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Abstract

Background: Root canal treatment is a debridement process which disrupts and
removes entire microorganisms from the root canal system. Identification of
microorganisms may help clinicians decide on treatment alternatives such as using
different irrigants, intracanal medicaments and antibiotics. However, the difficulty in
cultivation and the complexity in isolation of predominant anaerobic microorganisms
make clinicians resort to empirical medical treatments. For this reason, identification
of microorganisms is not a routinely used procedure in root canal treatment. In this
study, we aimed at classifying 7 different standard microorganism strains which are
frequently seen in root canal infections, using odor data collected using an electronic
nose instrument.

Method: Our microorganism odor data set consisted of 5 repeated samples from 7
different classes at 4 concentration levels. For each concentration, 35 samples were
classified using 3 different discriminant analysis methods. In order to determine an
optimal setting for using electronic-nose in such an application, we have tried 3
different approaches in evaluating sensor responses. Moreover, we have used 3
different sensor baseline values in normalizing sensor responses. Since the number of
sensors is relatively large compared to sample size, we have also investigated the
influence of two different dimension reduction methods on classification
performance.

Results: We have found that quadratic type dicriminant analysis outperforms other
varieties of this method. We have also observed that classification performance
decreases as the concentration decreases. Among different baseline values used for
pre-processing the sensor responses, the model where the minimum values of
sensor readings in the sample were accepted as the baseline yields better
classification performance. Corresponding to this optimal choice of baseline value,
we have noted that among different sensor response model and feature reduction
method combinations, the difference model with standard deviation based
dimension reduction or normalized fractional difference model with principal
component analysis based dimension reduction results in the best overall
performance across different concentrations.

Conclusion: Our results reveal that the electronic nose technology is a promising
and convenient alternative for classifying microorganisms that cause root canal
infections. With our comprehensive approach, we have also determined optimal
settings to obtain higher classification performance using this technology and
discriminant analysis.
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1. Introduction
Endodontics is largely concerned with the treatment of infections originating in the

root canal system. Microorganisms are the primary etiological agent for the root canal

system infections and periapical lesions [1,2]. Dental infections may be successfully

treated by the removal of the source of the infection [3]. Since W. D. Miller [4]

demonstrated the presence of bacteria in necrotic pulp tissue, the role of the oral

microflora in the pathogenesis of pulpal and periapical pathosis has become increas-

ingly evident. Although more than 300 species of bacteria have been isolated from the

oral cavity, only a limited number have been consistently isolated from endodontic

infections [5]. These include species of the genera Streptococcus, Fusobacterium, Prevo-

tella, Porphyromonas, Eubacterium, Peptostreptococcus, Bacteroides, and Lactobacillus

[5,6]. Several studies have also reported cultivation of fungi from endodontic infections

[7,8].

Clinicians must understand the close relationship between the presence of microor-

ganisms and endodontic disease process in order to develop an effective rationale for

treatment. Culture and molecular methods can be used to detect bacterial species in

root canal infections. Culture method identifies the predominant species of endodontic

infections. Cultivation is important in terms of which microorganism the clinician is

facing. Molecular techniques have been used to detect microorganism in endodontic

infections using DNA-DNA hybridization analysis and polymerase chain reaction

method. However, culture and molecular methods are laborious and expensive, they

are often slow to provide a diagnostic result [9-13]. Especially, conventional diagnosis

of anaerobic bacteria that is generally responsible for root canal infections is difficult,

due to requirements of long cultivation time for these bacteria, special equipment and

experienced staff. Because of difficulties in cultivation process of anaerobic microor-

ganisms, identification of these microorganisms is not routinely used. Clinicians tend

to resort to empiric decision making and/or treatment.

Electronic noses (e-noses) have been used for the analysis of odors or volatile organic

compounds. E-noses consist of sensing and pattern recognition systems. Sensing sys-

tem of an e-nose is formed as an array of chemical gas sensors. Chemical gas sensors

contain a chemical detection layer and transform a chemical interaction into an electri-

cal signal [14]. Selectivity of an e-nose is also related to the particular pattern recogni-

tion techniques applied to the responses from the chemical gas sensors [15].

