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Abstract

Background: Balance dysfunction is one of the most common problems in people
who suffer stroke. To parameterize functional tests standardized by inertial sensors
have been promoted in applied medicine. The aim of this study was to compare the
kinematic variables of the Functional Reach Test (FRT) obtained by two inertial sensors
placed on the trunk and lumbar region between stroke survivors (SS) and healthy older
adults (HOA) and to analyze the reliability of the kinematic measurements obtained.

Methods: Cross-sectional study. Five SS and five HOA over 65. A descriptive analysis of
the average range as well as all kinematic variables recorded was developed. The intras-
ubject and intersubject reliability of the measured variables was directly calculated.

Results: In the same intervals, the angular displacement was greater in the HOA
group; however, they were completed at similar times for both groups, and HOA con-
ducted the test at a higher speed and greater acceleration in each of the intervals. The
SS values were higher than HOA values in the maximum and minimum acceleration in
the trunk and in the lumbar region.

Conclusions: The SS show less functional reach, a narrower, slower and less acceler-
ated movement during the FRT execution, but with higher peaks of acceleration and
speed when they are compared with HOA.

Keywords: Inertial sensor, Functional Reach Test, Stroke survivors, Healthy older adults,
Kinematic variables, Reliability

Background
Balance dysfunction is one of the most common problems in people who suffer stroke and
it has a great impact on functional independence and on the recovery of the individual [1,
2]. The most significant physical impact on stroke patients is long-term disability, which is
mainly caused by hemiparesis [2—4].

Due to postural control problems, the reduction of functional skills as well as the loss
of static and dynamic stability in people with stroke, such as loss of early activation dur-
ing voluntary movements, a greater sway in static standing, especially on the affected
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side, and decreased stability during weight change while standing [1, 2, 5, 6], which could
result in an increased risk of falls [7-9].

A widely accepted clinical tool for the assessment of imbalance is the Functional Reach
Test (FRT), which has been used to measure biomechanics, postural control and balance
in patients who suffer from Parkinson’s disease, physical frailty, vestibular dysfunction
and stroke [4, 10]. This test evaluates these variables by measuring the maximum func-
tional reach a person can achieve in the frontal plane without losing balance, stepping,
or falling. The test is a tool designed for simple, reliable, economical and portable meas-
urement [4, 11-14].

In different fields of applied medicine, parameterization has been promoted in the
execution of functional tests standardized by inertial sensors. These tests measure the
health status of patients and help to establish and implement effective treatment strate-
gies [15, 16]. Inertial sensors are instruments capable of collecting kinematic variables
of any gesture or movement due to their size, portability, and reliability [17, 18]. These
instruments have been used both in clinical practice as tools for feedback to improve
rolling-on tests of balance and ambulation [18, 19] and in basic research, to analyze the
different kinematic variables into which the gait can be decomposed [17, 20-23].

No studies were found in which the kinematic variables registered with inertial sen-
sors located in the lumbar region and trunk during the execution of the FRT in stroke
survivors (SS) and healthy older adults (HOA) are compared.

The aim of this study is to compare the kinematic registration of a balance test (FRT)
with an inertial sensor placed on the trunk (L5-S1) and another in the lumbar region
(T7) between stroke survivors and HOA.

A secondary aim of this study is to analyze the reliability of the kinematic measure-
ments obtained with inertial sensors in two different body regions during the FRT.

The hypothesis of this study is that significant differences exist in the kinematic param-
eters recorded between SS and HOA. In addition, it is expected that the inertial sensors
will be shown to be reliable tools for the kinematic recording of the FRT.

Methods
Design and participants
This is a cross-sectional study for which participants (n = 10) met the following general
inclusion criteria: performing the Time Up and Go test in 15 s or less and being able to
remain standing without assistance for more than 30 s. Specific inclusion criteria for par-
ticipants with stroke were said disease as defined by the World Health Organization [24]
and moderate severity (score between 0 and 49 on Barthel’s Index) [25]. Exclusion criteria
were being younger than 60, limitations in walking, severe problems of communication
or understanding, serious cardiovascular, respiratory, metabolic or orthopedic problems,
suffering from a secondary neurological disease and failing to provide informed consent.
This study was conducted according to the principles of the Declaration of Helsinki
for the protection of the rights, safety and welfare of the volunteers who participated in
it. Ethical approval for the study was granted by the ethics committee of the Faculty of
Health Sciences, University of Malaga.
Participants were given an information sheet, which explained in detail the develop-
ment of the study, and an informed consent, which made it clear that their participation
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was completely voluntary and that their personal data will be protected according to the
Organic Law of Protection of Personal Data 19/55.

Functional Reach Test (FRT)

To implement the FRT a tape is placed on the wall, parallel to the floor, up to the acromion
of the dominant arm of the subject. Then the participant is asked to position himself paral-
lel to the wall where the tape is attached so that the axis passing through his shoulder is as
perpendicular as possible to the surface thereof. Next, the participant is told that their feet
should be separated at shoulder width and that he must not touch the wall during the test.
In addition, participants are asked to flex the shoulder to 90° and straighten their elbows
and hands; at this time, the researcher makes a mark on the tape using the metacarpal
head of the third finger as a reference point. The participant attempts to reach far as pos-
sible without taking a step, lifting a heel or touching the wall. In that moment is when the
second mark on the wall is made, and thereafter, the subject returns to the starting posi-
tion. The distance in centimeters between the two marks is the functional range achieved
by the participant [26] (Figure 1). Previous studies have shown the reliability of the FRT is
0.81 [26].

