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Abstract

Background: The waveform morphology of intracranial pressure pulses (ICP) is an
essential indicator for monitoring, and forecasting critical intracranial and
cerebrovascular pathophysiological variations. While current ICP pulse analysis
frameworks offer satisfying results on most of the pulses, we observed that the
performance of several of them deteriorates significantly on abnormal, or simply
more challenging pulses.

Methods: This paper provides two contributions to this problem. First, it introduces
MOCAIP++, a generic ICP pulse processing framework that generalizes MOCAIP
(Morphological Clustering and Analysis of ICP Pulse). Its strength is to integrate
several peak recognition methods to describe ICP morphology, and to exploit
different ICP features to improve peak recognition. Second, it investigates the effect
of incorporating, automatically identified, challenging pulses into the training set of
peak recognition models.

Results: Experiments on a large dataset of ICP signals, as well as on a representative
collection of sampled challenging ICP pulses, demonstrate that both contributions
are complementary and significantly improve peak recognition performance in
clinical conditions.

Conclusion: The proposed framework allows to extract more reliable statistics about
the ICP waveform morphology on challenging pulses to investigate the predictive
power of these pulses on the condition of the patient.

1 Background
Traumatic Brain Injuries (TBI) affect more than 2 million people annually in the

United States, and their incidence in the world keeps increasing [1]. The treatment of

TBI patients in critical care units, as well as other neurological disorders, relies on the

continuous measurement of intracranial pressure (ICP) (i.e. the sum of the pressures

exerted within the craniospinal axis system). It is known that the management of ICP

can attenuate secondary brain injuries and improve chances of recovery. Interestingly,

the morphology of ICP waveform holds essential informations about the intracranial

adaptive capacity (elastance), and even the outcome of head injured patients [2,3]. For

example, it has been shown that variations of the ICP pulse morphology are linked to

the development of intracranial hypertension [4-6], cerebral vasospasm [7], changes in

the cerebral blood carbon dioxide (CO2) levels [8,9], decreased cerebral bloob flow

(CBF) [10], and changes in the craniospinal compliance [11].
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The extraction of morphological features is essential to monitor and to understand

ICP in an automatic fashion with the ultimate goal of improving the treatment of

pathophysiological intracranial and cerebrovascular conditions. Although ICP pulses

are typically triphasic [8] (i.e. three peaks), their shape can exhibit irregular variations

such that some peaks may be missing. The recognition of these top peaks is a challen-

ging task that has recently drawn special attention from different research groups. Sev-

eral algorithms have been developed to detect the first peak [12], and to recognize the

three peaks of ICP pulses [13-17]. Existing methods can be divided into two categories

depending if they work offline, like Morphologram [14], or online, like MOCAIP

[13,15] (Morphological Clustering and Analysis of ICP Pulse). These techniques offer a

satisfactory accuracy to recognize the peaks in general cases. However our recent

observations show that their performance deteriorates significantly when the pulses

exhibit abnormalities or are simply more challenging (a pulse is considered to be chal-

lenging if any of its peaks fails to be correctly designated by the baseline MOCAIP

algorithm [15], see Figure 1). Such ICP pulses are of particular interest because we sus-

pect that they might hold essential predictive information about the patient condition.

This paper investigates how to improve peak recognition accuracy on challenging

ICP pulses. The contribution is two-fold. First, to conduct this study, MOCAIP++, a

robust ICP pulse processing framework that generalizes MOCAIP, is introduced. The

strength of MOCAIP++ relies on its capacity to integrate different peak recognition

methods, and to exploit additional features based on the derivatives of the ICP signal.

Our experiments evaluate these characteristics by providing a comparative analysis of

three different state-of-the-art peak recognition techniques based on Gaussian Models,

Gaussian Mixture Model (GMM), and Spectral Regression Analysis (SR), and by evalu-

ating the impact of ICP features, such as curvature, first and second derivatives on the

recognition performance. Second, this paper investigates the effect of incorporating

challenging pulses into the training set of peak recognition methods learned in a

supervised way. A method is proposed to sample automatically a representative chal-

lenging dataset of ICP pulses from a large database of ICP signals collected from 128

neurosurgical patients. The original, and the challenging datasets allow to study how

Figure 1 Illustration of two ICP pulses (the actual position of the peak is depicted in green,
MOCAIP prediction in black). On the left, an ICP dominant pulse is correctly annotated with the position
of the three peaks. On the right, the automatic annotation failed to correctly recognized the third peak
because of the uncommon shape of the pulse. This pulse is considered as a challenging one in our study.
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the performance of peak recognition methods, essential to extract morphological fea-

tures, can be improved.