E-nose technology has been used in various microbiological studies [16-20]. In a pre-

vious study, we have classified 8 different microorganism cultures in petri dishes using

e-nose [21]. These microorganisms were aerobic type. In this study, we have focused

on specific standard microorganism strains which are frequently encountered in root

canal. Many of these microorganisms are anaerobic; so isolation and cultivation pro-

cesses were relatively difficult. After all microorganism species were grown in their

own specific agar, they were transferred into liquid medium. We have then taken odor

samples from these microorganism suspensions and formed datasets with respect to

various pre-processing and dimension reduction methods. We have obtained successful

classification results using the discriminant analysis method which is used extensively

in the literature.

Main contributions of this study are two fold. Firstly, we have suggested a new appli-

cation area for the use of e-nose technology. To be more specific, we have
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demonstrated that use of a classification method such as discriminant analysis on odor

data collected through an e-nose device is a feasible alternative for detection of micro-

organisms that cause root canal infections. Secondly, with our comprehensive

approach, we have determined optimal settings to obtain higher classification perfor-

mance using e-nose technology and discriminant analysis.

2. Materials and Methods
2.1. Microorganisms

In this study, we have used 7 different standard microorganism strains (Candida albi-

cans, Candida glabrata, Fusobacterium nucleatum, Porphyromonas gingivalis, Pseudor-

amibacter alactolyticus, Streptococcus sanguinis, Enterococcus faecalis). Microorganism

strains we have grown locally (at the Faculty of Pharmacy, Erciyes University, Kayseri)

belong to the American Type Culture Collection (ATCC), the German Collection of

Microorganisms and Cell Cultures (DSMZ) and the Refik Saydam Culture Collection

(RSKK) at Refik Saydam Hygiene Center in Ankara. Names of microorganism species,

oxygen requirements, growth medium, incubation conditions and collection types are

presented in Table 1. All microorganisms were grown on their specific medium in

standard petri dishes at 37°C. After culturing, colonies inoculated to vials different con-

centrations were adjusted to be at 12 × 108 cfu/ml (4 McFarland) in 4 ml sterile saline

solution using PhoenixSpec Nephelometer (BD Diagnostic Systems, Franklin Lakes, NJ

USA) [22]. Microorganism suspensions were prepared and diluted -in sterile glass

tubes of standard size- to be of 12 × 105, 12 × 103, and 12 × 101 cfu/ml concentration.

2.2. Instrumentation

The application of microorganism classification using Cyranose 320 e-nose (Smiths

Detection, Hertfordshire, UK) was investigated in this study [23]. Cyranose 320 is a

portable e-nose instrument, which has 32 individual carbon-black polymer composite

sensors configured into an array. Measurements are based on change in the resistance

of each sensor when exposed to an odor. Real-time sensor resistance values in the sen-

sor array are transferred to the PC using a data cable.

Table 1 Names and descriptions of the microorganism species used in the study.

Microorganism Species O2 Requirement Growth Medium Incubation
Condition

Class

Candida albicans Yeast Aerobe Sabouraud dextrose
agar

24-48 hours at 37°C ATCC
90028

Candida glabrata
(Torulopsis glabrata)

Yeast Aerobe Sabouraud dextrose
agar

24-48 hours at 37°C RSKK
04019

Fusobacterium
nucleatum

Bacteria Anaerobe Anaerobic blood agar 4-6 days at 37°C DSMZ
20482

Porphyromonas
gingivalis

Bacteria Anaerobe Anaerobic blood agar 4-6 days at 37°C ATCC
33277

Pseudoramibacter
alactolyticus

Bacteria Anaerobe Anaerobic blood agar 4-6 days at 37°C DSMZ
3980

Streptococcus
sanguinis

Bacteria Facultative
anaerobe

Tryptic soy agar 4 days at 37°C %5
CO2

DSMZ
20567

Enterococcus faecalis Bacteria Facultative
anaerobe

Blood agar 24 hours at 37°C ATCC
29212
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2.3. Test Procedure