During the execution of the FRT, participants carried two inertial sensors, one placed
at the level of L5-S1 (lumbar region) and the other at T7 (trunk). These were placed with
the cable directed toward shoulder, so that the origin of the coordinates (X, Y, Z) (0, 0, 0)
was placed at the left posterior-inferior vertex (Figure 2).

Inertial sensors
The model InertiaCube3TM InterSense Inc. (Bedford, MA, USA) was the model of the
two inertial sensors used in this study, working with a sampling frequency of 180 Hz.

Figure 1 Performing of the FRT.
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Figure 2 Scheme of directions of the three axis, X (red), Y (green) and Z (blue).

The InterCube 3 is the worlds guidance smallest system (31.2 mm X
43.2 mm x 14.8 mm). It has nine sensors to ensure maximum accuracy, sensitivity and
stability, covering a 360° tracking movement along three axes (Yaw, Pitch and Roll). Pre-
vious studies have demonstrated its validity and reliability in the parameterization of
balance tests [27, 28].

Procedure

Before beginning the study, participants were asked to sign the informed consent. Soci-
odemographic data were collected through a questionnaire and for the sample of partici-
pants who suffer stroke, who were more homogeneous, the Barthel Index (BI) (k = 0.93
[29, 30]), the scale of impact of stroke-16 (SIS-16) (x = 0.76 [31]) and the Canadian Neuro-
logical Scale (CNS) (ICC = 0.70-0.92 [32]) was used.

Subsequently, the FRT was explained to them and they could testing it to ensure
understanding the implementation [26, 33]. Then both sensors [L5-S1 (lumbar region)
and T7 (trunk)] were put in place and the functional test was carried out. Two research-
ers monitored the test, which was run in triplicate, and they then performed a posteriori
analysis of the results independently.

The total time of data collection was the total duration of the test run for each partici-
pant and 3 s before and after the start and end of the test. It allowed the researcher to
make a reference for the data analysis. Each participant performed the FRT three times.
The FRT with the highest measure were used to analyze the kinematic data. In addition,
all the measures (kinematic data and FRT measures) were used to calculate the reliability
of the measures.
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Upon execution, the kinematic data recorded by the inertial sensors were collected
and were analyzed to obtain the direct variables, the time and displacement between
each of the intervals, and the indirect variables, the speed and acceleration, which were
subsequently calculated.

Outcome measures

Direct variables

The variable FRT distance was extracted by Duncan test or FRT, which is the distance in
centimeters that the subject is able to reach during the performance of the FRT. All vari-
ables mentioned below were taken from the record of the inertial sensor in the pitch axis.
Maximum angular lumbosacral/thoracic displacement FRT: the angular variation in the
pitch axis that the subject causes during the performance of the FRT. The amplitude is
considered from the time the test begins until peaking imbalance before starting the return
to the starting position; time maximum angular lumbosacral/thoracic displacement FRT:
the time the subject takes to reach the peak during the execution of the FRT; time return
starting position: the time that the subject takes to return to the starting position from
reaching the peak; total time FRT: the time the subject takes from the start to perform the
FRT until the participant comes back to the starting position (Figure 3).

Indirect variables

Subsequently, using the data extracted directly from the register of inertial sensors, the fol-
lowing variables were calculated. Average speed FRT: average speed at which the subject
performs all the FRT; maximum angular lumbosacral/thoracic displacement speed FRT:
the average speed at which the subject reaches the peak—from the beginning to the com-
pletion of the FRT; starting to return position speed: the average speed at which the subject
performs the return to the starting position from the maximum peak; average acceleration
FRT: the mean acceleration at which the subject executes all the FRT; maximum angular
lumbosacral/thoracic displacement average acceleration FRT: the average acceleration that
the subject reaches from the beginning of the test until he/her reaches the peak; accelera-
tion average return starting position FRT: the average acceleration that the subject reaches
from the beginning of the peak until he returns to the starting position.

Grades (°) . TIFRT , A: Starting position

I 1 B: Maximum angular lumbosacral/thoracic

C: Ending of FRT
! TMALTDFRT . TRSPFRT

MALTDFRT: Maximum angular
- lumbosacracl/thoracic displacement FRT

TMALTDFRT (A-B): Time maximum
angular lumbosacral/thoracic displacement
FRT

TRSPFRT (B-C): Time return starting
position FRT

MALTDFRT TTFRT (A-C): Total time FRT

L c
A

Time (s)

Figure 3 Variables extracted directly from FRT through the inertial sensor.
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To calculate the indirect variables, the following formulas were used: speed: dis-
placement/time. Acceleration: displacement/time?. Both, speed and acceleration were
calculated using the corresponding direct variable data: e.g., FRT average speed was cal-
culated using the displacement and the total time used during the FRT.