2 Methods
2.1 ICP Dataset

Generally, ICP signal recordings consist of several hours long segments. By reviewing

those files, we observed that the majority of the recordings contain pulses whose peaks

are easily recognized by automatic algorithms. A subset of ICP files, however, contains

pulses that are not correctly annotated by automatic peak recognition methods. One

reason for these mismatches is that the pulse morphology differs significantly from the

most common ones. We consider those pulses to be challenging (an example is shown

in Figure 1).

The variation in morphology of these challenging pulses might originate from a com-

bination of external factors such as sampling rate of the ICP, noise and artifact due to

the acquisition device, or coughing of the patient. It is also possible that some of these

morphological variations come from the condition of the patient and that they might

hold relevant predictive information. Unfortunately, the peak recognition accuracy of

current techniques on the ICP recordings containing those pulses drops dramatically.

It is no longer possible to extract reliable statistics about their ICP waveform morphol-

ogy to perform further analysis. This observation led us to extract a challenging dataset

D (Section 2.1.2) from the dataset D (Section 2.1.1). The new dataset D’ is sampled

from the recordings of D that contain a large percentage of challenging pulses. Both

datasets, that are described below, will be used in the experiments to evaluate the per-

formance of our framework. In addition, we will investigate if the use of the challen-

ging dataset as part of the training set of peak recognition methods can improve their

performance.

2.1.1 Original Data

The source dataset of ICP signals originates from patients admitted to the University of

California Los Angeles (UCLA) medical center. Its usage in the present study was

approved by the UCLA Internal Review Board. It is a large, representative dataset that is

reasonably distributed across gender, age, and type of patient (ICU or NON-ICU). A

small portion of this dataset was previously used to evaluate MOCAIP [15] and its

extensions based on regression analysis [18]. The ICP and ECG signals were acquired

from 128 patients treated for various intracranial pressure relted conditions. ICP was

monitored continuously using Codman intraparenchymal microsensors (Codman and

Schurtleff, Raynaud, MA) placed in the right frontal lobe. ICP signals were recorded

from bedside monitors using corporate data acquisition systems at a sampling frequency

of either 240 Hz or 400 Hz. A total of 1425 recordings were extracted, each totalizing

several hours. Those ICP and ECG signal recordings were subsequently pre-processed

by MOCAIP so that they were first divided into 3 minutes segments. Then, a hierarchi-

cal clustering was applied on individual pulses of each segment, and the center of the

dominant cluster was extracted to produce a dominant pulse. This clustering process

leads to a representative set of 87,125 dominant pulses. It is referred to as the original

dataset D from which a smaller, but more challenging dataset will be sampled. The

actual positions of the three peaks in the ICP are obtained by manual annotation from

experienced researchers following the procedure described in the next subsection.
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2.1.2 Challenging Data

The selection of a challenging subset of ICP pulses D’ ⊂ D is achieved using a

weighted sampling procedure from the file recordings of the original dataset D. Intui-

tively, the sampling aims at extracting more pulses from recordings that contain a lar-

ger percentage of challenging pulses so that they are better represented in the resulting

dataset. To do so, each recording is associated with a weight corresponding to its

degree of difficulty which is high if MOCAIP often fails to recognize the three peaks.

The procedure to weight the files is described below.

Experienced researchers establish the groundtruth by manually setting the positions

of the three peaks (p1, p2, and p3) in each pulse. The task of the researcher is to pick

the right peak candidates among those automatically detected at curve inflections (Sec-

tion 2.2.2). Whenever one of the three peaks is missing, its position is labelled with the

empty set. Among the set of pulses, 7173 have missing p1, 3699 have missing p2, and

4626 have missing p3. Researchers cross-validate their results and, if necessary, they

harmonize them using the annotation of the previous and following pulses as refer-

ence. For a few difficult cases where the researchers could not agree on the position of

some peaks, the pulse was removed from the dataset. This procedure ensures that the

groundtruth is not biased to a specific researcher.