We have taken 5 repeated odor samples from each microorganism suspensions at 4

different concentration levels. That is, we have had 35 odor samples at each concentra-

tion level. Before collecting odor data with the e-nose, the cap of each vial that con-

tained the suspension was unscrewed and put into a sealed plastic bag. Then the probe

of e-nose was inserted into the bag. We waited for 5 minutes to let the sample disperse

into the bag for each data collecting process. The accompanying data acquisition soft-

ware of the e-nose was set in such a way that an odor sample is collected in 40 sec-

onds. Figure 1 shows data of 5 odor samples obtained from Candida albicans at 12 ×

108 cfu/ml concentration using Cyranose 320. (Only the data belonging 3 sensors that

demonstrated maximum changes are shown.)

2.4. Data Pre-processing

An odor sample actually consists of 74 readings that include instantaneous resistance

values of 32 sensors on the e-nose. Let i = 1, 2, ..., 35 be the sample, k = 1, 2, ..., 74 be

reading, and j = 1, 2, ..., 32 be the sensor index, then each raw odor sensor data Ri =

[ri, k, j] constitute a 74-by 32 matrix.
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Figure 1 The data obtained from 5 repeated smells from a sample of Candida albicans. (Only three
sensor responses that undergo maximum changes are shown.)
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An odor sample acquisition session of 40 seconds consists of 3 phases. In the first 10

seconds, the sensors of e-nose were cleaned with indoor air (baseline purge). The first

19 rows of the sample matrix Ri correspond to this phase. In the following 20 seconds,

the odor of microorganism suspension was applied to the sensor chamber (sample

exposure). The rows between 20 and 56 of the sample matrix Ri correspond to this

phase. The last 10 seconds, the sensor chamber was cleaned again with indoor air (sen-

sors refresh) represents the rest of the data. Figure 2 shows these 3 phases of data

acquisition along with some different alternatives for the baseline value which will be

used in the pre-processing.

Concerning the resistance baseline values of sensors, 3 different approaches were

considered:

• Baseline Value-1: The minimum values of sensor readings in the odor sample.

R Ro
i i= min (1)

• Baseline Value-2: The first values of sensor readings in the odor sample (k = 1).

R Ro first
i i j ir= =[ ], ,1 (2)

• Baseline Value-3: The final values of sensor readings in the baseline purge section

of odor sample (k = 19).

R Ro bp
i i j ir= =[ ], ,19 (3)

We have also used 3 different sensor response models in order to remove the time

(i.., the vertical) dimension in the sample matrix Ri and convert or reduce it into a xi =

Baseline 
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Figure 2 Illustration of different baseline values and phases of an odor sample. (Only one sensor
response is shown.)
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[xi, j], 1-by-32 vector. Thus our microorganism odor dataset will be a X = [xi, j], 35-by-

32 data matrix. Figure 3 shows the data cube representing our odor data.

• Difference model: The difference between maximum (R max
i is a row vector con-

taining the maximum element from each column of Ri.) and baseline resistance

values (R o
i ) of the sensors.

x R R Ro
i i i i= − =max Δ (4)

• Fractional difference model: The ratio of sensor resistance change to baseline

value.

x R  / R o
i i i= Δ (5)

• Normalized fractional difference model: The normalization of fractional difference

model based on the sensor that demonstrates the maximum change.

x R /R R /R  o o
i i i i i= ( ) / ( )maxΔ Δ (6)

Thus total of 9 different data pre-processing methods (combinations) were applied to

the odor samples from 7 microorganisms. Equations and abbreviations of these pre-

processing methods are given in Table 2.

Figure 3 Data cube representing microorganism odor data.
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As the number of samples is relatively small compared to the feature size (35 versus

32), in order to avoid the curse of dimensionality problem and have an efficient classi-

fication setting, we have employed 2 different dimension reduction methods to have

only 3 features. These methods were as follows:

• Choose 3 sensors that demonstrate the maximum change on the basis of standard

deviation (std),

• Choose the first 3 principal components following the application of Principal

Components Analysis (PCA).