In addition, the mean and the standard deviation were calculated in the maximum,
the minimum and the average of the speed and the acceleration in the axis X, Y and Z in
both sensors. The resultant displacement vector in the three axes (X, Y, Z) (used to ana-
lyze the displacement in the three dimensions of space simultaneously) was calculated
using the formula: the square root of sum of squares (dv = VX2 + Y2 4+ 72).

Data analysis
A descriptive analysis of the average range achieved in the FRT as well as all kinematic
variables recorded by the two inertial sensors (trunk and lumbar region) was developed.

The normality of the variables was performed using the Kolmogérov—Smirnov (KS)
test, then the lumbar region and trunk records of directly measured variables (time and
displacement) and the variables obtained indirectly (speed, acceleration and resultant)
were compared. The Student’s t test was used for parametric variables and Wilcoxon’s
test was used for non-parametric variables. The index of significance was set at or below
a value of p = 0.005.

The intrasubject and intersubject reliability of the measured variables (FRT, time and
displacement) was calculated directly. For the speed and acceleration variables reliability
was not calculated due to the internal consistency of their values depending on the reli-
ability of direct variables. To calculate the reliability of the outcome variables, an analysis
of the internal consistency of the measurement was conducted. Reliability was consid-
ered as a test—retest standard deviation of differences with the 95% limits of agreement
[34]. To analyze the reliability the standard error measurement and intraclass correla-
tion ratio for intrasubject and intersubject reliability were calculated. Levels of reliability
were poor (ICC < 0.40), moderate (0.40 < ICC < 0.60), good (0.60 < ICC < 0.80), or
excellent (ICC > 0.80) [19].

To conduct the statistical analysis, the Statistical Package for the Social Sciences
(SPSS) (version 17.0 for Windows, IL, USA) was used.

Results
Table 1 shows the anthropometric and demographic data of the participants. Furthermore,
the values of the various specific tests that each participant completes are shown. These
were intended to identify the degree of involvement of the patient as a result of stroke.
Table 2 shows a description and comparison between groups (SS and HOA) of the kin-
ematic variables of the FRT when the inertial sensor was placed in the trunk and the dis-
tance of the FRT. Three ranges of motion were considered based on the following points:
beginning of the test, maximum angular displacement and end of the test. The variables
calculated in each of these intervals were time, displacement, velocity and acceleration.
Through the results shown in Table 2, the maximum, minimum, mean and standard
deviation of each of these variables can be checked. Significant differences can be seen
between both study groups in all the analyzed variables. Although the exercise duration
was greater in HOA, the increase in both linear distance (FRT) and angle (measured
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Table 1 Descriptive and anthropometric data of the two groups analyzed

Stroke survivors (SD) Healthy older adults (SD)
Age (years) 7233 (£3.97) 73.04 (+3.58)
Weight (kg) 71.26 (+14.19) 72.38 (411.94)
Height (cm) 162.65 (47.83) 163.11 (£7.02)
BMI (kg/m?) 2669 (£3.11) 27.07 (£3.87)
Canadian Neurological Scale (0-10) 9.175 (£0.485) -
Barthel Index (0-100) 90.25 (£4.575) -
Stroke Index Scale_16 (0-80) 71.00 (+6.934) -
N (woman-men) 5(3-2) 5(3-2)

Variables on the degree of disability caused by stroke are included in SS group.

Table 2 Description and differences between groups of the kinematic variables of FRT
measured with the inertial sensor located at the trunk

Strokes survivors Healthy older adults Mean differences (SD)
Mean (SD) Mean (SD)
FRT distance (cm) 13.17 (£2.18) 36.30 (£6.04) 23.13%** (£7.92)
Trunk
Time AB (s) 8.59 (£1.64) 9.65 (£6.23) 1.06% (£0.84)
Displacement AB (°) 12.88 (:t6 90) 44.82 (+£10.23) 1.94%%* (£9.35)
Speed AB (%/s) 2 (£4.10) 0 (43.05) 4.58%** (13.28)
Acceleration AB (°/s?) 0.19 (13 07) (iO 85) 0.85%** (iO 33)
Time BC (s) 6.77 (£5.93) 4.84 (£2.12) 1.93%* (£1.04)
Displacement BC (9) 9.64 (£4.21) (:|:4 23) 38.53%** (:|:7 30)
Speed BC (%/s) (:i:O 65) 40 (£4.36) 9.92%** (:tS 90)
Acceleration BC (¢/s?) 0.22 (£0.19) 2 (£2.36) 2.9%%*(£1.73)
Time AC (s) 15.61 (£4.17) 1449 (+£647) (:I:O 78)
Displacement AC (°) 13.58 (:|:7 31) 48.94 (£5.69) 35.36%** (+9.36)
Speed AC (°/s) 0.83 (£1.68) 3.87 (£1.42) 3.04*** (£2.77)
Acceleration AC (°/s?) 0.06 (£0.39) 0.35(£0.22) 0.29%** (£0.08)

A beginning of the FRT, B maximum angular displacement, C end of the FRT.
Significance * <0.05, ** < 0.005, *** <0.001.

in the three segments described) determines significant differences in other parameters
measured indirectly.

