algorithms 
provide useful interpretable models for the classification process, allowing us to better 
understand the goodness and limitations of our approach regarding the available data. We 
have also included a SVM [41] classifier with a radial basis function kernel with the aim of 
comparing the above methods with a state-of-the-art classifier.

Best machine learning practices were followed. Dataset A was divided into training 
and test blocks, where the test block was used once to provide an estimate of the accu-
racy. Model selection was done only on the training block. As data is scarce, 10-fold 
cross-validation was performed to estimate on Dataset A the accuracy, sensitivity (pro-
portion of UN records classified as UN), specificity (proportion of AC  records classified 
as AC) and the area under the receiver operating characteristics curve (AUC) for each 
classifier. Then, the best model was trained on the complete Dataset A and evaluated on 
Dataset B. Labels of Dataset B were not available and its predicted labels were sent to the 
Challenge organizers to get their classification accuracy.

Results
The behavior of the proposed classifiers has been analyzed by using the Dataset A, since 
this is the only data that provide both the ECG signals and their corresponding labels (AC, 
UN). First, we have carried out an exploratory analysis using the Dataset A. Then, we have 
estimated the performance of the proposed classifiers through cross-validation using the 
Dataset A. Finally, we have tested our best classifier on the Dataset B (whose labels are 
withheld by PhysioNet/CinC Challenge 2011 organisers).

Exploratory analysis: analysis of eigenvalues and classification

The normalized (unit area) histograms of the eigenvalues for the AC and UN ECG records 
of the Dataset A are shown in Figure 1. A general pattern is observed in all histograms, 
which is best exemplified in �8 (Figure 1h). There is a proportion of UN  records that have 
smaller eigenvalues than the AC    ones (log10(�8) ≤ −2). Also, there is a proportion of 
UN  records that have higher eigenvalues than the AC  ones (log10(�8) ≥ 2).

Classifiers were induced with the WEKA [42] package using Dataset A. Note that no 
filtering of ECG signals was performed (except for mean subtraction) to compute the 
eigenvalues. A number of preprocessing algorithms (noise filtering) were evaluated [1, 
10], showing no improvement in the classification performance.

CART classifier

Figure 2 shows the tree induced by CART, which is a very simple classifier that only looks 
at the highest (�1) and lowest (�8) eigenvalues. If �8 < T1, the record was considered UN. 
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This rule classified 143 records with only 6 mistakes in Dataset A. The remaining 855 
records were classified by using the information contained in �1. If �1 ≥ T2, the record was 
considered UN. This rule correctly classified 788 records and made 67 mistakes in Dataset 
A, note that the results reported here correspond to train and test on the same Dataset A. 
Performance evaluation using cross-validation is reported in the next subsection. The his-
togram of �1 for the ECGs classified by this rule is show n in Figure 3a, where it can be seen 
that most AC  cases had 3 ≤ log10(�1) ≤ 5.

a b

dc

e f

g h

Figure 1  Eigenvalues analysis. Normalized histograms (a–h) for the eigenvalues of Dataset A divided by 
class. �i ≤ 10−2 were grouped in the 10−2 bin.
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C4.5 classifier

Figure 4 shows the tree induced by C4.5. Compared to CART, this classifier further refines 
the records that have a signal space with 8 components (a threshold on �8 is the first rule), 
and a high value for �1. This refinement firstly classifies as AC    the records that fulfilled 
�1 ≤ T ′

2 (730 records, 20 errors) with T ′
2 < T2, as it is shown in Figure 3b. This rule incor-

rectly classified as AC    several ECG records with moderate artifacts and a low power of 
high frequency noise (see Figure 5a–c). For the remaining records �1 is thresholded again 
(T ′

3) to rule out the 13 UN  records with higher eigenvalues compared to the AC  records 
(see Figure 3c), showing no mistake. The final rule classified the remaining 112 ECGs (see 
their eigenvalues histograms in Figure 3d) using a threshold on �6. Most of the 34 ECGs 
incorrectly classified by this rule as AC  were records with an artifact and high frequency 
noise (see Figure 6a). Other incorrect AC   classifications were records with several noise 
contributions that had similar signal spaces to acceptable records (see Figure  6b) or 
records without a clear QRS pattern (see Figure 6c). There were only 6 ECG records incor-
rectly classified as UN  and all of them shared a high power interference and several noise 
contributions (see Figure 7a).