As a result, 18 different datasets were obtained by applying different pre-processing

and dimension reduction methods to the raw odor data. Finally, 3 different Discrimi-

nant Analysis (DA) methods (linear, Mahalanobis distance and quadratic) were used in

order to classify each dataset into 7 groups.

2.5. Discriminant Analysis

Given a multi-category classification problem, let x denote an observation in a d-

dimensional feature space with a probability density function p(x) (evidence factor), i =

1, 2, ..., c be the class index, and ωi be the class labels indicating the true state of the

nature. In our study c is 7, since we have 7 microorganism species to be classified.

If class prior probabilities P(ωi) and the class conditional probability density func-

tions (likelihood) p(x|ωi) are known, then the posterior probabilities are calculated

using Bayes formula:

P
p P

pi
i i( | )

( | ) ( )
( )

.  
x

x
x

= (7)

Table 2 Equations and abbreviations of pre-processing methods.

Baseline
Value

Sensor Response Model Equation Abbreviation

Baseline
value-1

R Ro
i i= min

Difference model x R R Rmin
i i i i= − =max Δ d1

Fractional difference model x R  / Ri i i= Δ min fd1

Normalized fractional difference
model

x R /R R /R  min min
i i i i i= ( ) / ( )maxΔ Δ nfd1

Baseline
value-2

R Ro first
i i=

Difference model x R R Rfirst
i i i i= − =max Δ d2

Fractional difference model x R  / R first
i i i= Δ fd2

Normalized fractional difference
model

x R /R R /R  first first
i i i i i= ( ) / ( )maxΔ Δ nfd2

Baseline
value-3

R Ro bp
i i=

Difference model x R R Rbp
i i i i= − =max Δ d3

Fractional difference model x R  / R bp
i i i= Δ fd3

Normalized fractional difference
model

x R /R R /R  bp bp
i i i i i= ( ) / ( )maxΔ Δ nfd3
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Bayes decision rule basically assigns x to the class ωi that has the highest posterior

probability:

Decide if for all   i i jP P j i( | ) ( | ) .x x> ≠ (8)

In Eq. (7) the evidence p(x) is just a scaling factor thereby it is unimportant in the

case of decision making. For the minimum error rate classification, we can use natural

logarithm transform of posterior probabilities. The following equation maximizes the

posterior probability so it defines maximum discriminant function:

g p Pi i i( ) ln ( | ) ln ).x x (= +  (9)

If the class conditional densities p(x|ωi) are multivariate normal, that is

p i d
i

i
t

i i( | )
( ) | |

exp(
( ) ( )

)./ /x
x x


= − − −−

1
2 22 1 2

1


  

(10)

where μi is the d × 1 mean vector, Σi is the d × d covariance matrix, and |Σi| is the

determinant of the covariance matrix, then the discriminant function can be written as:

g d Pi i i
t

i i i( ) [ ln( ) ln | | ( ) ( )] ln ( ).x x x= − + + − − +−1
2

2 1     (11)

We have examined this discriminant function for three special cases [24]. All of

these classification algorithms were implemented using Matlab R2007b (Mathworks

Inc., Natick, MA) software [25].

Case 1: Linear

In this case, it is assumed that each class has the same (pooled) covariance matrix (i.e.,

Σi = Σ). Hence dln (2π) and |Σi| terms in Eq. (11) are independent of i, so these can

be ignored. Then, the discriminant function becomes:

g Pi i
t

i i( ) ( ) ( ) ln ( ).x x x= − − − +−1
2

1   

Then, we expand the first term on the right hand side

( ) ( ) .x x x x x x− − = − − +− − − − −          i
t

i
t t

i i
t

i
t

i
1 1 1 1 1

The quadratic term xt Σ-1 x is independent of i, so it can be ignored too. Further,

like other terms in the expansion, xt Σ-1 μi is a scalar term and hence

( )x x xt
i
t t

i i
t     − − −= =1 1 1 . Thus, the discriminant function can be reduced to

the following expression which is linear in x:

g Pi i
t

i
t

i i( ) ln ( ).x x= − +− −    1 11
2

 (12)