Table 3 shows the differences between the kinematic variables collected by the inertial
sensor when it was placed in the lower back. A similar behavior to that observed in the
measurement of the inertial sensor in the trunk is observed. Again significant differences
are observed in all kinematic variables recorded. And again, as seen in HOA, angular
displacement is much higher than in SS by determining the rest of indirect variables
measures (speed and acceleration).

Figures 4 and 5 show comparisons of the minimum and maximum values of the result-
ant of the kinematic variables. It could be observed in all compared variables (speed and
minimum and maximum acceleration and the resulting displacement) there are signifi-
cant differences between SS and HOA, regardless of the place where the sensor inertial
was placed (trunk or lumbar region).



Table 3 Description and differences between groups of the kinematic variables of FRT

Merchan-Baeza et al. BioMed Eng OnLine (2015) 14:49

measured with the inertial sensor located at the lumbar region

Strokes survivors

Healthy older adults

Mean differences (SD)

Mean (SD) Mean (SD)
Lumbar region
Time AB (s) 8.39 (£2.66) 9.59 (£5.12) 1.21* (£0.18)
Displacement AB (°) 7.69 (£3.81) (:|:7 19) 43.38*** (£5.77)
Speed AB (°/s) 0.86 (£0.79) 4248 (+£11.27) 41.62%** (£9.35)
Acceleration AB (°/s?) 0.09 (£0.34) 7.31 (:I:S 77) 7.22%%% (£4.51)
Time BC (s) 7.89 (£5.91) 4.85 (£0.86) —3.04*** (£0.79)
Displacement BC (°) 948 (+3.59) 48.28 (£6.42) 38.8%** (4:5.88)
Speed BC (/s) 6 (£0.01) 10.24 (+£2.37) 9.08*** (£2.07)
Acceleration BC (°/s?) 0.17 (£0.01) 2.25 (+1.00) 2.08** (£0.73)
Time AC (s) 4 (£3.3) 13.44 (£4.87) —2.96%* (£4.12)
Displacement AC (°) 14.81 (£6.38) 49.77 (£9.51) 34.96*** (£8.61)
Speed AC (/) 0.83 (£1.68) 1(£1.78) 3.28*** (£1.77)
Acceleration AC (¢/s?) 0.04 (£0.60) 0.37 (£0.25) 0.33***(£0.19)

A beginning of the FRT, B maximum angular displacement, C end of the FRT.
Significance * <0.05, ** <0.005, *** <0.001.
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Figure 4 Comparison of the resulting kinematic variables between SS and HOA measured by trunk inertial
sensor. Units of measurement: speed, 9/s; acceleration, °/s% displacement, © (grades). Significance * <0.05,

H

Table 4 shows the differences between the variables obtained indirectly (speed and

acceleration) of the two groups studied (SS and HOA) after the measurements taken on

both the trunk and the lumbar region differentiated axes (X, Y, Z). There are significant

differences in all indirect variables analyzed. However, the differences behave differently

depending on each type. In all variables that correspond to the mean, it is possible to

observe, in both trunk and lumbar region, a more average velocity and acceleration on
HOA group than the SS group. However, those variables that represent velocity and
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Figure 5 Comparison of the resulting kinematic variables between SS and HOA measured by lumbar inertial
sensor. Units of measurement: speed, %/s; acceleration, /s% displacement, © (grades). Significance * <0.05,
** <0.005, *** <0.001.

acceleration peaks show how the SS group has higher values than those obtained from
HOA (Table 4).

The intra-observer reliability of the variables measured directly shows values ranging
between 0.876 (trunk time AC) and 0.916 (lumbar region displacement BC). In addi-
tion, the inter-observer reliability varies between 0.860 (trunk time AC) and 0.906 (trunk
displacement BC). In turn, the reliability values of the FRT are 0.990 and 0.987 for intra-
observer and inter-observer measurements respectively. The remaining reliability values
analyzed in this study can be seen in Table 5.

Discussion

After obtaining and analyzing the kinematic registration of the FRT in SS and HOA it can
be stated that there are significant differences between the two study groups in all kin-
ematic variables. The linear and angular displacement in HOA is much higher, which
determines the rest of the indirect measure variables (acceleration and velocity). However,
stroke survivors show higher peaks in the maximum and minimum velocity and accelera-
tion. Moreover, the reliability of the inertial sensors as a tool for measuring kinematic vari-
ables collected during the execution of the FRT has been confirmed. All this confirms the
hypothesis that was raised at the beginning of this study.

