
RESEARCH Open Access

Behavior of a viscoelastic valveless pump:
a simple theory with experimental validation
Charles F Babbs

Correspondence: babbs@purdue.
edu
Weldon School of Biomedical
Engineering and Department of
Basic Medical Sciences, 1426 Lynn
Hall, Purdue University, West
Lafayette IN 47907-1246, USA

Abstract

Background: A valveless pump generates a unidirectional net flow of fluid around a
closed loop of soft viscoelastic tubing that is rhythmically compressed at one point.
The tubing must have at least two sections with two different stiffnesses. When a
short segment of the tube is squeezed asymmetrically at certain frequencies, net
flow of fluid around the loop can occur without valves.

Methods: Partial differential equations for the pressures, volumes, and flows define a
simple one-dimensional model of such a pump, based upon elementary physical
principles. Numerical computations on a personal computer can predict measured
net flows.

Results: Net flow varies with the frequency and waveform of compression used to
excite the pump, as well as with the site of compression and the stiffness and
viscosity of the tubing. Net flows on the order of 1 ml/sec are obtained in a water-
filled loop including 46 cm of stiffer plastic (Tygon) laboratory tubing and 70 cm of
softer latex rubber tubing.

Conclusions: The heretofore mysterious phenomenon of valveless pumping can be
described in terms of classical Newtonian physics, in which viscous damping in the
walls of the pump is included. Studying valveless pumps in the laboratory and
modeling their behavior numerically provides a low-cost, engaging, and instructive
exercise for research and teaching in biomedical engineering.

Background
Imagine a closed loop of flexible rubber tubing filled with water or a similar incom-

pressible fluid, having nonzero density. In typical laboratory experiments the loop is

about 50 to 100 cm in circumference, and the tubing is about 0.5 to 1 cm in diameter.

A short segment of the tube is squeezed at a frequency of 1 to 6 Hz. If the wall of the

tubing is completely uniform in composition, then a small amount of fluid flows away

from the compression point in both directions equally, distending the remainder of the

loop slightly. When compression is released, fluid flows back again with no net flow

around the loop in either direction. However, if the loop is composed of two different

types of tubing with different compliances, one stiffer and one more flexible, then

under certain conditions there can be unidirectional net flow around the loop[1-5].

When one end of the softer section of tubing is rhythmically compressed, net flow of

fluid around a loop of tubing has been observed in both physical experiments[4,6] and

in numerical simulations[1,3-5]. This phenomenon is called valveless pumping because
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forward flow can occur in a closed circulatory system without valves. It is also known

as Liebau pumping[7,8].

Valveless pumping is an intriguing phenomenon because the magnitude, and some-

times the direction, of net flow are highly dependent on the frequency of squeezing

[1-3]. The frequencies at which valveless pumping has been described fall in the range

from 0.2 to 20 Hz [2,3,6,9-11] with maximal net flows occurring near 3 Hz [2], 5 Hz

[3,11], 6 Hz [6], or 15 Hz [10], depending on initial conditions. In some cases there is

reversal in the direction of net flow with changes in frequency. This behavior recently

has been described as “mysterious” by Jung[3] and “difficult to comprehend, even in

one dimension” by Manopoulos et al.[10] However, several thinkers have made pro-

gress in understanding this curious phenomenon. Auerbach, Moehring, and Maximil-

lian[9] described an analytical solution for the pumping effect in a fluid-filled tube

open at both ends with a flow driven by periodically varying the cross sectional area of

part of the tube. Recently Hickerson[6,11] has presented a simple one-dimensional

model based on wave reflection that can be used to explain the valveless pumping pro-

cess in a simple and physical way. Other mathematical models of valveless pumping by

Jung[1,3] have been based upon Navier-Stokes equations for an incompressible viscous

fluid, the elastic boundary equations for the loop of tubing, and the interaction equa-

tions for the fluid and elastic boundary. Jung’s models predict several interesting phe-

nomena of valveless pumping, including flow reversal with changing frequency.

In general, existing theoretical treatments require complicated systems of equations

that do not provide a satisfying intuitive explanation for net unidirectional flow.

Further, experimental data validating various mathematical treatments of valveless

pumping are extremely scarce. Ottesen[2] provides the most modern and direct com-

parative data for computer simulations and analogous experiments; however, these

involve only one compression frequency and two compression locations.