RIPPER classifier

Table 2 shows the rules induced by this classifier. The classification label is assigned accord-
ing to the first rule that is satisfied. This classifier firstly focuses, as the previous ones, on 
the subspace distribution of the records: if �8 ≤ T ∗

1  the record is declared UN. Then, it 
considers the subspace of {�1, �2, �3} to check two abnormal situations: (i) whether both �1 
and �3 are above two thresholds (see Figure 3e, f ), which has 13% error; and (ii) whether �1 
and �2 are both above two thresholds (see Figure 3g, h), which has 40% error.

Classification performance

•  • Cross-validation on Dataset A: 10-fold cross-validation results on Dataset A are 
shown in Table 3. AUC was obtained with the predictions on each test-fold. If we 

Figure 2  Tree induced by CART. The numbers associated to the label, e.g. UN (143/6), indicate the number 
of registers classified by the rule and the number of errors it made evaluating the algorithm on Dataset A, 
respectively. log10(T1) = 0.145, log10(T2) = 5.08.
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consider accuracy, RIPPER performs the best in this dataset, if we consider AUC, 
C4.5 is the best and CART provides the most balanced result considering specific-
ity and sensitivity. There is therefore no clear cut ranking for these classifiers as they 
were induced to maximize accuracy.

a b

dc

e f

hg

Figure 3  Normalized histograms (a–h) of the eigenvalues to be classified by a rule. �i ≤ 10−2 were grouped 
in the 10−2 bin. The vertical line represents the threshold for the associated rule.
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•  • Testing on Dataset B: Considering the RIPPER our best classifier (in terms of accu-
racy), the predicted labels obtained by this classifier in Dataset B were sent to the 
organizer of the PhysioNet/CinC Challenge 2011 and obtained an accuracy of 0.898 
(449 out of 500).

The complexity of the algorithm is the sum of the complexities of the calculation of the 
covariance matrix (8 ∗ L ∗ K 2 operations, see BLAS dgemm routine), the calculation of 
the eigenvalues of the covariance matrix (O(L3) operations, see LAPACK dsyev routine) 
and the complexity of the classifier, which in the case of the above RIPPER classifier is 
only 5 comparisons and 2 logical operations, which is extremely fast [43, 44].

Conclusions
This paper presents a classification approach that combines linear signal subspace analy-
sis (the eigenvalues of the covariance matrix) with interpretable machine learning. One 
of the strengths of the proposed approach is the interpretability of the results, which pro-
vide further insight into the ECG quality estimation problem and the shortcomings of our 
proposal.

The analysis of the eigenvalues of the Dataset A, shown in Figure  1, revealed 
that UN    records have either simpler or richer signal spaces than the AC    ones. That 
is, eigenvalues for UN    records showed a bimodal distribution, having either small 
(log10(�i) ≤ −2) or large (log10(�i) ≥ 2) eigenvalues, while for AC  records the distribu-
tion of eigenvalues were more concentrated around their mean. The simpler signal space 
can be attributed to poorly connected or disconnected leads while the richer signal space 