Kinematic variable differences

After analyzing the kinematic variables obtained from the two sensors in each of the
intervals into which the FRT is divided (Tables 2, 3), it can be seen that in these inter-
vals the angular displacement was greater in the HOA group [displacement AB-lumbar
region 7.69° (SS)/51.07° (HOA)]; however, they were completed at similar times for both
groups [AB-lumbar region time 8.39 s (SS)/9.59 s (HOA)], which indicates that HOA con-
ducted the test at a higher speed and greater acceleration in each of the intervals [speed
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Table 5 Intra-observer and inter-observer reliability of variables measured directly during
Functional Reach Test

Variable SEM (stand. error. measu.) Intra-observer Inter-observer
Strokes Healthy older ICC 1C (95%) ICC 1C (95%)
survivors adults — —
Min. Max. Min. Max.
Trunk
Time
AB 0.867 2.787 0.892 0.879 0.902 0.886 0.878 0.897
BC 3.194 0.949 0.903 0.888 0912 0.891 0.882 0.901
AC 2.329 2.893 0.876 0.869 0.890 0.860 0.852 0.871
Displacement
AB 4.582 4.573 0910 0.893 0.921 0.899 0.887 0911
BC 2.364 1.893 0913 0.902 0.921 0.906 0.893 0914
AC 4.153 2.545 0.893 0877 0.904 0.871 0.862 0.883
Lumbar region
Time
AB 1463 2.289 0.898 0.880 0911 0.887 0878 0.898
BC 3.011 0.386 0.900 0.886 0911 0.891 0.879 0.902
AC 1.851 2.178 0.881 0.870 0.898 0.869 0.858 0.877
Displacement
AB 1.624 3217 0.907 0.893 0919 0.892 0.880 0.903
BC 1.840 2.870 0916 0.905 0922 0.902 0.890 0911
AC 1.738 4.251 0.894 0.879 0.907 0.883 0.871 0.895
Functional Reach Test 0.990 0.983 0.997 0.987 0.979 0.994

AB-lumbar region 0.86°/s (SS)/42.48°/s (HOA) and acceleration AB-lumbar region 0.09°/
s (SS)/7.31°/s* (HOA)]. This is confirmed when it is seen that the difference is always posi-
tive for HOA with average speeds in the acceleration of each of the axes (Table 4), which
shows they perform a wider, faster and accelerated movement, resulting in greater control
of the movement.

However, when the maximum and minimum velocity and acceleration between the
two groups were analyzed, it was found that SS values are higher than in HOA (Table 4),
showing a difference of —40.86°/s* and —2.81°/s* in the maximum and minimum accel-
eration in the trunk, and —40.58°/s*> and —37.32°/s* in the maximum and minimum
acceleration in the lumbar region. The same trend is observed in the minimum and max-
imum acceleration and speed on both sensors and each of the axes (Table 4). All this
supports the notion that SS have less motor control than HOA, which in turn denotes a
lack of balance in this population.

This statement is in line with findings in other studies [1, 35] in which a kinematic
registration was performed in balance tests with stroke survivors using a force platform.
In these, the unbalanced area (the area of the surface describing the participant during
balance control during the execution of FRT) (mm?/s) of stroke survivors is over twice
that of HOA (43.6/15.4 mm?/s) [1]. In turn, it can be seen that the speed difference in
the anterior—posterior and medial-lateral plane is twice as high among stroke survivors
and HOA, at 12.1/6.5 and 10.1/4.7 mm/s, respectively [1]. These data reaffirm the lack
of balance and postural control in stroke survivors. The movement in the Z-axis by the
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inertial sensors in this study cannot be compared because the force platform collected
only two dimensions.

However, in a previous study in which a kinematic search was conducted during the
implementation of the FRT by SS with inertial sensors located in the lumbar region and
trunk [28], we note the difference between the maximum and minimum values of accel-
eration and velocity to the means in the register made by both sensors in each of the
axes [AccMax —0.81°/s2/AccMin —2.98°/s> and AccMed 2.17°/s? (Y axis/trunk)] [28].
This proves that similar populations show high peaks of acceleration and speed in imple-
menting the FRT, pointing again the lack of movement and postural control by SS.

Kinematic variables

After reviewing the record made of the kinematic variables in the study of Merchan et al.
[28]. In stroke survivors during the implementation of the FRT, we note that the time taken
for the whole test (AC interval), the displacement achieved, and the average speed and
acceleration are similar to those values of these same variables reached in SS in the pre-
sent study. This justifies the reliability of inertial sensors as tools to measure movement
in stroke survivors during the execution of the FRT. Time, displacement, velocity and
acceleration in the AC range recorded by the sensor trunk were 15.68 s, 13.5°, 0.86°/s and
0.05°/s* [28], respectively, showing consistency with the values of this study in the same
interval and sensor in the lumbar region, 15.61 s, 13.58°, 0.83°/s and 0.06°/s%. Time, dis-
placement, velocity and acceleration in the AC range recorded by the lumbar region sensor
were 16.7 s, 14.98°, 0.89°/s and 0.05°/s* [28], respectively, and are consistent with the values
of the present study in the same interval and the same sensor placement, 16.4 s, 14.81°,
0.83°/s and 0.04°/s>.

This same trend is observed in the values of time, displacement, velocity and accelera-
tion in the other two intervals into which the FRT is divided, from the beginning of the
test to the maximum point (AB) and from the peak to the end of the test (BC), as much
in the sensor located in the trunk (L;—S,) as in the sensor located in the lumbar region

(T5).

