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Abstract 

Background:  Blood smear microscopic images are routinely investigated by haema-
tologists to diagnose most blood diseases. However, the task is quite tedious and time 
consuming. An automatic detection and classification of white blood cells within such 
images can accelerate the process tremendously. In this paper we propose a system to 
locate white blood cells within microscopic blood smear images, segment them into 
nucleus and cytoplasm regions, extract suitable features and finally, classify them into 
five types: basophil, eosinophil, neutrophil, lymphocyte and monocyte.

Dataset:  Two sets of blood smear images were used in this study’s experiments. 
Dataset 1, collected from Rangsit University, were normal peripheral blood slides under 
light microscope with 100× magnification; 555 images with 601 white blood cells 
were captured by a Nikon DS-Fi2 high-definition color camera and saved in JPG format 
of size 960 × 1,280 pixels at 15 pixels per 1 μm resolution. In dataset 2, 477 cropped 
white blood cell images were downloaded from CellaVision.com. They are in JPG for-
mat of size 360 × 363 pixels. The resolution is estimated to be 10 pixels per 1 μm.

Methods:  The proposed system comprises a pre-processing step, nucleus segmenta-
tion, cell segmentation, feature extraction, feature selection and classification. The main 
concept of the segmentation algorithm employed uses white blood cell’s morphologi-
cal properties and the calibrated size of a real cell relative to image resolution. The seg-
mentation process combined thresholding, morphological operation and ellipse curve 
fitting. Consequently, several features were extracted from the segmented nucleus and 
cytoplasm regions. Prominent features were then chosen by a greedy search algorithm 
called sequential forward selection. Finally, with a set of selected prominent features, 
both linear and naïve Bayes classifiers were applied for performance comparison. This 
system was tested on normal peripheral blood smear slide images from two datasets.

Results:  Two sets of comparison were performed: segmentation and classification. 
The automatically segmented results were compared to the ones obtained manually 
by a haematologist. It was found that the proposed method is consistent and coherent 
in both datasets, with dice similarity of 98.9 and 91.6% for average segmented nucleus 
and cell regions, respectively. Furthermore, the overall correction rate in the classifica-
tion phase is about 98 and 94% for linear and naïve Bayes models, respectively.

Conclusions:  The proposed system, based on normal white blood cell morphology 
and its characteristics, was applied to two different datasets. The results of the cali-
brated segmentation process on both datasets are fast, robust, efficient and coherent. 
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Background
Blood smear images from a microscope provide important information for diagnosing and 
predicting diseases in haematological analysis. Blood samples are prepared and sent to a 
blood cell counter for calculating each type of cell. If haematologists find an unusual num-
ber of cells in any type, they will investigate further by looking into the microscopic blood 
smear, recount the number of cells and check their morphology in more detail. Any blood 
cells with irregular shapes or characteristics may trigger a presence of severe diseases. The 
visual inspection by haematologists is quite tedious and time consuming. Therefore, an 
automating process is highly desirable to accelerate the process. Three kinds of blood com-
ponents present in a blood smear are red blood cells (RBCs), white blood cells (WBCs) 
and platelets. The RBCs transport oxygen from the lungs to all living tissues in the body 
and carry away carbon dioxide. They are normally found in up to 40–50% of the total 
blood volume. RBCs’ diameter is 6–8 μm. The WBCs play an important role in the body’s 
immune system by defending the body against both infectious disease and foreign materi-
als. Therefore, analysis of WBC characteristics is essential.

Characterized by the presence of granules in their cytoplasm, WBCs can be classified 
into two groups (see Table 1). Basophil, eosinophil and neutrophil are granulocytes.

Basophil is responsible for allergic reaction and antigen. Basophil’s granules are 
of irregular distribution. Their large size appears dark-blue and visible on top of the 
nucleus that may obscure the cell nucleus. Eosinophil, playing a role in killing parasites, 
has lobed nuclei. Eosinophil’s granules are large, spherical and appear orange. Neutro-
phil is most abundant in the blood stream. It has multiple lobed nuclei. Neutrophil’s 
granules are defined by small red granules within blue cytoplasm resulting in lilac or 
pink colour. Lymphocyte and monocyte are agranulocytes. The texture of their nuclei 

Table 1  Each type of WBC size, approx. % in adults and diameter [16]

Type Granulocytes Agranulocytes

Basophil Eosinophil Neutrophil Lymphocyte Monocyte

Microscopic 
image

Approx. % in 
adults

0.4 2.3 62 30 5.3

Diameter (μm)10–16 9–15 9–15 Small lymphocytes 
7–8

Large lymphocytes 
12–18

12–20

Meanwhile, the classification of normal white blood cells into five types shows high 
sensitivity in both linear and naïve Bayes models, with slightly better results in the linear 
classifier.