Case 2: Mahalanobis Distance

In this case, the covariance matrices for all of the classes are different and the discrimi-

nant function is simply the Mahalanobis distance part of Eq. (11), that is

gi i
t

i i( ) ( ) ( ).x x x= − −−  1 (13)
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Case 3: Quadratic

In this case, the covariance matrices are assumed to be different for different classes, i.

e., Σi is arbitrary. Only the d ln(2π) ln term in Eq. (11) is independent of i, so it can

be dropped, and the discriminant function is:

g Pi i
t

i i i i( ) ( ) ( ) ln | | ln ( ).x x x= − − − − +−1
2

1
2

1     (14)

3. Results
The odor data (35 samples) in certain concentrations were classified according to the

type of microorganism species. Table 3 summarizes our classification results in terms

of training error. For each concentration, different pre-processing and dimension

reduction methods were applied to the odor data, resulting in 18 different datasets,

corresponding to the rows of the table. These datasets were classified into 7 groups

using linear, Mahalanobis distance, and quadratic type DA classifiers. When we exam-

ine the classification performance of 3 methods, the ‘quadratic’ method consistently

offers the best results across different concentrations, pre-processing and dimension

reduction methods. Hence we have made a reduced version of Table 3, namely Table

4, where we have only included the results for the ‘quadratic classifier.’ However, this

time, in order to examine the influence of different factors on the classification perfor-

mance; we have included averages of classification errors across different dimensions

in the table.

Table 3 Classification error rates (%) at different concentrations using Linear (L),
Mahalanobis (M), and Quadratic (Q) type DA methods

Concentration

Dataset (pre-processing &
dimension reduction)

12 × 108 cfu/ml 12 × 105 cfu/ml 12 × 103 cfu/ml 12 × 101 cfu/ml

L M Q L M Q L M Q L M Q

d1 & std 14.29 2.86 0.00 25.71 5.71 0.00 31.43 5.71 2.86 20.00 8.57 2.86

d1 & pca 5.71 0.00 0.00 25.71 5.71 2.86 22.86 5.71 0.00 17.14 11.43 5.71

fd1 & std 17.14 8.57 2.86 25.71 2.86 5.71 25.71 5.71 2.86 5.71 2.86 0.00

fd1 & pca 5.71 2.86 0.00 17.14 0.00 0.00 34.29 8.57 8.57 20.00 5.71 0.00

nfd1 & std 11.43 17.14 0.00 0.00 0.00 0.00 22.86 8.57 5.71 8.57 2.86 5.71

nfd1 & pca 11.43 17.14 0.00 0.00 0.00 0.00 22.86 2.86 2.86 11.43 5.71 2.86

d2 & std 34.29 8.57 2.86 17.14 8.57 11.43 22.86 5.71 8.57 25.71 17.14 11.43

d2 & pca 31.43 0.00 0.00 17.14 8.57 11.43 31.43 14.29 8.57 34.29 28.57 22.86

fd2 & std 17.14 2.86 0.00 17.14 0.00 0.00 37.14 14.29 17.14 20.00 14.29 14.29

fd2 & pca 20.00 2.86 2.86 14.29 5.71 2.86 34.29 2.86 2.86 25.71 8.57 2.86

nfd2 & std 14.29 5.71 5.71 8.57 2.86 2.86 22.86 2.86 2.86 5.71 2.86 2.86

nfd2 & pca 14.29 8.57 0.00 8.57 2.86 0.00 14.29 8.57 5.71 14.29 8.57 2.86

d3 & std 20.00 5.71 0.00 28.57 0.00 2.86 28.57 8.57 2.86 25.71 14.29 5.71

d3 & pca 8.57 0.00 0.00 31.43 5.71 0.00 25.71 8.57 2.86 17.14 11.43 11.43

fd3& std 14.29 2.86 0.00 20.00 0.00 2.86 28.57 11.43 5.71 14.29 5.71 5.71

fd3 & pca 5.71 5.71 0.00 17.14 2.86 0.00 22.86 0.00 0.00 11.43 5.71 8.57

nfd3 & std 11.43 8.57 2.86 2.86 2.86 0.00 20.00 8.57 8.57 5.71 2.86 2.86

nfd3 & pca 11.43 8.57 0.00 5.71 5.71 5.71 14.29 8.57 5.71 8.57 2.86 0.00

These datasets were obtained using different pre-processing and dimension reduction methods.