In parallel, MOCAIP is applied to annotate each pulse with the position of the three

peaks (p1, p2, and p3). To find difficult files, the predictions of MOCAIP are compared

with the manual groundtruth. For each ICP file fi= 1...F, a weight wi= 1...F is set propor-

tional to the percentage of wrongly assigned peaks. This is done by comparing the posi-

tion of each peak of the ground truth to the position obtained from the automatic files,

wi
p p p

p p p

=
+ +
+ +

  

  
1 2 3

1 2 3

, (1)

where ℰp1, ℰp2, ℰp3 are the number of wrongly assigned peaks and   p p p1 2 3, ,

are the total number of occurrences in the file of the peaks p1, p2, and p3, respectively.

The distribution of the weights is illustrated in Figure 2.

Finally, the challenging dataset D’ is created by extracting pulses using weighted sam-

pling, such that a pulse has a probability vi (Eq. 2) to be picked from file fi. Therefore,

files with large probability vi will contribute to more pulses in the sampled dataset.

v
w

w

i
i

i

i

F=

=
∑

1

(2)

To avoid redundancy from the files that contain only a few pulses, each pulse is

selected at most once during sampling. The resulting dataset is made of 10638 ICP

pulses among which 2816 have missing p1, 604 have missing p2, and 692 have missing

p3. The challenging pulses are distributed among 58 patients.

2.2 MOCAIP++

This section introduces MOCAIP++, a generalization of the recently developed

MOCAIP [15] which is an end-to-end framework that processes raw ICP signals to
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extract morphological waveform features through the recognition of the three peaks of

the pulse. In its original form, MOCAIP relies on a Gaussian model to represent the

prior knowledge about the position of each peak in the pulse. The Gaussian priors

were replaced by a regression model in a recent extension [18].

MOCAIP++ generalizes its predecessors in two ways. First, it proposes a unifying

view such that different peak recognition techniques can be integrated within the fra-

mework. Second, an additional processing step allows to exploit ICP features regardless

the peak recognition method that is used. Similarly to MOCAIP, a pulse extraction

technique (Section 2.2.1) first process the ICP signal to extract a reliable dominant

pulse from which peak candidates are located at curves inflections (Section 2.2.2).

Then, MOCAIP++ extracts different ICP features from the dominant pulse (such as

curvature, first, and second derivative) (Section 2.2.3). The peak recognition module

(Section 2.2.4) exploits the peak candidates and the features to recognize the peaks

within the pulse. Finally, various statistics are estimated using the latency of these

peaks and their ICP elevation (additional details can be found in the original papers

[15,18]). The core of the algorithm is illustrated in Figure 3 and its major components

are described in the next subsections.

2.2.1 ICP Segmentation and Dominant Pulse Extraction

The first component of the framework (ICP pulse segmentation) takes a raw, continu-

ous ICP signal and splits it in a series of individual ICP pulses. An individual pulse is

found using a pulse extraction technique [19] combined with the ECG QRS detection
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Figure 2 The distribution of the weights is illustrated for the files in the original dataset of ICP
pulses. The weight of each file is set proportional to the percentage of wrong peak assignations. For
example, a value of 1 indicates that all the peaks in that file were not assigned correctly by the MOCAIP,
this usually happens in short recordings.
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[20] that locates each ECG beat. Therefore, the latency of the three peaks within the

ICP pulse is relative to the ECG QRS.

Because ICP recordings are subject to various noise and artifacts during the acquisi-

tion process, a robust dominant pulse Si is extracted from a sequence of consecutive

ICP pulses using hierarchical clustering [21]. It corresponds to the centroid of the lar-

gest cluster. In other words, the dominant pulse summarizes a short segment of conse-

cutive ICP pulses.

2.2.2 Detecting Peak Candidates

Then, MOCAIP++ detects peak candidates (a1, a2, ..., aN) at curve inflections of the

dominant ICP pulse Si by segmenting the pulse into concave and convex regions using

the second derivative of the signal. A peak is said to occur at the intersection of a con-

vex and a concave region on a rising edge of ICP pulse, or at the intersection of a con-

cave and a convex region on the descending edge of the pulse.