Accordingly, the present author sought to develop a new mathematical model of val-

veless pumping, which is as simple as possible, accessible to students, and yet predic-

tive of the results of inexpensive practical experiments within experimental error. The

effort revealed an important variable that has been neglected in previous mathematical

analyses of valveless pumping[2,3,8-10], namely the viscosity of the tube wall. When

the wall sections of the valveless pump are regarded as viscoelastic materials, rather

than as simply elastic ones, the fascinating and heretofore mysterious phenomenon of

valveless pumping can be understood in terms of one dimensional Newtonian physics.

Methods
Governing equations

Consider a thin-walled viscoelastic tube filled with an incompressible fluid such as water.

In one common design of a valveless pump, the tube forms a closed loop. In an alterna-

tive design, the tube connects one large reservoir of fluid with another (Figure 1). One

section of the tube has a soft wall, and one section of the tube has a stiffer wall. Wall

thickness in the soft section is small with respect to the diameter of the tube. The axial

distance along the tube is denoted x. The cross sectional area of the tube is denoted A.

The flow of fluid along the tube as a function of time, averaged over the cross sectional

area, is denoted Q. Part of the soft section is rhythmically squeezed to generate pulsatile
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flow in the x-dimension. Thus A and Q are functions of both position, x, along the tube

and time, t.

Consider a particular point, x, along the length of the tube, as shown in Figure 1.

Flow, Q(x, t) is positive in sign when moving to the right. The change in volume of

the elastic region extending from x-dx/2 to x+dx/2, over time interval, dt, with varying

flow is

∂
∂

⋅ = − − +( ) = − ∂
∂

⎛
⎝⎜

⎞
⎠⎟

⋅A
t

dt dx Q x dx Q x dx dt
Q
x

dx dt( ) ( ) , (1)

or simply

− ∂
∂

= ∂
∂

Q
x

A
t

.

Figure 1 Segment of a circular or straight valveless pump comprised of a thin walled tube filled
with fluid. A short region of the tube extending from x - dx/2 to x + dx/2 is defined.
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This is the first governing equation for the system.

To derive the second governing equation we apply Newton’s second law of motion

(force equals mass multiplied by acceleration) to the fluid traveling between x-dx/2

and x+dx/2. Let r be constant fluid density. The velocity of the fluid column at point

x is Q/A. This is the one dimensional fluid velocity averaged over the cross sectional

area. The force FI required to overcome the inertia of the fluid is

F Adx
t AI = ⋅ ∂

∂
⎛
⎝⎜

⎞
⎠⎟

 Q
. (2a)

The force FR required to overcome resistance to fluid flow between x-dx/2 and

x+dx/2 is given by “Ohm’s Law” (force/area equals flow multiplied by resistance). For

resistance, R, we have FR = AQR. For cylinders with one-dimensional laminar flow we

can use Poiseuille’s law[12] to estimate the contribution to resistance within a segment

of length dx, and internal cross section A, to the laminar flow of fluid having viscosity

ν as R dx

A
= 8

2


. Then the force overcoming viscous resistance to fluid flow is

F A
dx

A
QR = 8

2


, (2b)

which is relatively small compared to FI for typical laboratory scale models with tub-

ing diameter on the order of 1 cm. Hence, Poiseuille’s law is sufficiently accurate at

this macro scale. (Note also that ν refers to viscosity of the fluid. The viscosity of wall

material is described subsequently.)

Now let P represent pressure inside the tube as a function of position and time. The

net force on the fluid column between x-dx/2 and x+dx/2 in the positive direction,

which over a short distance dx is approximately

− ∂
∂

⎛
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so that
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, (2c)

or

− ∂
∂

= ∂
∂

+1 8





P
x

u
t A

u. (2d)

This is the second governing equation for the system, expressed in terms of the

mean fluid velocity u = (Q/A) averaged over the cross section at axial position, x.

Finally, it is necessary to specify the local pressure, P, inside the tube as a function of

the pressure difference across the tube wall (P-Pext)and the change in local cross sec-

tional area from the resting state (A-A0). Since a major discovery of the present

research is that the viscosity of the tubing must be accounted, it is instructive to derive

the pressure-volume relationship for a soft viscoelastic tube in detail.

First consider a rectangular sheet of wall material subjected to an elongating force in

direction y, having initial length y0, width L, and thickness h. Let E be Young’s
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modulus of elasticity, which is proportional to the stiffness of the material. Let D be

the analogously defined damping modulus (viscosity) of the material. The force

required to produce elongation, Δy, of the material is

F k y
d
dt

with k
EhL
y

and
DhL
y

= + = =Δ Δ y
,

0 0

[13,14].