Keywords:  White blood cell, Image segmentation, Ellipse curve fitting, Feature 
extraction, Classification
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is generally uniform. Meanwhile, the nucleus of the lymphocytes is round, that of the 
monocytes resembles a kidney. Nucleus and cytoplasm morphological features provide a 
means to identify and classify each type of WBCs. Other features, like size and approxi-
mated percentage found in adults, are also detailed in Table 1. The first part of this paper 
focuses on segmentations of the nucleus and the cytoplasm regions of the WBCs. The 
segmented results will be used to classify their types in the second part.

Much has been written on WBC segmentation. Ramoser et al. [1] used a set of fea-
tures to describe cytoplasm and nucleus properties and applied pairwise support vector 
machine (SVM) classification to discriminate them. Fang et al. [2] implemented a fast 
WBC image segmentation using an on-line trained neural network. Their algorithm is 
based on the mean shift method and uniform sampling to reduce the training set while 
preserving the most distributed information. Bergen et al. [3] combined pixel-wise clas-
sification with template matching to locate erythrocytes and used the level-set approach 
to get exact leukocyte nucleus and plasma regions. Mohamed et  al. [4] proposed an 
automatic blood cell nuclei segmentation based on grey scale contrast enhancement and 
filtering before removing false objects by finding the minimum size. Rezatofighi et  al. 
[5] introduced another approach to WBC nuclear segmentation based on the orthogo-
nality theory and Gram-Schmidt process. Sadeghian et al. [6] reviewed a framework for 
WBC segmentation. The framework is an integration of several digital image process-
ing algorithms to segment nucleus and cytoplasm. Nucleus segmentation algorithms are 
based on morphological processing; whereas, cytoplasm algorithms are based on pixel 
intensity threshold. The limitation of this framework, however, is that only a small set of 
sub-images are tested. Ghosh et al. [7] implemented an automated approach to leuko-
cyte recognition based on fuzzy divergence and modified thresholding techniques. They 
investigated the Gamma, Gaussian and Cauchy distributions of fuzzy membership func-
tions through the segmented nuclei areas. It was found that Cauchy distribution pro-
vided the best segmentation results among the three. In addition, image thresholding 
was applied to improve the recognition rate.

There are also a few studies related to WBC classification. Yampri et al. [8] proposed 
the Eigen-face concept for the pre-classification of blood cell based on parametric fea-
ture detection. The derived Eigen-value and Eigen-vector provide the important fea-
tures in the classification process. First, the WBC images are classified into two groups 
based on the number of nucleus lobes. Group A comprised eosinophil and neutrophil 
with only one nucleus. Group B included WBC with multiple nuclei. Group B was fur-
ther divided according to the nuclei’s size. Monocyte (in group B1) had small nuclei; 
whereas, basophil and lymphocyte (group B2) had larger nuclei. Finally, the authors 
applied principal component analysis (PCA) to groups A and B2 to further classify each 
WBC within the groups. The training phase of the classifiers used a library of 50 WBC 
patterns. In the testing phase, they worked on 50 samples of data. The experiment was 
conducted on normal cells. The results showed a correct classification rate of about 92%. 
Rezatofighi et al. [9] introduced another approach to WBC classification. It is based on 
Gram–Schmidt orthogonalization, and they used the snake algorithm [10] to segment 
nucleus and cytoplasm. Then, they extracted various features from the segmented region 
and selected the most discriminative features using a Sequential Forward Selection (SFS) 
algorithm. Next, they compared the performances of two classifiers: Artificial Neural 
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Network (ANN) and SVM. Extracted features were composed of the morphological fea-
tures, e.g., nucleus and cytoplasm areas, nucleus and whole cell perimeters, the num-
ber of separated parts of the nucleus, means and variances of nucleus and cytoplasm 
boundaries, and the ratio between cytoplasm and nucleus areas. Texture features such 
as co-occurrence matrix and local binary patterns were also used. The co-occurrence 
matrix included 14 features representing contrast, homogeneity, entropy and other tex-
ture quantities.