2.2.3 ICP Features

Previous MOCAIP-based studies [15,18] exploited the dominant pulses directly as

input to peak recognition techniques. In signal processing, it is common to derive

Figure 3 Diagram showing the different modules in MOCAIP++ framework.
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features that emphasize different properties of the signal. For example, the first deriva-

tive measures the changing rate of the signal with respect to time. As illustrated in Fig-

ure 4, it is particularly interesting in our case because for a similar amplitude, a wide

peak, and a narrow peak will lead to different derivative values. Therefore, features

extracted from the ICP signal derivative provide additional morphological characteris-

tics that should help to discriminate between ICP peaks. One advantage of using these

features is that they are invariant to a shift of the signal elevation. Note that the frame-

work is not restricted to these features, any other features could in principle be

exploited. In our experiments, we will evaluate the impact of using the first Lx and sec-

ond Lxx derivatives, as well as the curvature K extracted from the ICP signal within

MOCAIP++ framework.

First Derivative For more robustness, the ICP signal I(x) is first convolved with a

Gaussian smoothing filter ( ; )x  where s is the standard deviation of the Gaussian

(s = 3 in our experiments),

L x x I x( , ) ( ; )* . = ( ) (3)

Then the derivative Lx is computed according to the smoothed version L of the ICP,

L L x L xx = − +( , ) ( , ). 1 (4)

0

0.5

1

L

−1

−0.5

0

0.5

1

Lx

−1

−0.5

0

0.5

Lxx

Figure 4 Signal L made of two Gaussian peaks with different standard deviations. Its first Lx and
second Lxx derivatives are particularly usefull to discriminate peaks because their amplitude depends on
the peak width but remains invariant to any global shift in elevation of the signal.
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Second Derivative Similarly, the computation of the second derivative Lxx relies on the

first derivative Lx,

L L x L xxx x x= − +( , ) ( , ). 1 (5)

Curvature The curvature K is computed as a ratio between the first and the second

derivative of the signal,

K
L

L
xx

x

=
+( )

./1 2 3 2 (6)

2.2.4 Peak Recognition

This module aims at recognizing the three peaks (p1, p2, p3) within an ICP pulse

among the set of candidate peaks (a1, a2, ..., aN). Depending on the recognition techni-

que, it can exploit the latency of the peak candidates, the raw ICP pulse, or different

features extracted from the pulse. In the next, we describe three different peak recogni-

tion approaches. They are based on independent Gaussian models [15], Gaussian Mix-

ture Models (GMM), and Spectral Regression (SR) analysis [18], respectively.

(a) Gaussian Model The original MOCAIP algorithm exploits Gaussian priors to

identify the most likely configuration of the three peaks among the set of candidates.

Given P(X1), P(X2), and P(X3) to denote the Gaussian probability distribution of the

prior position of the three peaks (p1, p2, p3), peak recognition amounts to searching

for the maximum of the following objective function,

J x y z P X a P X a P X a a a a a a a

x y z
x y z x y z( , , ) ( ) ( ) ( ) | ,

| ,

= = + = + = ∈ ∧ ∈ ∧ ∈

< <
1 2 3 (7)

where P(Xi = ak) represents the probability of assigning ak to the i-th peak.

In order to deal with missing peaks, an empty designation a0 is added to the pool of

candidates. In addition, to avoid false designation, MOCAIP uses a threshold r such

that P(Xi = ak) = 0, i Î {1, 2, 3}, k Î {1, 2, ..., N} if the probability of assigning ak to pi
is less than r.
(b) Gaussian Mixture Models In contrast with MOCAIP that uses a model of inde-

pendent Gaussian distributions to represent the likely position of each peak, the

method proposed in this paragraph exploits a multi-modal distribution to model the

joint latency of the three peaks. Observed peak configurations are approximated by a

Gaussian Mixture Model (GMM), where each component i represents a cluster of con-

figurations μi of the three peaks. A GMM is defined as,

P X x xi

i

i i

C

( | ) ( ; , ),= =
=
∑Θ Σ 

1

 (8)

( ; , ) exp ,

( )

x i i
i

x i

i




Σ
Σ

Σ=
− −

1

2 2
2

2

2
(9)

where ai, μi, ∑i are the relative weight, the mean, and the variance of an individual

component i, and C is the total number of components. For learning, Expectation-
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Maximization (EM) was used to estimate the model parameters θ = (a1...C ; μ1...C; ∑1...C)

that maximizes the likelihood of the observed peak configurations. EM was performed

for a different number of components C Î {1, ..., 10}. The number which minimizes

the Bayesian Information Criterion (BIC) [22] was selected.