Figure 4  Tree induced by C4.5. log10(T
′
1) = 0.0870, log10(T

′
2) = 4.86, log10(T

′
3) = 7.91 and log10(T

′
4) = 2.23.
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a

b

c

Figure 5  UN ECG records wrongly classified by the classifiers (a–c). This corresponds to ECG signals labelled as 
UN that have been classified as AC by the algorithms. For each panel, it is indicated the record-id, the name of 
the algorithm, and the rule responsible for the misclassification. x-axes units are in seconds and y-axes are mV.
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a

b

c

Figure 6  UN ECG records wrongly classified by the classifiers (a–c). This corresponds to ECG signals labelled as 
UN that have been classified as AC by the algorithms. For each panel, it is indicated the record-id, the name of 
the algorithm, and the rule responsible for the misclassification. x-axes units are in seconds and y-axes are mV.
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a

b

c

Figure 7  AC ECG records wrongly classified by the classifiers (a–c). This corresponds to ECG signals labelled as 
AC that have been classified as UN by the algorithms. For each panel, it is indicated the record-id, the name of 
the algorithm, and the rule responsible for the misclassification. x-axes units are in seconds and y-axes are mV.



Page 15 of 19Morgado et al. BioMed Eng OnLine  (2015) 14:59 

is probably caused by external noise sources and artifacts. Given these differences in the 
eigenvalue distribution for UN  and AC  records, we also evaluated the condition num-
ber, κ = �1

�8
, of the sample covariance as a possible feature for classification. However, 

its introduction provided no improvement in performance over the set of eigenvalues 
because our classifiers looked for the best thresholds for each feature, which is equiva-
lent to look for the best threshold on a quotient of two of the eigenvalues.

The classifiers decision rules and their errors also revealed new details of the clas-
sification problem and how our proposed methodology addressed it. The CART clas-
sifier (Figure 2) demonstrated a high accuracy, deciding on its first rule on the lowest 
eigenvalue (�8). This provides evidence suggesting that when a non-full-rank covariance 
matrix (�8 < T1) is obtained there might have been some problems with the lead con-
nections. In fact, the 6 AC  ECGs that were wrongly classified as UN  by this rule had one 
of the precordial leads to zero or to a constant value. The second CART rule decided on 
�1, that for most AC  cases is in the range 3 ≤ log10(�1) ≤ 5. Many UN  cases had larger 
�1 values, which can be attributed to: (i) high noise or high power artifacts present on the 
record; and (ii) �1 captures most energy, meaning that record is not rich enough or that 
the same noise/artifact is present in several leads (specially if it has high power). Fig-
ure 8a–c show three AC  records classified as UN  by this rule. Figure 8a represents one 
example of two high power artifacts in two leads. These artifacts dominate the energy 
of the signals and they contribute most to the first two eigenvalues. Figure 8b shows a 
common artifact that affects all but one lead, therefore the first eigenvalue is high as 
this single artifact dominates the energy of the ECG. However, classification error in 
Figure 8b may be an example of a mistake in the challenge database annotations, since 
only one lead contains usable information. Figure 8c shows a case with high frequency 
noise affecting several leads. This noise mainly affects the second eigenvalue. Also in this 
record, some of the leads have 5 times higher voltage than other leads, which is likely the 
cause of misclassification. Besides this, the CART classifier also presents other limita-
tions: high energy artifacts and/or wandering baseline in some leads can make the clas-
sifier to wrongly reject a record classified as AC. Nevertheless, these limitations can be 
overcome, in part, by baseline removal and clipping, at the expense of more computa-
tional processing requirements.

With respect to CART, the C4.5 classifier produced a refinement for cases with large 
�1. Figure  5a–c show some UN    records wrongly classified as AC    by C4.5. Whether 
noise or artifacts made the record labeled as AC   or UN   is unclear to the authors (the 
reader can compare the ECGs presented in Figures 5, 6, 7 and 8). On the other hand, the 
rule �1 ≤ T ′

2 showed another limitation of the proposed algorithm. Some UN    records 
with low power noise were not easy to separate from AC    records by just considering 
the power distribution of the different components of the signal space (see Figure 5c). 
The last rule for C4.5 relied on �6. The rationale behind this last rule is again related 
to dimensional spaces. In a “perfectly clean” ECG, three eigenvalues are expected to be 
high (the ones related with the main components of the heartbeat), while the rest of 
the eigenvalues should be smaller. Therefore, if �6 is above a threshold, this represents 
that there is too much energy out of the three main eigenvalues, which indicates sev-
eral unexpected sources of noise. The sixth eigenvalue is selected for the last decision 
because the classifier learned from the training Dataset A the amount of perturbation 