(For the abbreviations used in the table, see Table 2.)
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We can deduce the following results from Table 4:

• Classification performance decreases as the concentration decreases.

• Among different baseline values used while pre-processing the sensor responses,

baseline-value-1 (R Ro
i i= min ), where the minimum values of sensor readings in the

sample were accepted as the baseline, results in better classification performance.

Corresponding to R Ro
i i= min baseline value, we note that d1 & std (i.e., difference

model with ‘standard deviation based’ dimension reduction) or nfd1 & pca (i.e., nor-

malized fractional difference model with ‘PCA based’ dimension reduction) combina-

tion yields the top overall performance across different concentrations which averages

to 1.43%. For this combination, classification error rate is only 2.86%, even for the low-

est concentration of 12 × 101 cfu/ml.

4. Discussion and Conclusion
In this study, we aimed at classification of microorganism strains that cause root canal

infections using the e-nose technology. To this end, we have cultivated the

Table 4 Classification error rates (%) at different concentrations using the Quadratic DA
method

Dataset (pre-processing &
dimension reduction)

Concentration Average error across different
concentrations

12 ×
108

cfu/ml

12 ×
105

cfu/ml

12 ×
103

cfu/ml

12 ×
101

cfu/ml

d1 & std 0.00 0.00 2.86 2.86 1.43

d1 & pca 0.00 2.86 0.00 5.71 2.14

fd1 & std 2.86 5.71 2.86 0.00 2.86

fd1 & pca 0.00 0.00 8.57 0.00 2.14

nfd1 & std 0.00 0.00 5.71 5.71 2.86

nfd1 & pca 0.00 0.00 2.86 2.86 1.43

Average for baseline value-1 (R Ro
i i= min ) 2.14

d2 & std 2.86 11.43 8.57 11.43 8.57

d2 & pca 0.00 11.43 8.57 22.86 10.72

fd2 & std 0.00 0.00 17.14 14.29 7.86

fd2 & pca 2.86 2.86 2.86 2.86 2.86

nfd2 & std 5.71 2.86 2.86 2.86 3.57

nfd2 & pca 0.00 0.00 5.71 2.86 2.14

Average for baseline value-2 (R Ro first
i i= ) 5.95

d3 & std 0.00 2.86 2.86 5.71 2.86

d3 & pca 0.00 0.00 2.86 11.43 3.57

fd3& std 0.00 2.86 5.71 5.71 3.57

fd3 & pca 0.00 0.00 0.00 8.57 2.14

nfd3 & std 2.86 0.00 8.57 2.86 3.57

nfd3 & pca 0.00 5.71 5.71 0.00 2.86

Average for baseline value-3 (R Ro bp
i i= ) 3.10

Average error
across same
concentration

0.95 2.70 5.24 6.03
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microorganisms of interest at laboratory conditions at different concentrations and

obtained odor data samples. Then, we have designed DA classifiers and observed their

classification performance under different conditions, in order to assess the influence

of baseline values, sensor response models, and dimension reduction methods.

Our first finding is that the quadratic type DA outperforms the other two DA vari-

eties, namely linear and Mahalanobis. This is somewhat expected, as the quadratic

method lets different classes have different covariance matrices, it has more modeling

capability. We still wanted to check the performance of simpler methods in order to

understand the complexity of the classification problem that we are dealing with. After

deciding on the quadratic DA method as the method of choice, we have looked into

the influence of different factors on the classification performance. Our second finding

is that as the concentration increases the classification performance improves. This is

also expected, as the sensor responses will have higher amplitudes at higher microor-

ganism suspension concentrations.