The detection task amounts to find the best configuration of the three peaks among

the set of peak candidates a = (a1, a2, ..., aN) detected in the current pulse. This can

be done by finding the configuration that is the more likely on the GMM,

{ , , } arg max ( { , , }| ) |
, ,

p p p P X p p p p a p
p p p

1 2 3 1 2 3 1 2
1 2 3

= = ∈ ∧
  

    Θ ∈∈ ∧ ∈

< <

a p a

p p p



  

3

1 2 3| .
(10)

However, an additional difficulty is caused by missing peaks. One way to solve this

problem is to use a hierarchical recognition approach where the possible configura-

tions are first evaluated on the 3–peak model. If the largest response r123 = P(X = {p1,

p2, p3}|Θ) fails to be above a given threshold τ3, the marginals X12, X13, X23 using only

two dimensions of the model are evaluated,

{ , } arg max ( { , }| ) | ,
,

p p P X p p p a p a p p
p p

1 2 12 1 2 1 2 1
1 2

= = ∈ ∧ ∈ ≠
 

     Θ 22, (11)

{ , } arg max ( { , }| ) | ,
,

p p P X p p p a p a p p
p p

1 3 13 3 3 11 1
1 3

= = ∈ ∧ ∈ ≠
 

     Θ 33, (12)

{ , } arg max ( { , }| ) | ,
,

p p P X p p p a p a p p
p p

2 3 23 2 3 2 3 2
2 3

= = ∈ ∧ ∈ ≠
 

     Θ 33, (13)

and r12 = P(X12 = {p1, p2}|Θ), r13 = P(X13 = {p1, p3}|Θ), r23 = P(X23 = {p2, p3}|Θ).

Again, if the maximum response to the GMM model of all the 2-peak configurations

max(r12, r13, r23) is below a certain threshold τ2, 1-peak marginals X1, X2, X3 are evalu-

ated, and the peak with the maximum response is marked.

p P X p p a
p

1 1 1 1
1

= = ∈arg max ( { }| ) |


 Θ (14)

p P X p p a
p

2 2 2 2
2

= = ∈arg max ( { }| ) |


 Θ (15)

p P X p p a
p

3 3 3 3
3

= = ∈arg max ( { }| ) |


 Θ (16)

(c) Spectral Regression In a recent comparison of regression techniques [18], Spectral

Regression (SR) [23] demonstrated excellent accuracy in peak recognition on standard

ICP pulses. This motivates us to select it as the baseline regression method within

MOCAIP++. The regression model yi = f(xi) maps the position of the peaks as a func-

tion of the ICP dominant pulse. The model is automatically learned from training ICP

pulses S = {Si = 1...n} labeled with the latency of the peaks yi = (p1, p2, p3) within the

pulse. Each pulse Si is resized to a vector xi Î ℝs of length s = 500 ms, and normalized

in amplitude between [1].
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SR combines spectral graph analysis and standard linear regression to obtain a model

that gives similar predictions ˆ ˆy Yi ∈ for data samples xi ÎX that are close (i.e. that are

nearest neighbors in a graph representation), such that the following measure � is

minimized:

 = −
=

∑( ) ,^ ^

,

,y y Wi j
i j

n

i j
2

1

(17)

where W Î ℝn × n is the item-item similarity matrix that associates a positive value

to Wi,j if the samples xi, xj belong to the same class. This is done by first using the

eigenvectors of the matrix W,

We De=  , (18)

where D is a diagonal matrix whose entries are column sums of W, Di,i = Σj Wj,i, and

e0, e1, ..., ed denote the d + 1 eigenvectors with respect to the d + 1 largest eigenvalues

l0 ≥ l1 ≥ ... ≥ ld.

Then SR finds d vectors { ˆ , ˆ , , ˆ  0 1 … } that minimize the residual Sum of Square

Error (SSE),

ˆ argmin ( ) , j
T

i i
j

i

n

x y= −
=
∑ 2

1

(19)

where yi
j is the i-th element of ej.

