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Abstract

Background: 3D-scaffolds have been shown to direct cell growth and differentiation
in many different cell types, with the formation and functionalisation of the 3D-
microenvironment being important in determining the fate of the embedded cells.
Here we used a hydrogel-based scaffold to investigate the influences of matrix
concentration and functionalisation with laminin on the formation of the scaffolds,
and the effect of these scaffolds on human neural progenitor cells cultured within
them.

Methods: In this study we used different concentrations of the hydrogel-based
matrix PuraMatrix. In some experiments we functionalised the matrix with laminin I.
The impact of concentration and treatment with laminin on the formation of the
scaffold was examined with atomic force microscopy. Cells from a human fetal
neural progenitor cell line were cultured in the different matrices, as well as in a 2D
culture system, and were subsequently analysed with antibody stainings against
neuronal markers. In parallel, the survival rate of the cells was determined by a live/
dead assay.

Results: Atomic force microscopy measurements demonstrated that the matrices are
formed by networks of isolated PuraMatrix fibres and aggregates of fibres. An
increase of the hydrogel concentration led to a decrease in the mesh size of the
scaffolds and functionalisation with laminin promoted aggregation of the fibres
(bundle formation), which further reduces the density of isolated fibres. We showed
that laminin-functionalisation is essential for human neural progenitor cells to build
up 3D-growth patterns, and that proliferation of the cells is also affected by the
concentration of matrix. In addition we found that 3D-cultures enhanced neuronal
differentiation and the survival rate of the cells compared to 2D-cultures.

Conclusions: Taken together, we have demonstrated a direct influence of the 3D-
scaffold formation on the survival and neuronal differentiation of human neural
progenitor cells. These findings emphasize the importance of optimizing 3D-scaffolds
protocols prior to in vivo engraftment of stem and progenitor cells in the context of
regenerative medicine.
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Background
Tissue engineering is an interdisciplinary field combining biological sciences and engi-

neering to develop tissues that restore, maintain or enhance tissue function. In the

context of regenerative medicine, the combination of biomaterial scaffolds with neural

stem and progenitor cells holds great promise as a therapeutic tool [1,2]. 3D-matrices

have been generated from various materials such as poly L-lactic acid and poly glycolic

acid [3,4], as well as biopolymers such as collagen, fibrin, and alginate [5-14]. The

hydrogel-based PuraMatrix is an ionic self-complementary amphiphilic oligopeptide

hydrogel matrix, able to form 3D nano-scaffolds consisting of b-sheets and fibres by

spontaneous molecular self-assembling [12-14]. The hydrogel scaffold is widely used in

the areas of tissue engineering and stem cell research, and it has been shown to pro-

mote differentiation in different cell types [15-24]. As the composition, concentration

and functionalisation of the 3D-scaffolds is essential for cell adhesion, growth and dif-

ferentiation, we varied the concentration and functionalisation of PuraMatrix seeded

with a human neural progenitor cell line (ReNcell VM, Millipore, USA) and studied

the effects on the assembly of the matrix, and subsequently the influence on the differ-

entiation of the human progenitor cells. This cell line shows fast proliferation and can

be cultured easily, which makes it an appropriate system to test the influence of a 3D

environment. The cells can be differentiated into neurons, astrocytes and oligodendro-

cytes within a few days by simple withdrawal of growth factors [25]. Although the

overall differentiation into neuronal cells is relatively low, the above mentioned proper-

ties made the cell line an appropriate model to study differentiation of human progeni-

tor cells, and has already been used in other studies [26-29]. Matrix assembly was

analysed by performing atomic force microscopy to provide structural information

about the matrix, such as spatial dimensions of the fibres and the structure of the net-

work formed by these fibres. In addition we report data on the influence of the scaffold

formation and functionalisation on proliferation, growth and differentiation of human

neural progenitor cells cultured in the 3D-scaffolds in comparison to the situation in

2D cultures. The data presented provides new information for optimizing 3D-scaffolds

to be used in die field of regenerative medicine.

Methods
Atomic force microscope (AFM) measurements

PuraMatrix (PM; BD Biosciences, Heidelberg, Germany) and laminin stock solutions

were kept at 4°C until used. Solutions for the deposition process were freshly prepared

from the stock solutions as described below, but without cells. Muscovite mica sheets

were freshly cleaved and immediately placed into a 24 well-plate. In each case 100 μl

of the solutions were placed on top of the mica sheet, then 400 μl of media without

growth factors was added. One day later the mica sheets were rinsed in ultra pure

water (Millipore, Billerica, MA) to remove excess gel loosely bound to the mica, and

then dried under a stream of nitrogen.