Wall stress, s, in the viscoelastic sheet is  = F
hL , and strain  = Δy

y0
. So

  = +⎛
⎝⎜

⎞
⎠⎟

E
D
E

d
dt

for the viscoelastic material. When D = 0 in a purely elastic material, s = Eε.

Consider forming a thin walled tube from this same viscoelastic material with wall

thickness h, length L, radius r, and circumference 2πr0. Here the “hoop” direction of

stretch, as the tube expands, corresponds to y. From the Law of Laplace for thin walled

tubes we have wall stress,   = = +( )−( )P Pext r
h

D
E

d
dtE in terms of the pressure dif-

ference (P-Pext) across the tube wall, so

P P
Eh
r

D
E

d
dtext= + +⎛

⎝⎜
⎞
⎠⎟

 
. (3a)

Assuming that the tube wall is made of incompressible material, then the wall

volume is constant over time, so hr = h0r0. Hence, in terms of fundamental material

properties and initial conditions, the pressure inside the tube is given by

P P
Eh r

r

D
E

d
dtext= + +⎛

⎝⎜
⎞
⎠⎟

0 0
2

 
. (3b)

For small changes in volume, which are typical for the non-compressed segments in a

practical valveless pump, we can relate wall strain to the internal change in volume

using V = πLr2 and dV = 2πLr·dr. In turn for small volume changes in a cylindrical tube


 




= = = − =dr

r
dV

Lr

V V

Lr
and

d
dt

dV dt

Lr0 2 0
2

0
2 0

2 2 0
2

,
/

.

Then, substituting the above for strain, ε, and strain rate, dε/dt, we have for the

small signal case

P P
Eh

Lr
V V

D
E

dV
dtext= + − +⎛

⎝⎜
⎞
⎠⎟

0
2 0

3 0


. (3c)

Since the classical resting compliance of an elastic tube [15], C
Lr

Eh0
2 0

3

0
=

 , is the

inverse of the lumped constant, we can write a relatively simple expression for a vis-
coelastic tube,
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P P
C

V V
D
E

dV
dtext= + − +⎛

⎝⎜
⎞
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1

0
0 , (3d)

which differs from the linear P-V relationship for a purely elastic tube only by the

term D
E

dV
dt

. This term, however, turns out to have a significant effect upon the physics

of valveless pumping. It also substantially reduces instabilities of numerical solutions

for pressure and flow.

External pressure is important to include in (3), because it will be changes in exter-

nal pressure at the site of compression that drive the valveless pump. The segment

that is directly squeezed to drive the pump does have substantial changes in volume,

which are not consistent with a small signal assumption. However, in the practical

world compression is not radially symmetrical but rather from one side only. In this

case buckling of the wall occurs and the deformation of wall areas near the indented

region are cantilever-like, and so, roughly linear in mechanical performance. As will be

seen, the use of (3) for the compressed segment as well as for the uncompressed seg-

ments is sufficient without embellishment for practical purposes. However, the compli-

ance value C0 does change abruptly between the stiff and soft sections of tubing in the

valveless pump.

The governing equations (1) through (3) of this simple system can be solved numeri-

cally to describe the flow and expansion in an elastic tube during valveless pumping.

Then calculated results can be compared with measured flows in a working physical

model.

Numerical methods

Definitions

Let the valveless pump is regarded as a closed loop of fluid-filled tubing, divided into

discrete segments numbered 1, 2, 3 ... M. Segment M is connected to segment 1. Let

the length of segment k be ΔLk. Within each segment wall stiffness and thickness do

not change, however, discontinuous boundaries in wall properties may occur between

segments at the junction of stiff and soft tubing. Figure 2 illustrates the arrangement

of the segments.

In Figure 2 the variable Qk indicates the axial flow exiting the right hand end of seg-

ment k. Let ′A k represent the cross sectional area of the fluid slug exiting the right

hand end of segment k. Since the segments may have different cross sections,

′ = ( )+A A Ak k kmin , 1 in this discretized system. Also, since the segments may have

Figure 2 A theoretical valveless pump, discretized into segments k = 1, 2, ... M, which are
connected in a closed loop with segment M joining segment 1. Here individual segments are shown
“exploded”, prior to assembly into a loop. Pressures, P, as well as areas, A, are defined at the midpoints of
each segment. Flows, Q, are defined as the discharge from the right hand end of each segment.

Babbs BioMedical Engineering OnLine 2010, 9:42
http://www.biomedical-engineering-online.com/content/9/1/42

Page 6 of 16



different lengths, let the length of the fluid slug exiting the right hand end of segment

k be Δ Δ Δ′ = +( )+L L Lk k k
1
2 1 .