FRT in SS and HOA

Analyzing other studies conducting the FRT in older people with chronic stroke [2, 36,
37], we note that the values of the functional scope achieved by these SS (13.17 cm) are
comparable to the average values in the FRT published in the aforementioned studies, with
averages of 18.7 ¢cm [2], 13.76 cm [36] and 18.8 cm [37], despite the difference between
the average age of SS in these studies, 53.5 years/54.4 years/58.9, and the present study,
72.3 years. It could say that the disease is more prevalent on limiting balance than the age
in older adults.

However, in studies such as Vernon et al. [38], in which stroke survivors suffered the
stroke 1 year before the study, approximately, and had received physiotherapy treat-
ment equilibrium, it is found that there is a difference in the range achieved in the FRT
(28.50 cm) in relation to the present study (13.17 cm), despite it being a sample of similar
mean age (68 and 72.33 years). The results presented in the study of Vernon et al. [37]
are much closer to the results obtained by the HOA group in this study (28.50 cm [38] to
36.30 cm [present study]). So one could argue that the negative impact that have stroke
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victims is reversible if early intervention, in the form of an assessment, monitoring and
treatment of suitable postural balance and control are carried out.

Moreover, the 36.30 cm achieved by the HOA (73.04 years) of the present study is con-
sistent with that obtained by the subjects of previous studies: 32.2 cm [39], 30.2 cm [40],
32 c¢m [41] and 36.79 cm [42]. The average age of these groups of subjects was practically
the same as those in this study: 70.3, 77, 74.14 and 65.3 years.

Reliability of measures

The reliability results obtained in this study show an intra-observer reliability of 0.876—
0.913 (trunk) and 0.881-0.916 (lumbar region) and inter-observer reliability of 0.860—
0.906 (trunk) and 0.869-0.902 (lumbar region) (Table 5), so it can be confirmed that the
levels of reliability are excellent (ICC > 0.80) [18, 19]. Furthermore, they are consistent with
previous studies consulted: intra: 0.80—0.94 and inter: 0.79-0.90 (trunk) [20], intra: 0.835—
0.891 and inter: 0.831-0.883 (trunk) and intra: 0.829—-0.878 and inter: 0.821-0.875 (lumbar
region) [28], intra: 0.68—0.95 [43] and intra: 0.78—0.94 [44].

In analyzing the reliability of the measures of the functional range it can be seen as in
the FRT that stroke survivors have higher levels of reliability to 0.98 [ICC: 0.990 (0.983—
0.997) and 0.987 (0.979-0.989) for intra-and inter-observer reliability]. These levels
are consistent with those observed in the previous study that performed the kinematic
record with two inertial sensors in the FRT and stroke survivors [ICC: 0.987 (intra) and
0.983 (inter-observer)] [28].

Strengths and weaknesses

As this is a pilot study the sample consisted of 10 participants, 5 HOA and 5 stroke sur-
vivors. Therefore, it would be necessary to extend the sample of participant up to 40 par-
ticipant, approximately, as performed previous studies with similar characteristics [36,
37]. Registration of the kinematic variables has wide applicability in both basic research
and clinical practice. Furthermore, comparison of the data obtained allows the charac-
teristics of movement and postural control in people who have suffered stroke to be met
reliably.

Conclusions

The SS show less functional reach, a narrower, slower and less accelerated movement, but
with higher peaks of acceleration and speed when they are compared with HOA. This
shows some imprecision in movement and lack of postural control, which can lead to a
greater imbalance and thus an increased risk of falls in stroke survivors.

The reliability and validity shown by the inertial sensors, combined with their low
cost and portability, make them ideal tools for identifying the differences in kinematic
variables among SS and HOA, both lumbar region and trunk. This fact, and the results
obtained in this study, will enable the characteristics of movement and gestures of SS to
be assessed more precisely in clinical practice, allowing interventions to be performed
and tracking to be more accurate in terms of postural control and balance, and, there-
fore, a greater risk prevention of falls.



Merchan-Baeza et al. BioMed Eng OnLine (2015) 14:49 Page 14 of 15

Abbreviations
FRT: Functional Reach Test; SS: stroke survivors; HOA: healthy older adults; Bl: Barthel Index; KS: Kolmogdérov-Smirnov.

Authors’ contributions

AICV and MGS have made contributions to conception of this study. JAMB and MGS participated in the acquisition

of data. JAMB, MGS and AICV participated in the analysis and interpretation of data and were involved in drafting the
manuscript or revising it critically for important intellectual content. All authors read and approved the final manuscript.

Author details

! Departamento de Psiquiatria y Fisioterapia, Instituto de Investigacion Biomédica de Mélaga (IBIMA), Universidad de
Maélaga, 29071 Malaga, Spain. * School of Clinical Sciences of the Faculty of Health, Queensland University of Technology,
Level 6, O Block, D Wing, Kelvin Grove, Brisbane, Australia.

Acknowledgements
The authors are grateful to the volunteers for their participation.

Compliance with ethical guidelines

Competing interests
The authors declare that they have no competing interests.