Imaging was performed using a Multimode Atomic Force Microscope (AFM) with

Nanoscope IIIa controller and “E” scanner (Digital Instruments, Santa Barbara, CA).

The “E” scanner exhibits a maximum scan area of 10 × 10 μm2, a vertical range of 2.5

μm and was height calibrated using a TGZ01 grating (MicroMasch, Estonia; step

height 26 nm) and linearised using a PG grating (Digital Instruments; 1 μm pitch).
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The images were recorded with tapping mode in air using standard tapping mode can-

tilevers (OMCL-AC160TS, Olympus). Imaging in fluid was not necessary because the

drying process does not affect the structure of the scaffold [30].

Before usage the cantilevers were tested with a Nioprobe self-imaging sample (Aur-

ora Nanodevices, Canada) and with a gold cluster sample (cluster radius < 15 nm;

synthesised according to [31]) and only cantilevers with tip radius R < 10 nm were

used for imaging. Images were obtained from at least five different positions and in

three different resolutions (500 nm × 500 nm, 1500 nm × 1500 nm, 10 μm × 10 μm).

Image processing was performed using homebuilt scripts in MatLab (MathWorks

Natick, MA). The large area scans (1500 nm × 1500 nm and 10 μm × 10 μm) were

used to get an impression of the coarse network structure (i.e. number of crossing

points, aggregation of single fibres etc.) whereas the small area scans (500 nm × 500

nm) were used to measure the geometric properties of PM fibres in presence and

absence of laminin.

It is well known that PM fibres form beta-sheets [32] and hence the interaction of

the AFM tip with one PM fibre can be well approximated by the interaction of a

sphere (radius R) with a cuboid (width w and height h). From Figure 1A one can con-

clude that the spatial extension of the AFM tip leads to a broadening of the slab width

wAFM in the AFM image whereas the cuboid height hAFM remains unaffected. Using

simple geometric calculations one can estimate that the difference between measured

and true width is given by (Figure 1A bottom).

w w h R hAFM   − = −2 2 2 1 2( ) ./ (1)

This introduces a noticeable error in our case as the dimensions of tip radius

(approx. 5 nm) and PM fibre height (approx. 1.3 nm) and width (approx. 5 nm) are of

the same order of magnitude. To account for this effect the curvature radius of the

Figure 1 Interaction of the AFM tip with a PM fibre. (A) Interaction of the AFM tip with a PuraMatrix
fibre can be well approximated by the interaction of a sphere (radius R) with a cuboid (width w and
height h). The upper scheme shows that the spatial extension of the AFM tip leads to a broadening of the
slab width wAFM in the AFM image whereas the cuboid height remains unaffected, i.e. hAFM = h. (B) AFM
image (PM 0.15% sample) in 3D view with false colour coding: brighter structures are higher than darker
ones. AFM provides us with structural information in three dimensions, which allows us determine the
structure of the network formed by these fibres.
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AFM tip R was obtained from tapping mode images of the Nioprobe self-imaging sam-

ple. Furthermore, the width w and the height h of isolated PM fibres were measured

from 500 nm × 500 nm scans of PM samples (PM concentration 0.15%, with and with-

out laminin) and corrected according to Eq. 1. The error given in the results was cal-

culated using the standard deviation (tip radius R and beta-sheet height h) or by

employing the error propagation law (beta-sheet width w).

Cell culture

2D culture of ReNcell VM (Millipore, Schwalbach, Germany) cells was carried out as

described previously [27]. Cells were cultivated on laminin I (mouse laminin I, AMS

Biotechnology, Germany) coated flasks or chamber slides in Dulbecco’s modified eagle

medium (DMEM)/F12, supplemented with Glutamax, B27 media supplement, heparin

sodium salt and gentamycin (all Invitrogen, Karlsruhe, Germany). Epidermal growth

factor (20 ng/ml; EGF) and basic fibroblast growth factor (10 ng/ml; bFGF; both

Roche, Mannheim, Germany) were added to the media during proliferation. Differen-

tiation of the cells was induced by withdrawal of the EGF and bFGF.

To prepare 3D PuraMatrix hydrogel matrices (BD Biosciences, Heidelberg, Germany)

2D cultured cells were trypsinized and resuspended in 10% sucrose (60,000 cells/100 μl

matrix) and incubated for 30 min. For functionalisation of the PuraMatrix, cells were

mixed with laminin I solution (mouse laminin I, AMS Biotechnology, Germany) in

advance to the incubation (8 μg/100 μl matrix). Subsequently cells were transferred to

coverslips in a 24-well plate and media (400 μl/well) was added. Afterwards the

matrices were allowed to gelate for 1 h. Matrices were washed with 500 μl media for

10 min at room temperature. After an additional washing step the matrices were incu-

bated at 37°C/5% CO2. Unless otherwise stated all reagents were purchased from

Sigma (Taufkirchen, Germany).