Su et al. [11] proposed an idea to find the discriminating region of white blood cells 
in the Hue-Saturation-Intensity (HSI) colour space. The colours of each pixel in the dis-
criminating region were considered as nucleus and cytoplasm of WBC. Then a mor-
phological process was used to segment WBC. They extracted geometrical, colour, and 
LDP-based texture features from the segmented result. These features were used to clas-
sify five types of WBCs using three kinds of neural networks: multilayer perceptron, the 
SVM and the hyper rectangular composite neural networks. Tabrizi et al. [12] proposed 
to use Gram-Schmidth orthogonalization and the snake algorithm to segment nucleus 
and cytoplasm, respectively. They extracted three features from the segmented result. 
The best features were chosen through PCA. Finally, classification into five types of 
white blood cells was done with a Learning Vector Quantization (LVQ) neural network 
[13, 14]. 302 images in all were tested. Overall accuracy was about 96%. Theera-Umpon 
and Dhompongsa [15] showed that a nucleus alone could classify WBCs. They tested 
their algorithm with bone marrow images. The algorithm applies mathematic morphol-
ogy to analyze WBC nucleus based features and uses naïve Bayes classifiers and ANNs 
with five-fold-cross validation. The result showed that features from the nucleus alone 
led to a 77% classification rate on average.

This paper presents a method to locate WBCs in microscopic blood smear samples 
and segment them into nucleus and cytoplasm regions. Features are extracted, and then 
SFS is applied to select a subset of features without any transformation. Finally, linear 
and naïve Bayes classifiers are employed to sort the cells into eosinophil, lymphocyte, 
monocyte and neutrophil. The performance of both classifiers is compared. The details 
of this proposed method are in “Methods”. Next section shows the experiment results 
and discussion. Final section is conclusion.

Datasets

Blood smear microscopic images were collected from normal peripheral blood slides 
(dataset 1). The study’s algorithm was tested on 555 images (a total of 601 WBC) under 
a light microscope with 100× magnification captured by a high-definition color camera 
head Nikon DS-Fi2. All images were recorded and saved in JPG format of 960 × 1,280 pix-
els. The calibration ruler scale from the manufacturer was 10 μm equal to 150 pixels. In 
addition, a database of white blood cells downloaded from the CellaVision Competency 
Software (dataset 2) was tested for robustness. Dataset 2 had 477 images with a total of 477 
WBCs. Each image was saved in JPG format of 360 × 363 pixels. The calibration scale was 
estimated from the size of RBCs to be 7 μm equal to 70 pixels.

For comparison, all images were also manually segmented into nucleus and cell (or 
cytoplasm) areas and classified into normal leukocytes: basophil, eosinophil, lympho-
cyte, monocyte and neutrophil by a hematologist.
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Methods
As shown in Figure 1, the proposed system could be divided into five main steps: pre-pro-
cessing, segmentation, feature extraction, feature selection and classification.

Pre‑processing

Since there are five different types of white blood cells based on their shapes, sizes and 
existence of granules, it is necessary and very challenging to segment the WBCs out of 
each image first. It is obvious that the nucleus of WBCs in all images appears in violet 
color. As shown in Figure 2, among the three RGB color components, the nucleus region 
in violet color has the least value in the green channel when compared to other regions 
such as cytoplasm or background. Therefore, the nucleus region was enhanced in the input 
images by averaging the pixel values in the red and blue channels together and then divid-
ing the sum by the intensity value of the green channel. The process was conducted on 
images in both the 8-bit-unsigned integer and the double precision floating point formats, 

Figure 1  A block diagram of proposed system.

Figure 2  Pixel intensity among RGB channel in each area and zoom in calibration ruler.
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as shown in the block diagram of Figure 3. Histogram equalization was then applied to 
redistribute the image intensity to cover the whole intensity range of both images. Binary 
conversion was used to convert the image into binary format. The final image in the 8-bit-
unsigned integer format image I3 was used as the nucleus enhanced image. The other, I6, 
was used as the WBC enhanced image.

Nucleus segmentation

After the preprocessing step, erosion and dilation morphological operators with flat disk 
structuring element of radius 0.33 μm (dataset 1 is 5 pixels, dataset 2 is 3 pixels) was 
applied to the nucleus enhanced image to remove any noisy pixels.

Figure 3  Block diagram of pre-processing step and segmentation process.
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Figure 4a, b approximate the minimum area of the nucleus by considering that only 
some types of WBCs have a nucleus with multiple lobes such as the eosinophil and the 
neutrophil. As shown in Table 1, although both of their diameters are in the same range 
of 9–15 μm, eosinophil nucleus usually has two lobes separated by a very narrow fila-
ment or stand, while the neutrophil nucleus has two to five lobes separated by very nar-
row filaments or stands. According to [16], the nucleus area to cytoplasm area ratio of 
the neutrophil is approximately 1:3. The nucleus area is a quarter of the total minimum 
area of the WBC. In this experiment, it was assumed that the estimated nucleus of neu-
trophil would be separated equally into 3 lobes. The minimum area for each lobe can be 
calculated as follows:

Total minimum area of neutrophil = (9 × 10−6 m)2 = 8.1 × 10−11 m2

Nucleus area = Total cell area/4 = 20.25× 10−12 m2

Minimum nucleus lobe area = Nucleus area/3 = 6.75× 10−12 m2

Minimum nucleus lobe area = 6.75× 10−12 m2
= (2.6× 10−6 m)2

Calculation of minimum nucleus lobe area in pixel unit from image resolution
For dataset 1, image resolution is 150 pixels/(10 × 10−6 m)
Minimum nucleus lobe area =

(

2.6× 10−6 m×
150 pixels

(10×10−6 m)

)2
= (39 pixels)2

Minimum nucleus lobe area = (39 pixels× 39 pixels) = 1, 521 pixels

For dataset 2, image resolution is 70 pixels/
(

7× 10−6 m
)

Minimum nucleus lobe area =
(

2.6× 10−6 m×
70 pixels

(7×10−6m)

)2
= (26 pixels)2

Minimum nucleus lobe area = 26 pixels× 26 pixels = 676 pixels

A minimum nucleus lobe area at 1,500 pixels and 670 pixels for dataset 1 and 2, was 
used respectively. Sometimes, a hole did exist inside the nucleus, (see Figure 4a), caused 
by the phagocytosis process of the WBCs; therefore, any holes with an area under 
1.49 μm × 1.49 μm (500 pixels in dataset 1 and 220 pixels in dataset 2) was filled. The 
segmented multi-lobe nucleus could appear as multiple cells next to each other, which 
could lead to misinterpretation. Therefore, morphology dilation was applied with a flat 
disk structuring element of radius 2 μm (28 pixels for images in dataset 1 and 20 pixels 
for images in dataset 2) to merge them into one cell.

White blood cell segmentation

The problems found in WBC segmentation are its variety of shapes and sizes. Moreover, 
the color of the WBC’s cytoplasm is indistinguishable from adjacent RBCs, making it even 
more challenging. Further processing is needed for more accurate results. Since cytoplasm 
surrounds the entire nucleus, it was assumed that all pixels connected to the nucleus pixels 

Figure 4  a Neutrophil with multilobes, b eosinophil with multilobes and c hole inside nucleus from phago-
cytosis process of WBCs.
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are candidates for the WBC. They can possibly be either white blood cell alone or white 
blood cell adjacent to other cells.

The method to separate adjacent cells is done under the assumption that the nucleus is 
in the center of the WBC. Therefore, the radial lines were created from the center of the 
convexed nucleus to the boundary of the object of interest as described by Eqs. (1) and (2)

where 
(

x1, y1
)

 is the coordinate of the center of the convexed nucleus and 
(

x2, y2
)

 is the 
coordinate at each position on the boundary of the object of interest.

The total number of white pixels along each line representing the length of each radial 
line should be approximately of the same value. Sometimes, a nucleus is not at the center 
of the cell and the selected object may not be a single cell, see Figure 5b–d. To handle 
these problems, a convex hull of the selected nucleus object was created to avoid the 
case of multi-lobe nucleus. Then, the convex hull nucleus image was subtracted from the 
selected object. Next, radial lines were drawn on the subtracted image at the centroid of 
the convex hull to the boundary of the selected object. Finally, the total number of white 
pixels along each radial line were counted and a threshold value was set as the average 
value of the total white pixels found from each line with additional 2  μm (30 pixels for 

(1)

[

y1
y2

]

=

[

1 x1
1 x2

][

a0
a1

]

,

(2)y(x) =
x − x2

x1 − x2
y1 +

x − x1

x2 − x1
y2,

Figure 5  The estimate model when the lilac line represents the nucleus boundary, the blue line represents 
the WBC boundary, the red line represents the RBC boundary and the radial line is the line which originates 
from the centre of the nucleus and length equals the major axis length of convex nucleus. a–d Represent the 
different position of the nucleus while the blue star is the candidate point of cell boundary.
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dataset 1 and 20 pixels for dataset 2) to compensate for the case when the nuclei are not 
at the center. If the number of peaks was more than the threshold value, it was consid-
ered a part of adjacent cells.

There were then three possible outcomes: (1) the whole object is identified as WBC if no 
adjacent cells exist, (2) the object is next to some other cells, in which case, further segmen-
tation is required and (3) the object’s area is more than 20% of the whole image area (esti-
mated from the ratio between maximum possible area in case 2 to the total area). In this 
case, morphological dilation was applied with a disk structuring element of radius 6 μm, or 
the minimum diameter of RBCs within the segmented nucleus. Finally, the ‘AND’ operation 
was used to combine the object of interest with the dilated image. Only part of the object, 
when segmented nucleus is a member, was considered in the next segmentation step.