Received: 6 March 2015 Accepted: 5 May 2015
Published online: 30 May 2015

References

1. Sawacha Z, Carraro E, Contessa P, Guiotto A, Masiero S, Cobelli C. Relationship between clinical and instrumental
balance assessments in chronic post-stroke hemiparesis subjects. J Neuroeng Rehabil. 2013;10:95.

2. Obembe AO, Olaogun MO, Adedoyin R. Gait and balance performance of stroke survivors in South-Western

Nigeria—a cross-sectional study. Pan Afr Med J. 2014;17(Suppl):1.

Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011;377:1693-702.

4. Outermans JC, van Peppen RP, Wittink H, Takken T, Kwakkel G. Effects of a high-intensity task-oriented training on
gait performance early after stroke: a pilot study. Clin Rehabil. 2010;24:979-87.

5. Yavuzer G, Eser F, Karakus D, Karaoglan B, Stam HJ. The effects of balance training on gait late after stroke: a rand-
omized controlled trial. Clin Rehabil. 2006;20:960-9.

6. DeHaart M, Geurts AC, Huidekoper SC, Fasotti L, van Limbeek J. Recovery of standing balance in postacute stroke
patients: a rehabilitation cohort study. Arch Phys Med Rehabil. 2004;85:886-95.

7. Kamphuis JF, de Kam D, Geurts AC, Weerdesteyn V. Is weight-bearing asymmetry associated with postural instability
after stroke? A systematic review. Stroke Res Treat. 2013;2013:692137. doi:10.1155/2013/692137.

8. Gray CK, Culham E. Sit-to-stand in people with stroke: effect of lower limb constraint-induced movement strategies.
Stroke Res Treat. 2014;2014:683681. doi:10.1155/2014/683681.

9. Manaf H, Justine M, Omar M. Functional balance and motor impairment correlations with gait parameters
during timed up and go test across three attentional loading conditions in stroke survivors. Stroke Res Treat.
2014;2014:439304. doi:10.1155/2014/439304.

10. Maranesi E, Ghetti G, Rabini RA, Fioretti S. Functional reach test. Movement strategies in diabetic subjects. Gait
Posture. 2014;39:501-5.

11. ChoH, Kim J, Lee G-C. Effects of motor imagery training on balance and gait abilities in post-stroke patients: a
randomized controlled trial. Clin Rehabil. 2013;27:675-80.

12. Kang H-K, Kim Y, Chung Y, Hwang S. Effects of treadmill training with optic flow on balance and gait in individuals
following stroke: randomized controlled trials. Clin Rehabil. 2012;26:246-55.

13. DeWaard BP, Bentrup BR, Hollman JH, Brasseur JE. Relationship of the Functional Reach and Lateral Reach Tests. J
Geriatr Phys Ther. 2002;25:4.

14. Smith PS, Hembree JA, Thompson ME. Berg Balance Scale and Functional Reach: determining the best clinical tool
for individuals post acute stroke. Clin Rehabil. 2004;18:811-8.

15. Kavanagh JJ, Menz HB. Accelerometry. A technique for quantifying movement patterns during walking. Gait Pos-
ture. 2008;28:1-15.

16. Cuesta-Vargas Al, Galan-Mercant A, Williams JM. The use of inertial sensors system for human motion analysis. Phys
Ther Rev. 2010;15:462-73.

17. Giggins OM, Persson UM, Caulfield B. Biofeedback in rehabilitation. J Neuroeng Rehabil. 2013;10:60.

18. Gebruers N, Vanroy C, Truijen S, Engelborghs S, De Deyn PP. Monitoring of physical activity after stroke: a systematic
review of accelerometry-based measures. Arch Phys Med Rehabil. 2010;91:288-97.

19. Mancini M, Salarian A, Carlson-Kuhta P, Zampieri C, King L, Chiari L, et al. ISway: a sensitive, valid and reliable measure
of postural control. J Neuroeng Rehabil. 2012;9:59.

20. Kavanagh JJ, Morrison S, James DA, Barrett R. Reliability of segmental accelerations measured using a new wireless
gait analysis system. J Biomech. 2006,39:2863-72.

21. Mizuike C, Ohgi S, Morita S. Analysis of stroke patient walking dynamics using a tri-axial accelerometer. Gait Posture.
2009;30:60-4.

22. Grimpampi E, Bonnet V, Taviani A, Mazza C. Estimate of lower trunk angles in pathological gaits using gyroscope
data. Gait Posture. 2013;38:523-7.

w


http://dx.doi.org/10.1155/2013/692137
http://dx.doi.org/10.1155/2014/683681
http://dx.doi.org/10.1155/2014/439304

Merchan-Baeza et al. BioMed Eng OnLine (2015) 14:49

23.

24,

25.

26.

27.

28.

29.
30.

31

32.

33

34

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Leutheuser H, Schuldhaus D, Eskofier BM. Hierarchical, multi-sensor based classification of daily life activities: com-
parison with state-of-the-art algorithms using a benchmark dataset. PLoS One. 2013;8:e75196.

Williams JR. The Declaration of Helsinki and public health. Bull World Health Organ. 2008;86:650-2.