Immunocytochemistry and scanning electron microscopy

For immunocytochemistry, 2D- and 3D-cultures were fixed with paraformaldehyde (4%

in 0.1 M PBS) for 20 min. Cells were incubated with the primary antibody over night

at 4°C (anti-b-III-tubulin, 1:1000, mouse, Sigma, Munich, Germany) or anti-tyrosine

hydroxylase (TH, 1:500, mouse, R & D Systems, Wiesbaden, Germany). Secondary

antibody (1:1000; goat, anti-mouse Alexa Fluor 488, Molecular Probes) was added for

5h at room temperature. Cell nuclei labelling was performed with 4’,6-Diamidin-2’-

phenylindoldihydrochlorid (DAPI, 100 ng/ml in PBS, Sigma, Munich, Germany). 3D-

matrices and 2D-cultures were analysed either by fluorescent microscopy (Olympus

BX51, Olympus Germany or a Biozero microscope, Keyence, Germany, Karlsruhe), or

confocal microscopy (Leica, DM IRE2 equipped with UV, Argon and Xenon lasers).

In 2D-cultures, pictures were taken of 8-10 non overlapping visual areas per cham-

ber, with three chambers per time point. DAPI stained nuclei were counted using GSA

Image Analyzer program (GSA, Rostock, Germany), whereas immuno-positive cells

were counted manually.

For 3D-matrix cultures, at least three stacks of images (20-40 images/stack, distance

2 μm) per time point and per concentration of PM sample were taken by confocal

microscopy. To obtain the total cell numbers, stacks were merged with the NIS ele-

ment D program (Nikon, Düsseldorf, Germany) and then analysed with GSA Image
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Analyzer program. Given values represent mean percentage ± SEM with respect to

DAPI stained cells. Data were obtained from at least 3 independent experiments (N)

and ≥6 measurements (n) per N for 2D cultures and ≥3 (n) for 3D-experiments.

For scanning electron microscopy, cells contained in PuraMatrix were fixed with glu-

taraldehyde (4% in PBS) for 1 h or overnight, rinsed with PBS and subsequently dehy-

drated in acetone with increasing concentrations (30%, 50%, 75%, 90%, 100%).

Specimens were dried with a critical point drier (BalTec, Germany) and sputter coated

with gold. Pictures were taken with a DSM 960A scanning electron microscope

(ZEISS, Germany).

Live/dead assay

Viability of cells was measured by live/dead assay (Molecular Probes, Karlsruhe, Ger-

many) and analysed by fluorescence microscopy (TS100, Nikon, Düsseldorf, Germany).

Quantitative data of 2D-cultures were obtained by manually counting of 8-10 non-

overlapping areas per three chambers per time point. 3D-matrices were analysed by

taking at least three image stacks per matrix concentration and time point. Viability is

given as mean ± SEM of living cells in the total number of cells.

Statistics

All statistical analyses described were performed with Prism 5 (GraphPad Prism. Inc.,

USA) using one way ANOVA analysis with the Bonferroni Post test. p-value ≤ 0.05

(indicated by *) was considered to indicate significant statistical differences. Values

represent mean ± sem.

Results
Atomic force microscopy of PuraMatrix

The composition, concentration and functionalisation of a 3D-scaffold is essential for

cell adhesion, growth and finally differentiation. Therefore we studied matrix assembly

by performing atomic force microscopy (AFM) on PuraMatrix samples. AFM images

provide structural information in three dimensions which allowed us to measure the

spatial dimensions of the fibres as well as the structure of the network formed by these

fibres (Figure 1B). For pure PM scaffolds the AFM images are given in Figure 2,

whereas Figure 3 shows the AFM results for scaffolds made by a mixture of PM and

laminin I. In these figures the surface morphology is given in two different resolutions:

the left column shows the scaffold morphology at a surface area of 0.75 × 0.75 μm2,

which allows the resolution of single, isolated PM fibres, whereas the right column has

a surface area of 4 × 4 μm2 and is used to study the structure of the scaffold on a

much larger scale. For pure PM scaffolds made at low PM concentration (Figure 2A,

B; PM 0.15%) most of the scaffold consists of thin PM fibres (e.g. white arrows in Fig-

ure 2A) which are quite homogeneously distributed over the scaffold and mostly iso-

lated. Interestingly, these fibres show an alignment which is parallel to the mica

surface. Therefore we conclude that the washing of the PM samples by Milli-Q water

leads to a dissection of the PM scaffold and that only the fibres and aggregates of the

scaffold, which are adjacent to the mica surface, remain on the sample. Due to this

alignment we were able to measure the geometric properties of the pure and isolated