Since RBCs are the most prevalent component found in blood smear images, its diam-
eter can be estimated from a calibration ruler. Each WBC has a nucleus, cytoplasm 
and some granules. Edge detector alone can hardly distinguish the real WBC bound-
ary. However, the outer edge of interested object can be assumed to be the boundary of 
white blood cell if its radial lines from the center of the nucleus are less than the major 
axis of the convex nucleus. This study’s models when the nucleus is not at the center of 
the WBC are illustrated in Figure 5. Each radial line follows the equations

where point 
(

x1, y1
)

 is the center of the convex nucleus image, point 
(

x2, y2
)

 is the end 
point of the radial line, r is the length of the major axe of the convex nucleus image, and 
θ is the angle of radial line for θ = [0, 0.1, 0.2, . . . , 2π ].

First, the Canny edge algorithm was applied to create an edge candidate image. Then, 
radial lines with radius equal to the length of the major axis of the convex object was 
drawn with the origin on the boundary of the convex hull image. The points under con-
sideration had to follow two conditions: They were at the end of the intersection between 
the edge point and the radial line, and the end point of the radial line in the selected 
object in RGB image, see Figure 6a, must have zero intensity value. Any edge points on 
the radial lines, shown as blue points in Figure 6d, g, j, were candidate cell edges. More 
radial lines provided finer segmented results. The angles between radius lines were 0.3, 
0.2 and 0.1 rad, respectively. Next, the direct least square fitting for an ellipse shape pro-
posed by Fitzgibbon et al. [17] was applied to these candidate points. With the obtained 
ellipse parameters, the boundary of the WBC could be lineated. The ‘AND’ operation 
was then applied to the estimated area of nucleus and final cell segmentation. The results 
are as shown in Figure 6k. Finally, cytoplasm region was also segmented by subtracting 
the segmented cell area from the segmented nucleus area.

Feature extraction and selection

The criteria used to extract meaningful features are granule existence, the number of 
nucleus lobes, color intensity and variance values in nucleus and cytoplasm, the differ-
ence in smear color values and the size of cell or nucleus. A large number of features could 
be extracted from both the nucleus and cell segmentation results. Some interesting fea-
tures used in this paper are mean intensity, variance, number of concave points, area, area 

(3)
x2 = x1 + r cos θ ,

y2 = y1 + r sin θ ,
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ratio, perimeter, roundness, entropy and intensity ratio. However, only features that have 
high correlation with the class prediction were selected. In this paper, SFS technique was 
applied to choose suitable features.

Features extracted from binary segmented image

Nucleus and cell segmented regions are a connected area in binary image Oi, i > 0, as in 
Eq. (4)

The area Ai of the ith object (Oi) is the total number of pixels as in Eq. (5)

The area ratio is computed from the ratio of the nucleus area to the cell area.

(4)Oi

(

x, y
)

=

{

1, for points on the object
0, for background points

.

(5)Ai =

M−1
∑

x=0

N−1
∑

y=0

Oi

(

x, y
)

.

Figure 6  Cell segmentation step. a Selected object in RGB, b segmented nucleus, c convex hull of nucleus 
region, d radii line with centre at the centroid of convex hull, radius equal to major axis length, angle 
between radii line is 0.3 rad, blue point is the candidate point, e applied direct least square for ellipse fitting 
to the candidate point, f segmented result: the red contour is the nucleus region, the green contour is the cell 
region, g–i and j–l are the repeated step of d–f with angle between radii line of 0.2 and 0.1 rad respectively.
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The perimeter Pi of the object Oi can be calculated by extracting the edge image of the 
object and counting the total number of pixels on the edge image.

The roundness of the object Oi can then be calculated from Eq. (6)

Features extracted from statistical data based on histogram

The mean intensity of the gray values in each R, G or B channel of the segmented image 
follows Eq. (7)

rj is the jth gray level, which has a probability as p
(

rj
)

.
To calculate the variance,

Entropy describes the complexity within the image; an image with complex scene has 
high entropy. The equation is as in Eq. (9)

The number of concavities is found by subtracting the segmented nucleus image from 
its convex hull. As in Figure 7d, the total number of intersecting points and the threshold 
level divided by two is the total number of concavities.

The mean intensity ratio is the ratio between two colors in each region. This study con-
siders the mean intensity ratio the G channels of the segmented nucleus and cell areas. 

(6)Ri =
4πAi

P2
i

.

(7)m =

L−1
∑

j=0

rjp
(

rj
)

,

(8)σ 2
=

KL−1
∑

j=0

(

rj −m
)2
p
(

rj
)

.