For recognition on a new pulse xj, the regression model yj = f(xj) predicts the most

likely position of the three peaks yj = (p1, p2, p3). A nearest neighbor search is then

performed so that the nearest candidate (a1, a2, ..., aN) to each prediction is assigned

to the peak label corresponding to the matched prediction. Additional features fi Îℝ(
s,

where fi Î{Lx, Lxx, K}, can be concatenated to the original input xi Îℝ(
s to create a

new input vector [xi fi] that combines both modalities.

Although Spectral Regression is a linear regression algorithm, it can easily be

extended to become nonlinear by using a kernel projection (Radial Basis Function

(RBF)) of the input vectors. We further refer to this technique as the Kernel Spectral

Regression (KSR).

3 Results and Discussion
3.1 Accuracy of Peak Recognition Methods on Challenging Data

This section provides a comparative analysis of peak recognition techniques by evaluat-

ing their performance on the challenging dataset of ICP pulses. Models based on Gaus-

sian (MOCAIP), Gaussian Mixtures (GMM), Spectral Regression (SR), and Kernel

Spectral Regression (KSR) models are evaluated. A five-fold cross-validation is per-

formed on the challenging dataset D’, such that at each of the five iterations, four folds

are used to train the model while the remaining one is retained for evaluation. The

partitioning is randomly made with the constraint that the pulses of a given patient are

grouped into the same fold. This ensures that data from the same patient are not pre-

sent at the same time in the training and testing sets.
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During evaluation, a predicted position ŷ i i of one of the three peaks is considered to

be correct if it is equal to the actual position yi established manually. Given that peaks

may be set as missing in the groundtruth, True positive (TP), false positive (FP), true

negative (TN), or false negative (FN) are defined as follow,

A prediticion of is a

if

if
  ˆ

, ( ˆ ˆ )

, (
y y

TP y y y y

FP
i i

i i i i= ∧ ≠ ∅ ∧ ≠ ∅
ˆ̂ )

, ( ˆ )

, ((ˆ (ˆ )) )

y y

TN y y

FN y y y y

i i

i i

i i i i

≠ ∅ ∧ = ∅
= ∅ ∧ = ∅
= ∅ ∨ ≠ ∧ ≠ ∅

⎧

if

if

⎨⎨
⎪
⎪

⎩
⎪
⎪

(20)

Based on these measures, the accuracy p of one of the three peaks p Î{p1, p2, p3}

is defined as,

p TP TN TP FP TN FN= +( ) + + +( )/ . (21)

The accuracy p of a peak p is obtained by averaging the accuracy over the five-

folds. Similarly, the overall accuracy  is obtained by averaging the accuracy of the

three peaks,    = + +( ) /p p p1 2 3
3 . The learning of the recognition models is

supervised in the sense that it relies on a set of manually labelled ICP pulses. As the

number of training examples increases, the overall accuracy is generally expected to

improve as well. We report this aspect by plotting the average prediction accuracy for

each method against the number of training samples in Figure 5. To test one of the 5

folds, a model is trained by randomly extracting n pulses from the remaining 4 folds.

Results clearly indicates that KSR performs better by reaching a maximum accuracy

of 88.78% ± 2.35, while the other techniques are less accurate; SR obtains 72.57 ± 2.6,

GMM 70.47% ± 2.64, and MOCAIP 65.83% ± 2.96. It is interesting to notice that all

the methods reaches their maximum accuracy before 500 training pulses. These results

confirms that, besides KSR, current methods do not offer good recognition results on

challenging pulses. Although KSR performs better than any other techniques, it

requires all the training pulses to be kept as a part of the model to be able to compute

the kernel projection. Nevertheless, KSR gives us an insight about what performance a

peak recognition technique can achieve on our challenging dataset.

3.1.1 Computational Cost

One of the possible applications our framework is to be used in portable devices to

monitor ICP continuously. Such an application requires real time performances of the

peak recognition techniques. This section evaluates the performance of the different

recognition techniques in terms of their complexity by comparing their computational

time during learning and recognition.