PM fibres and found that they have an average height of 1.28 ± 0.16 nm and an
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Figure 2 AFM images of pure PuraMatrix scaffolds. AFM images of pure PuraMatrix scaffolds; scan size:
0.75 × 0.75 μm2 (left column) or 4 × 4 μm2 (right column). Depending on the PM concentration two kinds
of fibres are formed: long and thin beta-sheets (i.e. isolated PM fibres, exemplary marked by white arrows;
height ca. 1.3 nm and length > 1 μm) and bundles or aggregates of these sheets (red arrows).
Additionally, a crossing of single PM fibres is accompanied by an increase in height (white arrows),
indicating that once the PM fibres are created, they do not interdigitate. At low PM concentrations (PM
0.15% and 0.25%, Fig. 2A-D) the samples show a homogeneous distribution of single PM fibres and
bundles, whereas an increase in PM concentration rises the numbers of bundles within the network. At
0.5% PM concentration (E, F) the fibres form very dense networks that cannot be penetrated by AFM.
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Figure 3 AFM images of PuraMatrix scaffolds after addition of laminin I. AFM images of PuraMatrix +
laminin I scaffolds; scan size: 0.75 × 0.75 μm2 (left column) or 4 × 4 μm2 (right column). Again, bundles
and single PM fibres are observed. In contrast to pure PM scaffolds, bundles are frequent even at 0.15%
PM concentration and inhomogeneously distributed over the sample (red circle in Fig. 3B). Between these
coarse bundle-networks single PM fibres can be found that are less densely distributed than in the non-
functionalised scaffold (green arrows, indicating a reduced surface coverage of PM fibres in comparison to
Fig. 2A, C). Hence, the addition of laminin I promotes bundling and decreases the density of isolated PM
fibres.
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average width of 6.86 ± 2.69 nm, which agrees well with the molecular dimensions of

single PuraMatrix beta-sheets (height: 1.3 nm, width: 5 nm, according to [30]). How-

ever, we also found structures in the AFM images whose geometric properties are lar-

ger (in height and width) than the isolated PM fibres (red arrows in Figure 2A, B). We

attribute these structures to aggregation of single PM fibres into PM bundles. Interest-

ingly, the amount of bundles rises with increasing PM concentration (Figure 2C - F),

which causes very dense scaffolds at high PM concentrations (Figure 2E, F). The higher

resolved AFM images show (left column of Figure 2) that for pure PM scaffolds there

is always a homogeneous distribution of single PM fibres within the scaffold. An

increase in PM concentration leads to increased aggregation (bundle formation) of PM

fibres. On the other hand, it can be seen from the larger AFM scans (right column of

Figure 2), that the PM bundles form a coarser network themselves. The PM bundles of

this network are also quite homogeneously distributed over the surface, whereas the

mesh size increases with decreasing PM concentration (Figure 2D, F). At 0.15% PM

concentration bundle formation becomes infrequent and we find almost no PM bundle

network within the scaffold (Figure 2B). This is changed upon addition of laminin (red

circle in Figure 3B). Here the scaffold becomes dense only at 0.5% PM concentration

(Figure 3E, F). At lower concentrations single PM fibres become less frequent and

most of the network is formed by PM bundles (Figure 3A-D). Additionally, these bun-

dle networks are inhomogeneously distributed over the surface (Figure 3B, D). Hence,

we conclude that the addition of laminin promotes bundle formation and reduces the

amount of isolated PM fibres. As the same PM amount is now distributed more in

bundles and less in single sheets, we observed areas surrounded by the bundle network

which are not covered by any PM fibres (green arrows in Figure 3A, C). This shows

that at low PM concentrations the scaffold becomes less dense compared to pure PM

scaffolds and hence, that the addition of laminin I has a big impact on the PM scaffold

structure.

For a quantification of this effect we calculated height distribution histograms of the

AFM images for both types of PM scaffolds at low PM concentrations. Without lami-

nin (PM 0.15% in Figure 4A) a peak can be found around 1 nm in the distribution his-

togram, corresponding to the height of a single PM fibre (height approx. 1.3 nm) and

two peaks around 2.3 nm and 3.7 nm, indicating aggregates of two or three PM fibres

respectively. The average separation of the peaks is 1.23 ± 0.21 nm, which is close to

the expected value of 1.3 nm (height of one PM fibre). Figure 4A shows that single

PM fibres are more frequent than bundles by roughly a factor of 10. Additionally,

Figure 4B compares the height distribution histograms of PM 0.15% and PML 0.15%.