Areas and volumes

The area of segment k is obtained from (1) is

A t A
Q t Q t

L
dtk

k k

k

t
( )

( ) ( )
.= + −⎛

⎝
⎜

⎞

⎠
⎟−∫0

1

0 Δ
(4)

In turn,

V t A t Lk k k( ) ( ) .= Δ (5)

Conservation of volume in the entire closed loop can be checked by computing the

aggregate volume V A Ltot k k
k

= ∑ Δ for all segments, k.

Instantaneous flows

The values, Qk , are obtained by noting that (2) can be re-written as a non-homoge-

nous differential equation with variable coefficients of the form

du
dt

a t u b t+ =( ) ( ), (6)

where u = Qk(t)/A’k(t) is the mean fluid velocity exiting the right hand end of seg-

ment k at time t, and

a t
A tk

( )
( )

,=
′

8


b t
P P

L
for k Mk k

k

( ) , ,... ,= −
′

= −+1
1 2 11

 Δ

and b t
PM P

LM
for segment M( ) .= −

′
1 1
 Δ

Here the relevant cross sectional area for the slug of fluid moving between segment k

and segment k+1 is ′ = ( )+A A Ak k kmin , 1 , and the relevant length is

Δ Δ Δ′ = +( )+L L Lk k k
1
2 1 . Flow Qk is positive in sign when it leaves the “right hand”

end of segment k and enters the “left hand” end of segment k + 1, moving to the right.

As is easily proved by differentiation, the exact general solution of (6) for the initial

condition that u = 0 at t = 0 is given by the expression

u e e b t dt
a t dt a t dtt

t t

=
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⋅ ⋅
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−∫ ∫∫
( ) ( )

( ) .0 0

0
(7)

Expression (7) is complicated to write algebraically, but easy to compute numerically.

In turn, it is a simple matter to find Qk(t) = u A′k(t). Nonzero flow velocity, u, happens

because the pressures in the driven segments are augmented by external pressures.
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Hence b(t) fluctuates with time. Numerical integration of (4) and (6) is done using the

trapezoidal rule: f t dt f n t t f n t t
nt

( ) . ( ) ( )≅ − +( )∑∫ 0 5
10

Δ Δ Δ Δ for the time step of

numerical integration, Δt, and t = nΔt.

Pressures

To specify pressures for all viscoelastic segments, k, one can use (3d) written in terms

of cross sectional area (5), namely

P t P
L

C
A t A

D
E

A t A t t
tk ext k

k

k
k k

k k( ) ( ) ( )
( ) ( )

.,= + − + ⋅ − −⎛
⎝⎜

⎞
⎠⎟

Δ Δ
Δ

0 (8)

In (8) Pext,k is known because it a defined forcing function. Ak(0) is known from the

initial conditions of the model, and we keep track of area Ak(t-Δt) at the preceding

time step. In this way it is possible to calculate numerically the instantaneous cross

sections and flows in all segments of the model at successive time steps Δt for seg-

ments k = 1 to M. The required compliance values in (8) are obtained from measured

material properties and the initial conditions as

C
L k r k

Ek h k
k =

2 0
3

0

 ,

,
. (9)

Forcing functions

The model can be driven by applying fluctuating external pressure, Pext(t), to one or

more compressed segments. In the usual laboratory models this external pressure is

always positive. In this case for sinusoidal excitation with angular frequency ω = 2πf t,

P t
P

text
ext-max( ) cos( ) .= −( )

2
1  (10)

For convenience in setting the initial conditions one would like to know the exact

value of Pext-max required to compress the tubing a given amount. That is, starting

with Pext = 0, the initial resting state, we wish to apply sinusoidal external pressure

with a given Pext-max until a particular fraction, fc , of the resting volume is forced into

the rest of the model at maximal compression. A simple scheme for predicting Pext-max

for practical low frequencies close to 1 Hz is shown in Appendix A. The result in

terms of the desired compression fraction and the initial parameters of the system is

P
V fc

C C
C C D E

ext-max =

+
+

+

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

2 1 0

1 2
1 2

1
1

1 2 2 2

( )

/

(11)

where V1(0) is the initial resting volume of the compressed segment, C1 is the com-

pliance of the compressed segment, calculated using (9), and C2 is the lumped compli-

ance of all uncompressed segments.