In the user’s manual of the Cyranose 320 e-nose instrument, there is no specific

explanation regarding the value that should be taken as the baseline value. Therefore,

we have also wanted to look into the effect of using different alternatives for the base-

line value (R o
i ) while computing the sensor responses using formulas 1, 2, or 3. Our

results revealed that the best baseline value is baseline-value-1 (R Ro
i i= min ), in terms

of achieving a better classification performance using quadratic DA. In fact, as we

observe in Tables 3 and 4, the choice of baseline value significantly affects the classifi-

cation performance. For the choice of ‘baseline value-1’, we note that d1 & std (i.e., dif-

ference model with standard-deviation-based dimension reduction) or nfd1 & pca (i.e.,

normalized fractional difference model with PCA-based dimension reduction) combi-

nations offer better classification performance, compared to other pre-processing and

dimension reduction method combinations.

We have mainly concentrated on the training classification error in this study, as we

wanted to find out optimal pre-processing and dimension choices for efficient use of

our approach in future. Although our results indicate that there many cases for which

we have obtained zero classification error rates, this does not mean that we are not

going to make any wrong decisions for new test cases that were not included in the

training set. Indeed, the issue of assessment of error rate of a classifier deserves much

consideration [26]. During classifier design, using the information extracted from the

training samples, underlying parameters of the classifier are adjusted and the predic-

tion accuracy is monitored by testing the classifier back on the training set and noting

the resultant training (or resubstitution) error. This type of assessment of classifier per-

formance, based on training error, is instrumental during the design phase; however, it

may not be an accurate indicator of the final or overall performance of the classifier.

As we are interested in employing our classifier in predicting category of new or

unseen samples, we also need to evaluate the generalizability performance of the classi-

fier. If there are plenty of training samples available, one can partition the overall train-

ing set into two sets and use one for training and the other one for testing. Due to the

limited number of samples we had, we did not want to reserve a portion of our dataset

for testing purposes. Further, if we design the classifier based on a small training set,

generalizability performance of the classifier may deteriorate significantly [27]. Instead,
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we have opted for 5-fold Cross Validation (CV) technique, where overall set of training

samples is randomly divided into 5 approximately equal size and balanced (i.e., the dis-

tribution of samples into different classes is roughly similar) subsets. Then, each time,

one of these subsets is excluded from the overall training set and used as a test set for

the classifier that is trained based on the rest of the samples and the resultant test

error rates are averaged to obtain the 5-fold CV error rate. Compared to training

error, estimation of 5-fold CV classification error is more costly computationally.

Therefore, we have carried out 5-fold CV classification error estimation for the exemp-

lary case of 12 × 108 cfu/ml concentration and obtained a CV error rate of less than %

25, for the optimal pre-processing and dimension reduction combination that we have

identified before. We envision that even a classification of accuracy of about 75% will

be very appealing for the clinicians who tend to resort to empiric decision making in

treatment of root canal infections, due to current limitations in the practice.

As for the issue of the existence of multiple microorganism species in the medium,

we note that the decision made by our approach will reflect the major or dominant

microorganism species in the medium. However, we can use the raw discriminant

values as the probability of the sample under question belonging to each of the indivi-

dual classes, instead of taking the maximum value of the discriminant function as the

‘class decision.’ This way, the clinician may see the probability of existence of each

microorganism species in the medium and decide about the course of treatment

accordingly. If we include the class prior probabilities, i.e., the prevalence of each

microorganism species in the root canal, in computation of the discriminant function,

classification performance of our approach may further improve. We are planning to

look into this issue in a future clinical study.

In conclusion, we have demonstrated that the e-nose technology is a promising and

convenient alternative for classifying microorganisms that cause root canal infections.

With our comprehensive approach, we have also determined optimal settings in terms

of which classification, pre-processing and dimension reduction methods to be used, to

obtain higher classification performance using this technology. This comprehensive

study is done only once to fine tune to parameters of this approach. We will use these

pre-determined optimal settings or parameters in our future studies involving classifi-

cation of real clinical cases. In consultation with the clinicians in our team, we will

develop some suitable settings to collect odor data in a practical and efficient manner.
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