After addition of laminin the peak at approx. 1 nm is decreased whereas the other

peaks are increased by roughly a factor of 2 indicating more bundles are formed by

aggregation of PM fibres. Furthermore, the addition of laminin I increases the sub-

strate peak at 0 nm in the histograms. We conclude that the additional aggregation in

lateral (x, y-axis) and vertical dimensions (z-axis) after addition of laminin leads to a

lowering of surface coverage by PM, which means that more of the bare substrate is

visible to the AFM tip and explains the increased substrate peak. Qualitatively, the

same result was found in the AFM images (Figure 2A and 3A), where we observed

areas without any PM fibres after the addition of laminin (green arrows in Figure 3A).

Comparing Figure 4A with Figure 2A, we conclude that peaks at multiples of 1.3 nm

Ortinau et al. BioMedical Engineering OnLine 2010, 9:70
http://www.biomedical-engineering-online.com/content/9/1/70

Page 8 of 18



are mainly caused by two processes: 1. sandwich-like aggregation of PM fibres to bun-

dles and 2. crossing of two beta-sheets leading to an elevation at the crossover. The

second process can be found in Figure 2A, where the crossing points of different PM

fibres are marked by white arrows. Interestingly, at every crossing point the height of

the fibres locally increases, which indicates that one fibre has to go above the other

one and that the fibres do not interdigitate. Furthermore, the PM fibres have to be sur-

prisingly elastic, as every single fibre crossover has similar spatial dimensions as a beta-

sheet (same in height but slightly increased width). Hence, the beta-sheets strongly

deform just at the crossing point.

Cell growth in 3D-matrices

As we demonstrated the influence of the PM concentration and of laminin on the for-

mation of the 3D-scaffold, in a subsequent set of experiments we investigated the

impact of the scaffold formation on cell growth and survival. We used the human fetal

neural progenitor ReNcell VM cell line as a model system for neuronal differentiation

as the cells can be differentiated in neuronal cells with a dopaminergic phenotype, and

the cells start differentiation within 24 h [26,27].

The cells grown in the hydrogel nanoscaffolds demonstrate a similar proliferating

profile to those of 2D cultures with a 24-30 h doubling rate. In all three concentrations

a spheroid growth pattern was observed, as shown in Figure 5A. After the functionali-

sation of the matrix with laminin, the growth pattern of ReNcell VM cells was differ-

ent. Cells hosted in PuraMatrix/laminin 0.5% scaffolds expressed flat and densely

packed cell aggregates (Figure 5B). More loosely composed 3D structures of cells were

rarely observed, in those cases mainly after 10 days of cultivation (data not shown).

Progenitor cells cultivated in PuraMatrix/laminin 0.25% showed an increased number

of 3D-structures which were already developed after 5 days of cultivation, whereas the

number of aggregated forms decreased (Figure 5C). Almost all growth patterns in the

Figure 4 Height distribution histograms. (A) Height distribution histograms (open circles, grey) of a PM
0.15% sample and fits to Gaussian distribution function (solid lines). The leftmost peak corresponds to the
surface bearing the PM network and was set to 0 nm. Three peaks with an average separation of 1.23 ±
0.21 nm and declining intensities are shown. Therefore mostly single PM fibres are formed and the
formation of vertical aggregates is very unlikely. (B) Comparison of height distribution histograms from PM
0.15% (gray line) and PML 0.15% (black line). Obviously the formation of single PM fibres is reduced (peak
at approx. 1 nm) and the aggregation to bundles is preferred if laminin is added. Furthermore the surface
peak (0 nm) is increased, indicating that less surface is covered by PM. This supports the observation (Fig.
3A, C), that the bundling makes the network less dense.
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lowest concentration of PuraMatrix/laminin (0.15%) showed these 3D-structures of

ReNcell VM cells. Similar to PuraMatrix/laminin 0.25% 3D structures were already

present after 5 days (Figure 5D). Correspondingly, almost none of the cell aggregates

were found within these approaches. These results hint at the conclusion that ReNcell

VM cells cultured without surface functionalisation grow in neurospheres, whereas in

laminin functionalised matrices the growth pattern of the progenitor cells differs in

such a way that high concentrations of the scaffold support the growth of cell aggre-

gates whereas decreasing PuraMatrix concentrations lead to extended 3D-growth of

ReNcell VM cells.