Numerical integration

In this way one can model a viscoelastic valveless pump driven by time varying exter-

nal pressure. The numerical computation, after specifying initial conditions, consists of

computing at successive time steps the areas for each segment using (4), the flows
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exiting each segment as the product of flow velocity (7) and area A′k(t), the internal

pressures of each segment using (8), and the external pressure on each segment using

(10). Known variations in external pressure drive the pump. The resulting numerical

integrations give instantaneous values for area, flow, and pressure of each segment, k,

as time, t progresses. In the results that follow mean flow was computed as average

flow in all segments between the 10th and 20th compressions. The calculations were

done using Microsoft Visual Basic Macros within a Microsoft Excel spreadsheet to per-

form numerical integration. For convenience and accuracy, all variables were converted

to units of grams, centimeters, and seconds.

Initial conditions

Input parameters for the numerical model matched those of the physical model. For

the results reported here, the value Eh, the product of Young’s modulus and wall

thickness for the soft section was 2.2 × 105 dynes/cm2. The value of D/E was 0.0083

sec. These values are means of five sets of measurements on latex rubber tubing, as

subsequently described under experimental methods. The value of Eh for the stiff sec-

tion was taken as 30 times that of the soft section (i.e. the stiff section is essentially

rigid). Results are essentially similar when Eh for the stiffer section is more than 10

fold greater than Eh for the softer section.

To model the particular physical pump described herein, the soft section of tubing

was represented by 41 discrete segments, each 1.7 cm long (70 cm total). The stiff sec-

tion of tubing was represented by one segment 46 cm long. The lengths of segments

in the numerical model were chosen to be much less than the impulse wavelength at

the highest frequency tested, where impulse wavelength is computed as the product of

cycle time (1/frequency) and pulse wave speed calculated from the Moens-Korteweg

equation[16-18] for the wave speed, s, along the tube with radius, r, namely,

s Eh r= / ( )2 . The time step for numerical integration was less than 0.1 msec and

sufficiently small to permit stability of solutions that do not differ substantially when

time step is halved. The model was driven by external positive pressure (10) applied to

the 7th segment (10 cm) from the stiff-soft junction. The width of this compression

zone (1.7 cm) and the compression fraction (0.95) used to compute theoretical results

were similar to those used in corresponding physical experiments.

Numerical accuracy

The accuracy of numerical solutions was verified by computing conservation of volume

routinely, by comparing pulse wave velocity with the analytical result of the Moens-

Korteweg equation, and by computing conservation of energy for reflected pulse waves

for no-leak test cases with an extremely small tube radius in part of the loop, to repre-

sent a closed, straight tube. Comparison of simple Euler forward difference solutions

(not described here) with exact solutions (4) and (7) provided a further test of numeri-

cal accuracy, and comparison of theoretical and experimental results provided a final

test of the validity of the theory and associated simplifying assumptions.

Experiment

Construction of a working valveless pump

A practical valveless pump was constructed using 1/4 inch amber latex tubing for the

soft section (Penrose surgical drain) and 1/4 inch O.D. colorless Tygon laboratory
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tubing for the stiff section (Figure 3). The wall thickness of the latex tubing was

approximately 0.04 cm and the wall thickness of the Tygon tubing was approximately

0.2 cm. The inner diameter of the inflated soft section was 0.6 cm and the inner dia-

meter of the stiff section was 0.4 cm. A plastic T fitting having similar internal dia-

meter and connected to a stopcock was placed at the midpoint of the stiff section to

provide for filling and drainage of fluid using a syringe. The stopcock also allowed for

evacuation of bubbles. The Penrose drain overlapped the ends of the Tygon tubing

and was secured with thread to prevent leaks. The length of the stiff section was 46

cm and the length of the soft section was 70 cm. The circuit was filled with tap water,

in which were suspended small pieces of colored paper towel to serve as visible mar-

kers of fluid flow.

External compression

The valveless pump was driven by finger compression of the soft section against a

hard, horizontal surface. Refill of the compressed segment was passive. The width of

the compression zone was 1.7 cm. Sufficient finger pressure was applied to almost

completely occlude the latex tubing at the instant of maximum compression. Two

compression waveforms could be easily implemented. One was a sinusoidal waveform,

created by smoothly moving the compressing finger up and down without losing con-

tact with the tubing. The other was a rectangular waveform, created by holding the fin-

ger one diameter above the tubing and performing sharp compressions with equal up

and down times and a quick release. Spontaneous recoil of the tubing was sufficient to

generate an approximately rectangular waveform of compression with a 50% duty

Figure 3 Water-filled experimental valveless pump constructed of latex rubber and plastic
laboratory tubing. The stiff section (top) is 46 cm long. The soft section (bottom) is 70 cm long. A “T”
connector at the midpoint of the top section (not shown) and stopcock allowed for filling and clearance
of air bubbles. Suspended bits of colored paper provided markers for tracking average fluid velocity.
Compression point is indicated by broad arrow.
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cycle. The compression zone extended from 10 to 11.7 cm away from either end of the

stiff section. Alternate ends of the soft section were compressed on alternate trials.