(9)entropy = −

L−1
∑

j=0

p
(

rj
)

log2
[

p
(

rj
)]

.

Figure 7  The interested object in the second case. a Original image, b preprocessing image, c interested 
object, d, e concave checking and f segmented cell.
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The mean intensity ratio between the R and B channels of segmented cytoplasm area 
segmented area was also used.

This study employed 15 features as follows:

	 1.	 mean intensity values of the red channels in the nucleus area,
	 2.	 variance of the intensity values of the red channels in the nucleus area,
	 3.	 mean intensity values of the green channels in the nucleus area,
	 4.	 variance of the intensity values of the green channels in the nucleus area,
	 5.	 mean intensity in cytoplasm area in green channel,
	 6.	 variance of intensity values of the green channels in cytoplasm area,
	 7.	 the number of concave points found in nucleus area,
	 8.	 the ratio between nucleus and cell areas,
	 9.	 nucleus area,
	10.	 cell roundness,
	11.	 entropy of nucleus in blue channel,
	12.	 entropy of cell in red channel,
	13.	 the ratio of mean intensity value in the red and blue channel in cytoplasm area,
	14.	 the ratio of mean intensity value in red and green channel in cell area,
	15.	 the ratio of mean intensity value in green and red channels in the nucleus area.

Classification

The result of the segmented nucleus area can be used to identify the basophil. As 
stated earlier that basophil has granules all over the whole cell and its area is more than 
100 × 10−12 m2, this study estimated the minimum diameter of the basophil as shown in 
Table 1, (22,500 pixels and 10,000 pixels in area for dataset 1 and 2, respectively) which 
is larger than all other granulocytes but between the monocyte and large lymphocyte; 
whereas, the intensity values in the red and blue channels have variance higher than both 
agranulocyte. So, nucleus area, the variance of intensity in red and blue channels of the 
segmented area, classify to basophil. Cell segmentation to basophil can be a convex hull of 
the nucleus.

Forward feature selection was used to choose significant features. However some fea-
tures had a different range compared with others. Therefore, they needed to be normal-
ized before any classification. This was done by unit vector normalization.

Next, linear classifier was used to recognize each type of WBC and then compare the 
classification results with naïve Bayes classifier. Since the total number of images for 
each cell type could vary, the tenfold Leave One Out technique was used for cross vali-
dation testing.

Results
Segmentation results

The 8-bit-unsigned integer and the double precision format images are shown in I1 and 
I4 of Figure 3. The image after histogram equalization, as shown as I2 of Figure 3, depicts 
a quite distinct nucleus area while image I5 of Figure 3 covers all RBC, and the cytoplasm 
area of WBCs and the dark region represents the background. The images I7, I8 and I9 in 
Figure  3 represent the results from nucleus segmentation. The image I10 is the selected 
object composing WBC. The selected object is one of the three cases as shown in I11, I12 
and I13. The interested object in three cases is shown in Figures 7, 8, and 9 respectively. 
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Figure 6d, g, j show candidate cell edges. More radial lines would provide finer segmented 
results. In this figure, angles between radial lines are 0.3, 0.2, and 0.1 rad. A 0.1 rad angle 
was used between radial lines for segmenting.

The segmentation results are shown in Figure 6. The nucleus region is lineated by the 
red line. The whole WBC boundary is drawn in green, and the candidate edge points are 
masked by the blue stars.

This segmentation method was tested on 601 WBCs in 555 digital microscopic images 
collected from the Pathology Unit, Biomedical Science Department, Faculty of Science, 
Rangsit University and WBC images downloaded from the CellaVision Competency 
database. The number of cells characterized by each WBC type in both datasets are 
shown in Table 2. The study’s algorithm was test on both datasets with some parameters 
set according to different image resolutions and image sizes. The segmentation results of 
various WBCs from dataset 1 are shown in Figure 10. The overall step of this algorithm 
from dataset 2 is presented in Figure 11.

Figure 8  The interested object in the first case. a Original image, b preprocessing image, c interested object, 
d, e concave checking and f segmented cell.

Figure 9  The interested object in the third case. a Original image, b preprocessing image, c interested 
object, d dilate nucleus area, e, f concave checking and g segmented cell.
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This algorithm can find the WBC position correctly. The performance of the segmen-
tation results was then evaluated by comparing the segmented area from the proposed 
algorithm with the manual segmentation performed by the haematologist. Similarity 
measures based on regional overlapping dice similarity, false positive ratio (FPR) and 
false negative ratio (FNR) were used. The definitions and metrics to report the results of 
this study are as follows:

 where true positive (TP) is the number of cell pixels of interest correctly identified as 
cell pixels of interest, false positive (FP) is the number of non-interesting cell pixels that 
are incorrectly identified as cell pixels of interest, true negative (TN) refers to the num-
ber of non-interested cell pixels that are correctly identified as non-interesting pixels and 
false negative (FN) is the number of cell pixels of interest that are incorrectly identified 
as non-interesting cell pixels.