Survival of cells in 3D-matrices and 2D-cultivation

The survival rate of cells cultured in 3D-scaffolds with different PuraMatrix concentra-

tions was analysed by using a Live/Dead assay, performed at days 0, 1, 4, and 7. To

determine if there was a benefit of the 3D-matrix over a 2D-culture system we

conducted in parallel a live/dead assay in 2D-cultures. An example picture of a live/

dead-assay conducted with cells differentiated for 4 days in a 2D-culture is shown in

Figure 6A. Cells differentiated in the 2D-culture system showed a significant increase

of dead cells over the time in comparison to day 0 differentiation (Figure 6B, p <

0.005). In comparison no increase of dead cells was observed in the different 3D-scaf-

folds. Regardless of the PuraMatrix concentration the number of dead cells was stable

over the time of differentiation (Figure 6B). The results at day 0 demonstrated in all

Figure 5 Growth and proliferation of ReNcell VM cells in 3D PuraMatrix. (A) 3D culture with 0.5% PM
without laminin results in the development of spheroid structures after 5 days of cultivation. (B) Cultivation
with 0.5% PM with laminin functionalisation resulted in flat and densely packed cell aggregates. (C)
Cultures with 0.25% PM and with laminin functionalisation showed cell aggregates, similar to PML 0.5%,
but also loosely composed 3D cellular structures are formed. (D) PML 0.15%, the cellular composition in
the matrix is mostly built up of 3D structures.
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samples a survival rate higher than 95%. At day 1 the percentage of cell survival in 2D-

cultures was about 88% and it decreased further until about 70% at day 7. The lowest

survival rate within the three different matrix concentrations was about 85% (PML

0.25%, d7) and therefore only 10% lower compared to the starting point at day 0,

although this rate was not significantly different from day 0. From day 1 up to day 7

the survival rates in the 3D-matrices were always significantly higher than in the 2D

cultures (p ≤ 0.005), indicating that 3D-matrices support the survival of ReNcell VM

cells during differentiation.

Neuronal differentiation in 3D-matrices and 2D-cultivation

Antibody stainings against b-III-tubulin (bIII-tub) and tyrosine hydroxylase (TH) were

performed to investigate the influence of the 3D-composition on the number of neu-

rons compared to 2D. The percentage of neuronal cells was determined at day 0, and

Figure 6 Live/Dead Assay. (A) Live/Dead fluorescence image of ReNcell VM cells in 2D-culture conditions.
Green fluorescent cells are alive, red fluorescent nuclei indicate dead cells (arrows). (B) Quantification of the
stainings by manual counting of living and dead cells of 2D and 3D cultures with different concentrations
of PML matrices. Notice the increase of dead cells during differentiation which is significantly higher in the
2D compared to 3D cultures. * indicates p ≤ 0.05.

Ortinau et al. BioMedical Engineering OnLine 2010, 9:70
http://www.biomedical-engineering-online.com/content/9/1/70

Page 11 of 18



at day 1, 4 and 7 after differentiation. Cells were proliferated for up to 4 days in scaf-

folds consisting of different concentrations of PuraMatrix. Figure 7A shows a transmis-

sion light picture of proliferating cells (PM 0.25% with laminin). Cell bodies with only

a few short processes can be seen, a morphology comparable to 2D cultures (data not

shown). Investigation of proliferating cells with a scanning electron microscope

revealed cell bodies which are embedded in the PuraMatrix (Figure 7C). Upon induc-

tion of differentiation, cells started to develop a dense network of processes (Figure 7B

and 7D) and began to the express bIII-tub (Figure 7E) and TH (Figure 7F).

Figure 7 Proliferation and differentiation in 3D scaffold. (A + B) Transmission light picture of
proliferating cells in PML 0.25% and differentiated cells in PML 0.25%. (C + D) Scanning electron
microscope picture of proliferating cells and differentiated cells in PML 0.25%. Upon induction of
differentiation one observes the development of a dense 3 dimensional network of processes. (E)
Immunocytochemistry for bIII-tubulin and TH (F) of cells in PML 0.25% after 7 days of differentiation
revealed a dense network of bIII-tubulin positive cells. TH+ cells were found to possess processes, but
without building up a dense network.
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In proliferating cells, the percentage of bIII-tub positive cells (bIII-tub+) ranged
between 0.4% and 0.5% within the three PuraMatrix/laminin concentrations and was

significantly higher in all three PuraMatrix/laminin concentrations compared to the

2D-culture (0.06 ± 0.02%) (Figure 8A). After one day of differentiation the number of

neurons had more than doubled within the PuraMatrix/laminin concentrations, com-

pared to 2D-cultures. At day 7 the number of bIII-tub+ cells decreased both within the

3D-scaffolds with all PuraMatrix/laminin concentrations, and in the 2D-cultures. How-

ever, in all conditions of the 3D-cultures the number of bIII-tub+ cells was still about

2%, higher in comparison to the 2D-cultures (0.85 ± 0.09%).