Table 1 shows that, on a dataset of 2000 ICP pulses, MOCAIP (Gaussian), and SR

are the fastest for training their model with only 60 and 90 ms, while GMM is much

more slower with 33,940 ms. For recognition on a single pulse, SR ranks first with 0.19

ms, MOCAIP second (6.7 times slower), GMM is 10 times slower, and KSR is about

100 times slower than SR. Batch recognition performance is measured on a set of 2000

pulses. Under these conditions, KSR improves a lot due to the optimization of matrix

operations but remains behind SR. Note that the reported durations only represents
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the running time of the learning, and recognition methods. Additional time is needed

for MOCAIP++ to pre-process the ICP, detect peak candidates, and to compute addi-

tional features such as curvature and signal derivatives. Running time were measured

using built-in MATLAB functions. These tests were performed on a DELL OPTIPLEX

760 computer equipped with INTEL DUAL-CORE E8600 cadenced with a 3.33 GHz

processor and 3 GB of RAM.

3.2 Feature-based Peak Recognition

This section evaluates the impact of the additional ICP features (Section 2.2.3) within

MOCAIP++ on peak recognition performance. The same experimental protocol (five-

fold cross-validation) of the previous section is used to evaluate the accuracy of SR,
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Figure 5 Effect of the number of training samples on the average recognition accuracy (Eq. 21) for
different models (KSR, SR, GMM, MOCAIP [15]) using a five-fold crossvalidation on our challenging
dataset D’. Results correspond to the average for the three peaks (p1, p2, and p3).

Table 1 Running time for learning peak recognition models (Gaussian, SR, KSR, and
GMM) from 2000 ICP pulses, and for recognition on 1 and 2000 pulses

Gaussian SR KSR GMM

Learning (2000 pulses) 70 ms 90 ms 1,340 ms 33,940 ms

1.0 1.28 19 484

Recognition (1 pulse) 1.3 ms 0.19 ms 19.6 ms 2.3 ms

ratio 6.70 1.00 100.94 11.85

Recognition (2000 pulses) 2.861 sec 0.23 sec 2.028 sec 15.156 sec

ratio 12.39 1.00 8.79 65.64

While the Gaussian model performs the fastest for learning, SR-based model offers the best performance during
recognition.
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KSR, and GMM using three different features; curvature (Curv), first (Lx) and second

(Lxx) derivatives on the challenging dataset D’.

Figure 6 shows that each feature significantly improves the overall accuracy of the SR

method. While the original SR-based recognition method [18] attains an accuracy of

72.57% ± 2.6, the use of the second derivative and curvature improves it to 80.26 ±

2.29 and 80.4% ± 2.2, respectively. SR performs best when it is combined with the first

derivative Lx of the ICP, reaching an accuracy of 85.81% ± 2.5. This constitutes a very

significant result (+13%) in favor of our feature-based MOCAIP++ method.

When combined with derivative-based features, GMM, and KSR methods exhibit a

similar ranking of improvement; first derivative offers the largest effect on accuracy,

while curvature and second derivatives generally have less significant improvement.

With the use of the first derivative (see Figure 7), GMM method improves from

70.47% ± 2.64 to 77.14% ± 1.85, while KSR only shows a marginal improvement from

88.78% ± 2.35 to 89.36% ± 2.51. We have also noticed in additional experiments that

combining different features, such as Lx+Lxx, does not improve the performance

obtained by using only the first derivative Lx of the ICP signal. These results demon-

strate that the use of the first derivative within MOCAIP++ improves the recognition

accuracy of the three peak recognition methods we have integrated. It can also be

pointed out that the accuracy reached by SR + Lx is very close to KSR + Lx. Consider-

ing the previous remarks about the execution time and the storage of training samples

for the kernel computation required for KSR, the use of SR combined with the first

derivate seems to provide the right tradeoff between speed and accuracy for peak

recognition on challenging ICP pulses.
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Figure 6 The average recognition accuracy (Eq. 21) is reported versus the number of training
samples. Results illustrate the effect of three differential features on the SR model [18]: curvature (Curv),
first (Lx) and second (Lxx) derivatives.
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3.3 Impact of the Training Data Sampling Strategy

Although peak recognition models are trained in a supervised fashion such that they

integrate morphological information from pulses with known peaks into models that

may correctly identify peaks in new pulses, the underlying training pulses affect the esti-

mation of the parameters and the performance of such models. Intuitively, the model

should be trained on a representative range of pulses (easy, or challenging) to gain suffi-

cient precision. This section evaluates the effect of incorporating pulses extracted from

the challenging dataset into the training set of peak recognition methods.