(10)Dice similarity =
2TP

2TP+ FP+ FN
,

(11)False positive ratio =
FP

TN + FP
,

(12)False negative ratio =
FN

TP+ FN
,

Table 2  Dataset

Type Basophil Eosinophil Lymphocyte Monocyte Neutrophil Total

The digital microscopic image 
(dataset 1)

5 9 175 38 374 601

CellaVision dataset (dataset 2) 1 5 158 42 271 477

Total 6 14 333 80 645 1,078

Figure 10  Segmentation result of various WBC from dataset 1. a Basophil, b eosinophil, c lymphocyte, d 
lymphocyte and neutrophil, e monocyte and f lymphocyte and neutrophil.
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Table 3, shows that the dice similarity for all types of WBC in both nucleus and cell 
segmentations has values more than 82%. This verifies that the proposed segmenta-
tion algorithm provides very good results in agreement with the manually segmented 
gold standard. However, it was found that some eosinophils in dataset 1 had granules 
that cover the whole cell, see Figure  12 row (1). This may lead to some nucleus area 
segmentation error. Moreover, the lowest value of 0.825 dice similarity for monocyte 
cell segmentation in dataset 1 could be caused by its transparent cytoplasm which is 

Figure 11  All algorithm processes from dataset 2. a Original image, b, c nucleus segmentation, d seg-
mented nucleus area, e, f cell segmentation with interested area, g concave consideration, h candidate point 
finding and i segmented cell area.

Table 3  Performance of segmentation

Type The digital microscope collected image 
(dataset 1)

CellaVision dataset (dataset 2)

Baso Eos Lym Mono Neu Average Baso Eos Lym Mono Neu Average

Nucleus segmentation

 Dice  
similarity

0.950 0.868 0.977 0.940 0.948 0.937 0.881 0.923 0.972 0.875 0.995 0.929

 FPR 0.002 0.163 0.002 0.000 0.002 0.034 0.205 0.131 0.056 0.025 0 0.083

 FNR 0.094 0.098 0.042 0.108 0.094 0.087 0.051 0.037 0.005 0.193 0.009 0.059

Cell segmentation

 Dice  
similarity

0.955 0.836 0.919 0.825 0.899 0.887 0.913 0.947 0.963 0.945 0.966 0.947

 FPR 0.008 0.275 0.072 0.225 0.089 0.134 0.002 0.092 0.052 0.061 0.038 0.049

 FNR 0.078 0.100 0.089 0.146 0.112 0.105 0.159 0.023 0.023 0.052 0.030 0.057



Page 16 of 19Prinyakupt and Pluempitiwiriyawej. ﻿BioMed Eng OnLine  (2015) 14:63 

indistinguishable from background, see Figure 12 row (2). Otherwise, it seem that the 
lowest value of 0.875 nucleus similarity for monocyte nucleus segmentation in dataset 2 
may cause a fine chromatin pattern and cytoplasmic vacuoles as shown in Figures 12 and 
13, while cell segmentations in dataset 2 have values over than 0.913.

The average of FPR on nucleus and cell segmentation of dataset 1 is 0.034 and 0.134, 
respectively. The average of FNR on nucleus and cell segmentation of dataset 1 is 0.087 
and 0.105, respectively. The average of FPR and FNR of dataset 2 was lower than dataset 
1 for both nucleus and cell segmentation since most of image has the WBC with no con-
nected cell.

Figure 12  Error of segmentation on dataset 1. When row(1) and row(2) are eosinophil, row(3) is monocyte, 
column a original image, b segmented result, c haematologist segmented result: red line is nucleus boundary 
and blue line is cell boundary.

Figure 13  Error of segmentation on monocyte for dataset 2. a Original image, b Segmented result, c haema-
tologist segmented result: red line is nucleus boundary and blue line is cell boundary.
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Classification results

The confusion matrix of basophil classification, which is classified in nucleus segmentation 
part, is shown in Table 4.

Other WBCs are classified into four types: eosinophil, lymphocyte, monocyte and 
neutrophil, with selected features described above. This study’s model was tested with 
the Leave-One-Out approach, one type of cross validation technique, with tenfolds. The 
average correction rate of linear classifier is 0.976 (the average error rate equal to 0.034); 
whereas, the average correction rate of naïve Bayes classifier is 0.941 (the average error 
rate is 0.059). The average confusion matrix of this study features on a linear classifier 
and naïve Bayes classifier as shown in Tables 5 and 6, respectively.