An example of the detection of TH positive (TH+) cells is shown in Figure 7F. At

day 0 and 1 of differentiation in none of the conditions TH+ cells were found. Expres-

sion of TH was confirmed at day 4, where 0.2% - 0.3% TH+ cells were detected within

the 2D-culture as well as the two lower concentrations of the PuraMatrix/laminin

matrix. In contrast, in the scaffold with the highest PuraMatrix/laminin concentration

only 0.04 ± 0.02% of TH+ cells were found (Figure 8B). At day 7 the scaffolds with a

PuraMatrix/laminin concentration of 0.25% showed the highest number of TH+ cells

(0.46 ± 0.05%) which was nearly twice the number of TH+ cells in the scaffolds with a

PuraMatrix/laminin concentration of 0.15% (0.27 ± 0.04). Like at day 4 the amount

TH+ cells was lowest in the scaffolds with a PuraMatrix/laminin concentration of 0.5%

(0.11 ± 0.04%). Regardless of this clear difference the number of TH+ cells was not sig-

nificantly different in any condition. In general, the formation of a 3D-network of TH+

cells can not be confirmed, but TH+ cells can be found on different levels of z-stacks

which ensures a 3D-growth.

Discussion
Three-dimensional matrices composed of nanofibres and the use of neural progenitor

cells are emerging areas in regenerative medicine. Both applications by themselves pro-

mise success as therapeutic tools for neurodegenerative diseases [1,2,33]. The combina-

tion of both methologies shows synergistic effects and improves the outcome over

single applications, as shown in different studies dealing with the culture of cells in 3D

scaffolds for example in scaffolds consisting of PuraMatrix [15,22,23]. In our study we

investigated the growth and differentiation of a human fetal neural progenitor cell line

Figure 8 Quantitative analysis of bIII-tubulin and TH expression. (A + B) Percentage of bIII-tubulin
positive and TH positive cells, respectively, in differentiating ReNcell VM cells grown in 2D and 3D cultures.
In all conditions a higher number of bIII-tubulin+ cells was found in the 3D scaffolds in comparison to the
2D cultures. A PuraMatrix concentration of 0.5% was found to be adverse for TH+ cells as the number was
lower in these scaffolds, however the difference was not significant. * indicates p ≤ 0.05.
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(ReNcell VM, Millipore, USA). These cells can be differentiated into neurons with a

dopaminergic phenotype within a short period of cultivation. Although the cells are

immortalised and therefore not suitable for clinical application, the fast onset of neuro-

nal differentiation, within 24h as shown by the change in morphology and the appear-

ance of markers such as b-III-tubulin, make them a suitable model system for

neuronal differentiation [25-28].

In our study we used the extracellular matrix protein laminin-I which promotes cell

adhesion and stimulates neurite outgrowth in various neuronal cell types [34]. Cell

adhesion and neurite outgrowth-promoting sites have been identified in the C-terminal

site of a1 and a2 chain [35-39], in the cross-region of the molecule [40,41], in the g1
chain [42,43], and in the N-terminal region of the a2 chain [44]. These findings sup-

port our primary choice of laminin I as a functionalisation agent in our studies.

In 2D and 3D cultures of ReNcell VM cells there are distinct variations of the growth

pattern of functionalised and non-functionalised matrices. Functionalisation with lami-

nin supports cell adhesion and prevents the formation of neurospheres. ReNcell VM

cells either attach to the surface of a cell culture flask (2D) or show distinct growth pat-

terns based on the combination of laminin with various PM scaffolds. In this context,

the influence of laminin on the matrix structure is of particular interest. Structure and

assembly of the functionalised matrix was investigated in detail by AFM microscopy.

AFM studies demonstrate that these different growth patterns are linked to the assembly

state of the 3D matrix. In general the matrix structure is built from beta-sheets and

aggregates or bundles of those. Laminin directly influences the formation of the PM

matrices by increasing the number of aggregates (Figure 2 and Figure 3). A PuraMatrix/

laminin concentration of 0.5% has a dense and closely packed composition so that the

distance between fibres is extremely small. Cells cultured in these matrices are not able

to build up 3D structures, and grow in a flatter, denser pattern (Figure 5B). Decreasing

the PML concentration increases the distance of nanofibres (Figure 3F, D, B) and there-

fore increases the possibility to form 3D growth patterns (Figure 5C). In addition, we

could show that the laminin functionalisation increases the distance between fibres by

shifting the composition ratio of beta-sheets to bundles more towards the bundles.

Similar influence of laminin on 3D structures was reported for scaffolds consisting of

Poly(l-lactic acid), whereas different modifications of the treatment of the scaffolds with

laminin resulted in changes of the nanofibre structure and subsequently in the viability

and proliferation of PC12 cells [45]. Regarding the changes of the scaffold into the direc-

tion of structure with more bundles, it can be concluded that this will result in 3D

matrix with higher stiffness and stability. Stiffness of the surrounding matrix has impor-

tant implications during development, differentiation, disease, and regeneration [46].