In these experiments, peak recognition methods are estimated from two different

annotated training sets ( 1 2, ). The first training set, named reference library 1 , is

made of 3000 randomly selected ICP pulses from the original dataset D. These pulses

present a wide range of morphological variations but the majority of them are gener-

ally easily annotated. A subset of these data was used in previous works [15] to train

MOCAIP. The second training set, named weighted sampling 2 , is made of 1500 ran-

domly selected pulses from the original dataset D, plus 1500 pulses randomly extracted

from the challenging dataset D’ created using a weighted sampling procedure (Section

2.1.2). Unlike previous section, where peak recognition methods were assessed against

the challenging dataset D’, the evaluation is now performed on the full dataset D. This

allows us to see if the methods are not subject to overfitting; we verify if the methods

that offer good results on challenging data also generalize well on regular pulses.

Figure 8 gives the average accuracy. It can be seen that the use of an equal number of

pulses sampled from the full and challenging dataset considerably improves the perfor-

mance of peak recognition methods over models exclusively learned on random pulses.
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Figure 7 Average recognition accuracy (Eq. 21) after a five-fold cross-validation for MOCAIP-based
peak recognition methods improved with the use of the first derivative Lx of the ICP.
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The improvement is as follows: MOCAIP, from 72.31% to 87.27%, SR, from 75.96% to

82.41%, SR+Lx, from 83.67% to 92.74%, and KSR+Lx from 90.44% to 93.64%. The combi-

nation of our two contributions, the use of the first derivative and the weighted sampling

for training, improves SR-based MOCAIP approach by about 17% (from 75.96% to

92.74%). This is a very significant improvement of performance that should help to extract

more reliable statistics about ICP pulse morphology in real clinical conditions.

4 Conclusions
Recent works suggest that changes in the waveform morphology of ICP may provide

insight to forecasting critical intracranial and cerebrovascular pathophysiological variations.

However, automatic analysis of the waveform morphology of ICP acquired in clinical con-

ditions is still beyond current ICP analysis frameworks. Their performance deteriorates sig-

nificantly when the morphology of the pulse exhibits uncommon morphological changes.

This paper has described MOCAIP++, a generalization of the recently developed

MOCAIP, that provides a robust framework for analyzing Intracranial Pressure signal

(ICP) in terms of its waveform morphology. The proposed approach improves current

methods by allowing the integration of several peak recognition methods. In addition,

whereas previous MOCAIP-based studies [15,18] exploited dominant pulses directly as

input to peak recognition techniques, MOCAIP++ allows to derive additional features

that capture more informative properties of the ICP signal and hence better discrimi-

nate the three peaks. The first derivative of the ICP signal has been shown to be the

best among the features tested in our experiments (as shown in Figure 9). It improved
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Figure 8 Effect of the source data used to train the peak recognition models on the average
recognition accuracy (Eq. 21) evaluated on the large dataset D. The reference library 1 is made of
randomly chosen ICP pulses. The second training set, weighted sampling2 , is made of an equal number
of randomly selected pulses from the large dataset D and challenging pulses randomly extracted from the
challenging dataset D’. Both datasets contain 3000 pulses
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all the peak recognition methods. This can be explained by its invariance to global shift

in elevation from the baseline of the pulse. Performance in terms of peak recognition

accuracy obtained by the proposed SR-based extension are close to the non-linear Ker-

nel Spectral Regression (KSR). KSR can be considered really close to the best
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Figure 9 Illustration of challenging ICP pulses where the original MOCAIP failed to recognize at
least one of the peaks. The actual position of the peaks, correctly predicted by MOCAIP++ (SR + Lx) are
depicted by green circles, while the black diamonds correspond to the MOCAIP predictions
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performing solution for this problem but it has the disadvantage to require to keep all

the training samples, and is much slower than the SR.

Another contribution of this paper is to show that incorporating a challenging subset

of ICP pulses into the training set of peak recognition methods has a positive effect on

their overall accuracy.

Experiments on a large dataset of ICP signals, as well as on a representative collec-

tion of sampled challenging ICP pulses, demonstrate that both contributions are com-

plementary and significantly improve the recognition performance of ICP peaks in real

conditions. These findings provide insight in order to potentially improve other ICP

peak recognition frameworks, and will help us to collect more reliable statistics about

ICP morphology to further investigate its predictive power on patient condition.
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