The model assigned to the correct class was evaluated to the test samples by calculat-
ing the accuracy, sensitivity, specification and precision from the confusion matrix using 
the following equation:

(13)Accuracy =
(TP + TN)

(TP+ TN+ FP+ FN)
,

(14)Sensitivity =
TP

(TP + FN)
,

(15)Specificity =
TN

(TN+ FP)
,

(16)Precision =
TP

(TP+ FP)
,

Table 4  Confusion matrix of basophil classification

Basophil (predict) Non-basophil

Basophil (actual) 6 0

Non-basophil (actual) 1 1,071

Table 5  Confusion matrix of our experiment feature on linear classifier

Eosinophil 
(predict)

Lymphocyte 
(predict)

Monocyte 
(predict)

Neutrophil 
(predict)

Eosinophil (actual) 1 0 0 0

Lymphocyte (actual) 0 32 1 0

Monocyte (actual) 0 0 8 0

Neutrophil (actual) 0 0 1 63

Table 6  Confusion matrix of our experiment feature on naïve Bayes classifier

Eosinophil 
(predict)

Lymphocyte 
(predict)

Monocyte 
(predict)

Neutrophil 
(predict)

Eosinophil (actual) 1 0 0 0

Lymphocyte (actual) 0 31 0 2

Monocyte (actual) 0 1 7 0

Neutrophil (actual) 1 1 1 62
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where TN is the number of correct predictions of negative instance, FP is the number of 
incorrect predictions of positive instance, FN is the number of incorrect predictions of 
negative instance, and TP is the number of correct predictions of positive instance.

The accuracy, sensitivity, specification and precision of basophil classifications are 
99.8, 100, 99.8 and 85.7%, respectively. The average values of accuracy, sensitivity, speci-
ficity and precision of the linear model are 98.7, 98.1, 99.5 and 89.2%, respectively. The 
average value of accuracy, sensitivity, specificity and precision of naïve Bayes model are 
97.3, 96, 98.8 and 80.6%, respectively. The details are shown in Tables 7 and 8.

Discussion
The study’s proposed system was tested on two datasets. In the segmentation process, 
some parameters needed to be adjusted depending on image resolutions and sizes. How-
ever, the segmentation results on both datasets are similar, implying that the study’s algo-
rithm is robust. For the classification process, the extracted features of both datasets were 
merged together and then, the model was tested with the linear and naïve Bayes classifiers. 
The study used tenfold-leave-one-out cross validation, as the correction rate on average is 
highly satisfactory for both linear and naïve Bayes classifiers. This shows that the proposed 
model may overcome an over-fitting problem.

Conclusions
The proposed WBC segmentation method that has been applied to two datasets, and the 
results are compared to the gold standard segmented manually by a haematologist. Both 
provide over 90% accuracy. This method is fast, robust and efficient. Consequently, white 
blood cell morphological characteristics can be extracted and used in linear and naïve 
Bayes classifiers for performance comparison. The linear classifier shows slightly better 
performance than the naïve Bayes one. In addition, the five types of white blood cells can 
be classified with high sensitivity.

Table 7  Accuracy, specification and  precision of  eosinophil, lymphocyte, monocyte 
and neutrophil from linear classifier

Linear classifier Eosinophil Lymphocyte Monocyte Neutrophil Average

Accuracy 0.997 0.984 0.977 0.988 0.987

Sensitivity 1.000 0.976 0.962 0.984 0.981

Specificity 0.997 0.996 0.985 1.000 0.995

Precision 0.750 0.991 0.833 0.995 0.892

Table 8  Accuracy, specification and  precision of  eosinophil, lymphocyte, monocyte 
and neutrophil from naïve Bayes classifier

Naïve Bayes classifier Eosinophil Lymphocyte Monocyte Neutrophil Average

Accuracy 0.991 0.962 0.974 0.963 0.973

Sensitivity 1.000 0.940 0.935 0.966 0.960

Specificity 0.991 0.975 0.986 1.000 0.988

Precision 0.444 0.969 0.837 0.973 0.806
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It should be noted that the size of the images in dataset 2, downloaded from CellaVi-
son software, is not from a standard camera. It is obvious that they have been cropped 
to cover only the white blood cell. However, resolution has been estimated based on 
real RBC size. Nonetheless, the testing on two image datasets with different resolutions 
shows that the proposed segmentation process can be calibrated to carry out different 
image sizes or formats as long as the resolution is known.
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