Tistad M, von Koch L, Sjostrand C, Tham K, Ytterberg C. What aspects of rehabilitation provision contribute to self-
reported met needs for rehabilitation one year after stroke—amount, place, operator or timing? Health Expect Int J
Public Particip Health Care Health Policy. 2013;16:24-35.

Duncan PW, Weiner DK, Chandler J, Studenski S. Functional reach: a new clinical measure of balance. J Gerontol.
1990;45:M192-7.

Perez-Cruzado D, Gonzdlez-Sdnchez M, Cuesta-Vargas Al. Parameterization and reliability of single-leg balance

test assessed with inertial sensors in stroke survivors: a cross-sectional study. Biomed Eng Online. 2014;30(13):127.
doi:10.1186/1475-925X-13-127.

Merchan-Baeza JA, Gonzalez-Sanchez M, Cuesta-Vargas Al. Reliability in the parameterization of the functional reach
test in elderly stroke patients: a pilot study. Biomed Res Int. 2014;2014:637671.

Collin C, Wade DT, Davies S, Horne V. The Barthel ADL Index: a reliability study. Int Disabil Stud. 1988;10:61-3.

Duffy L, Gajree S, Langhorne P, Stott DJ, Quinn TJ. Reliability (inter-rater agreement) of the Barthel Index for assess-
ment of stroke survivors systematic review and meta-analysis. Stroke. 2013;44:462-8.

Duncan PW, Wallace D, Lai SM, Johnson D, Embretson S, Laster LJ. The stroke impact scale version 2.0 evaluation of
reliability, validity, and sensitivity to change. Stroke. 1999;30:2131-40.

D'Olhaberriague L, Litvan I, Mitsias P, Mansbach HH. A reappraisal of reliability and validity studies in stroke. Stroke.
1996,27:2331-6.

Weiner DK, Duncan PW, Chandler J, Studenski SA. Functional reach: a marker of physical frailty. J Am Geriatr Soc.
1992,40:203-7.

Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports
medicine. Sports Med Auckl NZ. 1998;26:217-38.

Doheny EP, McGrath D, Greene BR, Walsh L, McKeown D, Cunningham C, et al. Displacement of centre of mass
during quiet standing assessed using accelerometry in older fallers and non-fallers. In: 2012 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2012. p. 3300-3.

Suh HR, Han HC, Cho H. Immediate therapeutic effect of interferential current therapy on spastic-

ity, balance, and gait function in chronic stroke patients: a randomized control trial. Clin Rehabil. 2014.
doi:10.1177/0269215514523798.

Kim D, Ko J, Woo Y. Effects of dual task training with visual restriction and an unstable base on the balance and
attention of stroke patients. J Phys Ther Sci. 2013;25:1579-82.

Vernon S, Paterson K, Bower K, McGinley J, Miller K, Pua Y-H, et al. Quantifying individual components

of the timed up and go using the kinect in people living with stroke. Neurorehabil Neural Repair. 2014.
doi:10.1177/1545968314529475.

Muehlbauer T, Besemer C, Wehrle A, Gollhofer A, Granacher U. Relationship between strength, power and balance
performance in seniors. Gerontology. 2012;58:504-12.

Bellew JW, Fenter PC. Control of balance differs after knee or ankle fatigue in older women. Arch Phys Med Rehabil.
2006;87:1486-9.

Dite W, Temple VA. A clinical test of stepping and change of direction to identify multiple falling older adults. Arch
Phys Med Rehabil. 2002;83:1566-71.

Hageman PA, Leibowitz JM, Blanke D. Age and gender effects on postural control measures. Arch Phys Med Rehabil.
1995;76:961-5.

Marchetti GF, Bellanca J, Whitney SL, Lin JC-C, Musolino MC, Furman GR, et al. The development of an accelerome-
ter-based measure of human upright static anterior—posterior postural sway under various sensory conditions: test—
retest reliability, scoring and preliminary validity of the balance accelerometry measure (BAM). J Vestib Res Equilib
Orientat. 2013;23:227-35.

Doheny EP, Walsh C, Foran T, Greene BR, Fan CW, Cunningham C, et al. Falls classification using tri-axial accelerom-
eters during the five-times-sit-to-stand test. Gait Posture. 2013;38:1021-5.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

® Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

® Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolMed Central

Page 15 of 15


http://dx.doi.org/10.1186/1475-925X-13-127
http://dx.doi.org/10.1177/0269215514523798
http://dx.doi.org/10.1177/1545968314529475

	Comparison of kinematic variables obtained by inertial sensors among stroke survivors and healthy older adults in the Functional Reach Test: cross-sectional study
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Design and participants
	Functional Reach Test (FRT)
	Inertial sensors
	Procedure
	Outcome measures
	Direct variables
	Indirect variables

	Data analysis

	Results
	Discussion
	Kinematic variable differences
	Kinematic variables
	FRT in SS and HOA
	Reliability of measures
	Strengths and weaknesses

	Conclusions
	Authors’ contributions
	Received: 6 March 2015   Accepted: 5 May 2015References