Measurement of average flow and frequency

Mean flow could be determined from the transit time of a fluid marker passing

through the clear Tygon section of the valveless pump. Mean flow is calculated as the

product of cross sectional area and distance moved through the stiff section, divided

by transit time. Small pieces of colored paper towel provided long-lasting visible mar-

kers that did not cling to the sides of the tubing or obstruct flow. Their motion can be

observed and measured using the naked eye. Compression frequency is determined as

the number of compressions divided by transit time. Time is measured using a

stopwatch.

Material properties of the soft section

Young’s modulus of stiffness, E, and the damping modulus, D, were determined from

independent tests on the Penrose drain material used for the soft section. These para-

meters are needed for the theoretical calculations of pressures in (3) and (8). Since the

thickness of this thin walled tubing is difficult to measure accurately, the lumped pro-

duct of E and wall thickness (Eh) can be determined by hanging a known weight of

mass, m, in the range of 100 to 300 grams from a 10 cm vertical length, L0, of Penrose

drain and observing the equilibrium extension, Δx*, under 1 G. Here we regard the

tubing as a rectangular elastic solid having a total width, w, equal to twice the flattened

diameter. Young’s modulus, E, is stress/strain or

E
mg
hw x L

or Eh
mgL
w x

= ⋅ ( ) =1

0
0

Δ Δ*/ *
. (12)

The value of Eh for the theoretical curves plotted in the present paper was taken as

the mean of 5 measurements using (12) on Penrose drain latex tubing. This value (±

SD) was 221,000 ± 31000 dynes/cm2.

The damping modulus, D, or in particular the ratio D/E, can be determined from

observations of the decay in amplitude of oscillations when the mass tethered by the

tubing under study is released from the un-stretched level x = 0 with the upper end of

the tubing solidly secured to the edge of a table. When care is taken to prevent swing-

ing, the mass undergoes up and down damped sinusoidal oscillation in one dimension

according to the governing equation

mx mg
Ehw
L

x
Dhw
L

x or

x g
Ehw
L m

x
Dhw
L m

x g
Ehw
L m

x
D

 

 

= − −

= − − = − −

0 0

0 0 0 EE
x⎛

⎝⎜
⎞
⎠⎟

,

where x represents the first time derivative and x represents the second time deri-

vative. Substituting expression (12), we can solve for the motion of the mass numeri-

cally in small time steps Δt, using

 x g
g
x

x
D
E

x= − −⎛
⎝⎜

⎞
⎠⎟Δ *

(13a)
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  x x x t and= + Δ , (13b)

x x x t= + Δ (13c)

with initial conditions at time zero x x x= = =  0 . Here g is a known constant, and

Δx* is measured after damped oscillations subside. Hence there is only one free para-

meter in (13), namely D/E.

To estimate the damping ratio D/E one can solve (13 a - c) in a simple spreadsheet

program for different values of D/E and observe the plotted values of displacement,

Δx, as a function of time. When D/E is zero there is no damping and the motion is

perfectly sinusoidal. When D/E is large the motion is highly damped. By trial-and-

error one can quickly obtain a good estimate for D/E, for which the calculated number

of oscillations matches the observed value. Since the observed number of oscillations is

quite sensitive to changes in damping, this process gives the value of D/E for the sys-

tem to within about 10 percent. The value of D/E for the theoretical curves plotted in

the present paper was taken as the mean of 5 such measurements on Penrose drain

latex tubing. This value (± SD) was 0.0083 ± 0.0012 sec.

Once values for the stiffness-thickness product, Eh, and the damping to elastic mod-

ulus ratio, D/E, are obtained experimentally for the wall material of the soft section,

the one-dimensional model embodied in equations (1), (2), and (3) can be solved with

no free parameters.