Although laminin clearly influences both the scaffold and the growth pattern of the cells

in our study, the impact of the stiffness and stability on growth patterns and differentia-

tion was not examined in this study and is a topic for further studies.

Besides the influence of the matrix composition on the growth and proliferation of

the cells, we were interested in the question of if a 3D environment is superior to a 2D

environment, as it is thought to resemble the in vivo situation more closely. Compared

to 2D cultures the total number of cells in all matrix concentrations is significantly

higher up to 7 days of differentiation, which supports the importance of a 3D environ-

ment. A question which was not addressed in the present study is the role of the non-
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neuronal cells. A high proportion of the cells remain positive for GFAP, suggesting dif-

ferentiation into glial cells. However, this was observed in the 2D as well as the 3D cul-

ture system (data not shown).

Within this time period the survival rate of cells in the 2D culture system decreased to

70%. In contrast to our findings, Silva et al. [33] could not demonstrate significant differ-

ences in cell survival compared to 2D culture within the differentiation phase with the

IKVAV hydrogel system. Hence, they suggest that diffusion of nutrients, bioactive fac-

tors, and oxygen through these highly hydrated networks is sufficient for survival of

large numbers of cells for extended periods of time. The increase of cell survival in 3D

matrices was also described by Mahoney and Anseth [47] with poly ethyleneglycol

hydrogels. The increase in cell survival during differentiation fits very well with the

higher number of b-III-tubulin positive cells, in particular after 7 days of differentiation

(Figure 8). Between day 4 and day 7 of differentiation there is a drop in the number of

neurons that is found in both 2D and 3D culture systems. Nevertheless, the total num-

ber of neurons remains significantly higher in 3D cultures. Another difference in the

growth and differentiation potential of ReNcell VM cells is the increased number of

b-III-tubulin positive neurons at day 0. Here it might be hypothesised that the functio-

nalised matrix itself has a slightly inductive capacity towards neuronal differentiation.

In addition, the growth of cells in a densely and packed environment of the matrix may

induce spontaneous differentiation of progenitor cells. Furthermore, our results clearly

demonstrate that the PuraMatrix/laminin 0.5% concentration failed to support the

development of dopaminergic neurons at day 4 and day 7 after differentiation. In gen-

eral, the number of TH-positive cells is reduced compared to 2D cultivation, except for

PuraMatrix/laminin 0.25%, in which the number of TH-positive cells was higher after

7 days compared to 2D cultures. This suggests that lower concentrations support differ-

entiation and increase the overall number of differentiated TH-positive cells. This may

be due to a correlation between the structure of the matrix, namely the pores and fibres.

Thonhoff et al. [23] showed that a concentration of 0.25% PuraMatrix is optimal to

support stem cell differentiation, however these were not functionalised with laminin.

Proceeding from this, further studies may generate new protocols for the enrichment

of neurons through manipulating the structure and composition of the matrix. Donato

et al. [25] demonstrated that by pre-aggreation of the ReNcell VM cells as neurospheres

before differentiation a higher number of neurons could be obtained. Another approach

might be to alter the composition of the matrix with defined signalling molecules that

promote neuronal differentiation. Silva et al. [33] for instance were able to demonstrate

that integration of the laminin epitope IKVAV into a 3D matrix was able to initiate neu-

ronal differentiation. Other authors [21] have demonstrated a wide variety of signalling

peptides derived from laminin which have the potential to influence neurite outgrowth

and differentiation. Taken together, these results show that besides the known benefit of

culturing cells in 3D structures, the composition of the scaffold, specifically the concen-

tration of the matrix material, and the functionalisation of these materials support and

enhance growth and differentiation of human neural progenitor cells.

Conclusions
In this study we demonstrated that dependent on the concentration of PuraMatrix or

the functionalisation of PuraMatrix with laminin the overall structure of the 3D
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scaffold is changed. AFM measurements revealed changes in the 3D-structure with

respect to the formation of bundles. By analysing the proliferation, differentiation and

survival of human neural progenitor cells we showed that the formation and functiona-

lisation of the 3D-structure is important for the fate of the cells. A comparison with

other studies dealing with the cultivation of progenitor cells in 3D scaffolds suggests

different matrix parameters may best suit different cell lines. Therefore care has to be

taken regarding the matrix composition, concentration and functionalisation when

using 3D systems. Taking this into account, model systems like the one we describe

might be a valuable tool for the generation of defined cell types or might serve as in

vitro assays for testing compounds which interact with the proliferation or differentia-

tion of stem and progenitor cells.
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