Page 16 of 19Morgado et al. BioMed Eng OnLine  (2015) 14:59 

a

b

c

Figure 8  AC ECG records wrongly classified by the classifiers (a–c). This corresponds to ECG signals labelled as 
AC that have been classified as UN by the algorithms. For each panel, it is indicated the record-id, the name of 
the algorithm, and the rule responsible for the misclassification. x-axes units are in seconds and y-axes are mV.
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(other signal/noise/interference sources) that is allowed to classify a record as AC. The 
limitations of the C4.5 classifier, e.g. UN   records with several noise contributions that 
have similar signal spaces that AC  records or records without a clear QRS pattern, could 
be alleviated with more processing by rhythm-analysis.

Finally, the RIPPER classifier did not show types of errors different from those already 
presented for CART and C4.5. Most AC  records wrongly classified by Rules 2 and 
3 of RIPPER (Table 2) were records with artifacts, high frequency noise and base line 
wandering (see Figure 7b, c for an example of a record misclassified by Rules 2 and 3, 
respectively).

As previously stated, most of the above mentioned shortcomings of the proposed clas-
sifiers could be mitigated in part by introducing additional steps to conveniently process 
the ECG signals. This, however would increase the computational cost of the algorithm. 
Moreover, labeling of some of the ECGs of Challenge database are borderline or errors. 
When analyzed in detail the errors of classifiers proposed herein, particularly those 
shown in Figures 5, 6, 7 and 8, it seems that our classifiers fail precisely in those border-
line cases or those that are clear labeling errors. Also, our approach works on multi-lead 
recordings, while other studies developed methods suitable for single-lead recordings [4, 
8, 16, 17].

Here, we present a simple, fast and reliable approach for ECG quality estimation that 
combines linear signal subspace analysis with machine learning. On the one hand, linear 
subspace analysis estimates the energy of the different ECG components; on the other 
hand, interpretable machine learning discovers how experts classify and provides sim-
ple and easy to understand decision rules. The understanding gained with the proposed 
approach, on how ECG quality is estimated by cardiologists, could be useful to design 
different algorithms. The result is a new ECG quality classifier with extremely low com-
putational burden and, if we had submitted this classifier to the open source PhysioNet/

Table 2  RIPPER ruleset, where log10(T
∗

1 ) = 0.0863, log10(T
∗

2 ) = 4.85, log10(T
∗

3 ) = 4.06, 
log10(T

∗

4 ) = 5.09 and log10(T
∗

5 ) = 3.75 

The first rule that fires decides the label. Eigenvalues are in log10 scale.

1 (�8 ≤ T
∗
1

) ⇒ Label = UN  (143/6)

2 (�1 ≥ T
∗
2

) ∧ (�3 ≥ T
∗
3

) ⇒ Label = UN  (30/4)

3 (�1 ≥ T
∗
4

) ∧ (�2 ≥ T
∗
5

) ⇒ Label = UN  (47/19)

4 Label = AC  (778/34)

Table 3  Performance comparison of classifiers on Dataset A using 10-fold cross-valida-
tion. Alg., Acc., Sens., Spec. and AUC stand for algorithm, accuracy, sensitivity, specificity, 
and area under the ROC curve, respectively

Alg. Acc. (%) Sens. (%) Spec. (%) AUC

CART 92.1 84.4 94.3 0.913

C4.5 91.7 77.8 95.7 0.925

RIPPER 92.7 83.1 95.5 0.910

SVM 92.5 70.7 99.0 0.902



Page 18 of 19Morgado et al. BioMed Eng OnLine  (2015) 14:59 

CinC Challenge 2011, this classifier would have ranked second best (event 2, Table 1). 
Therefore, the proposed approach is particularly suitable for inexpensive portable ECG 
monitoring systems. A Java code implementing this approach can be found at https://
github.com/obarquero/ECG_quality.
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