Results and discussion
Mean flow for a 42 compartment numerical model, using measured elastic and damp-

ing moduli and the dimensions of the physical model, are shown a heavy smooth

curve in Figure 4. Measured values of mean flow for sinusoidal finger compressions

are plotted as discrete points. Each data point represents a single observation, not an

average, illustrating the stability of the phenomenon. The positive direction of flow is

Sinusoidal compressions
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Figure 4 Calculated vs. measured mean flow for smooth, sinusoidal compression of the practical
valveless pump in Figure 3. Solid curve represents a 42 compartment numerical model incorporating
measured material properties and dimensions. Discrete points are individual measurements of flow, not
averages. Reduction in damping modulus by a factor of one half produces large differences in predicted
flows near 5 Hz.
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taken as that from the compression point to the center of the soft section. In these

experiments flow nearly always occurred away from the center of the soft section, and

so plotted values are negative. There is good agreement between theory and experi-

ment when the measured value of the damping ratio D/E = 0.0083 is used in the theo-

retical calculations. The thinner smooth curves in Figure 4 illustrate theoretical values

of mean flow with double, one-half, or one-tenth the measured value of D/E. (Compu-

tations with zero wall viscosity tended to produce unstable results.) It is clear that cor-

rect prediction of mean flow at frequencies near 5 Hz is highly dependent upon wall

viscosity. When viscosity is halved, net flow doubles near 5 Hz. When viscosity is one-

tenth normal, theory diverges greatly from experiment. In this case maximal net flow

(off scale in Figure 4) is five times experimentally measured flow at 5.3 Hz.

Figure 5 compares results for theory and experiment using more abrupt rectangular

waves of external compression as a function of time. In this case a rectangular wave-

form was substituted for the cosine wave in expression (10) for theoretical calculation

of external pressure. A sharper compression style produces larger flows both theoreti-

cally and experimentally. Subtle differences in the flow versus frequency spectrum

include significant negative flow near 1 Hz, measurable positive flow near 2 Hz, and a

shoulder in the spectrum near 4 Hz. One-dimensional viscoelastic theory using the

correct value of wall viscosity can predict subtle changes in the shape of the mean flow

versus frequency spectrum with use of different compression waveforms. These results,

obtained with simple manual compression of the soft segment, could be improved and

extended using a motor driven piston for compression.

The goal of this investigation was to develop the simplest possible mathematical

treatment of valveless pumping in one dimension that would predict experimental

results. Inclusion of the wall viscosity term led to good agreement of theoretical and

experimental values for net flow. There was no need to consider fluid velocity profiles

in the radial dimension of the tube. There was no need to consider nonlinear elastic

properties of the tube walls. The frequencies of compression of the soft segment pre-

dicted to produce maximal one-way flow are similar to those reported previously

[2,3,6,10,11].

Square wavecompressions
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Figure 5 Calculated vs. measured mean flow for quick, sharp rectangular wave compressions. Other
details similar to Figure 4.
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The present mathematical treatment provides a more compact explanation of the

phenomenon of valveless pumping, heretofore described as a mysterious and hard to

comprehend[3,10]. The underlying physics can be represented by three simple equa-

tions that describe volume conservation, Newton’s second law of mass and accelera-

tion, and a pressure volume function for a viscoelastic tube. To understand valveless

pumping properly, however, it is important to regard the pump as viscoelastic and not

simply elastic. Wall viscosity in fact can dominate the pressure-volume function in

practical, real-world latex tubes. Other theoretical treatments of valveless pumping

have included the viscosity of the water inside the pump, but not the viscosity of the

tubing in the wall of the pump, which is on the order of 106 times greater than that of

water (104 dyne sec/cm2 vs 0.01 dyne sec/cm2). Previous theoretical models retain

small, higher order terms from the calculation of force = d(mv)/dt. However, these

terms are not important in predicting the results of practical experiments[2,9,14],

whereas wall viscosity is quite important.

Conclusions
Valveless pumping is an intriguing phenomenon that has attracted a number of thin-

kers in the past. It appears at first to be almost magical and has remained difficult to

comprehend[10]. A missing variable in previous analyses is the viscosity of the wall of

the pump. Inclusion of realistic damping from wall viscosity dispels some of the mys-

tery of valveless pumping and allows for better predictions of how such pumps might

operate in practice. The simple one-dimensional physics and experimental methods

described here make it easy and inexpensive for students and teachers of biomedical

engineering to explore this interesting phenomenon. The effect is easy to demonstrate

experimentally and would make a good classroom demonstration.

Appendix A: maximal external sinusoidal pressure as a function of the
desired compression fraction
Consider the volume of all directly compressed segments at time zero as V1(0) and the

generally larger volume of the remainder of the model at time zero as V2(0). The

lumped compliance of V1 is C1 , which is connected to the lumped compliance of the

rest of the model, C2. As compression of V1 occurs fluid is forced into V2. Expansion

happens in the radial dimension orthogonal to the long axis. Inertia and momentum

changes in this dimension are small; hence we need to consider viscoelastic forces

only. From (3d) we have

P P
C

V V
D
E

dV
dt

and P
C

V V
D
E

dV
dtext1

1
1 1

1
2

2
2 2

21
0

1
0= + − +⎛

⎝⎜
⎞
⎠⎟

= − +( ) ( )⎛⎛
⎝⎜

⎞
⎠⎟
. (A1)

There is zero external pressure on section 2. For conservation of volume V2(t)-V2(0)

= -(v1(t)-V1(0)), and
dV
dt

dV1
dt

2 = − . Also we assume P1(t) = P2(t). This is essentially a

low frequency assumption, which is reasonable for typical macroscopic laboratory

models. Then

− − +⎛
⎝⎜

⎞
⎠⎟

= + − +⎛
⎝⎜

⎞
⎠⎟

1

2
0

1

1
01 1 1 1C

V V
D
E

dV1
dt

P
C

V V
D
E

dV1
dtext( ) ( )
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and for positive external sinusoidal pressure on section 1 we have,

− +
⎛

⎝
⎜

⎞

⎠
⎟ − +⎛
⎝⎜

⎞
⎠⎟

= −( )1 1
0

2
1

1 2
1 1C C

V V
D
E

dV
dt

P
t1 ext-max( ) cos( ) . (A2)

The solution for this first order ordinary differential equation in V1 is

V t V
P C C

C C D E

D Eext-max
1 1

1 2

1 2
2 2 2

2 2

0
2

1
1

( ) ( )
cos( )

/

/= − ⋅
+

− −

+
− 



t 22

2 2 21 +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−

 D E
e

E
D

t

/
, (A3)

where  = ( )−tan 1 D
E

.

After the rapidly diminishing exponential term has vanished, the minimum volume,

corresponding to maximal external compression at low frequencies occurs at time

points when ωt-� = π or

V V
P C C

C +C D E
min

ext-max 1 2

1 2

= − ⋅ +
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟1 2 2 2

0
2

1
1

1
( )

/
.


(A4)

For compression fraction f c
Vmin
V= −1

1 0( ) , we have

f
Pext-max

V
C C

C C D E
c = ⋅

+
+

+

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟2 1 0

1 2
1 2

1
1

1 2 2 2( ) /
,


(A5)

and we can specify

P
V fc

C1C2
C1+C2 D E

ext-max =

+
+

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

2 1 0

1
1

1 2 2 2

( )

/

(A6)

in terms of the desired compression fraction and the initial parameters of the system.

In this way we can model a viscoelastic valveless pump driven by time varying external

pressure that produces a specified compression fraction.

Appendix B: problems and exercises for students
1. Are there sweet spots and dead spots for compression along the soft section?

Explore both numerically and experimentally net flows as a function of the site of fin-

ger compression along the soft section. Flow should be zero when compression is

applied at the exact midpoint–an obvious dead spot. Are there circumstances in which

there are other dead spots and intervening sweet spots, which produce flow maxima?

In numerical simulations try exploring substantially longer soft sections and substan-

tially softer materials in these sections. In such cases the pulse transit time across the

soft section is much longer than that in the original physical model described above.

Consider the analogy of a standing wave. Experimentally, what happens if you substi-

tute ice water for room temperature water in the valveless pump and keep the appara-

tus as cool as possible? Can you explain the findings on the basis of increased viscosity

of the soft rubber tubing?
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2. Suppose that valveless pumping has something to do with standing wave patterns

in the soft section, in which the driving frequency of compression is the inverse the

round-trip transit time for a pulse wave traversing the section and reflected at the

stiff-soft boundaries. Explore cases in which Young’s modulus of the stiff section is at

least 10 times greater than that of the soft section, so that there is essentially complete

reflection of the pulse waves. Use the Moens-Korteweg equation to estimate pulse

wave speed, s, in the soft section, namely, s Eh r= / ( )2 0 . What happens in a valve-

less pump with a soft section of length L, excited at frequency, f, when 2L = s/f, that

is, when the period of excitation is equal to the round-trip transit time? What happens

when the period of excitation is twice or half the round trip-transit time? Can you pre-

dict peaks in the net flow vs. frequency spectrum? Is the pattern of sweet spots and

dead spots in problem 1 related to the “impulse wavelength” (s/f), which is the wave

speed multiplied by the wave period?

Authors’ contributions
CB is the only author and is responsible for all aspects of the research and the intellectual and technical content of
the manuscript.

Competing interests
The author declares he has no competing interests.

Received: 24 April 2010 Accepted: 31 August 2010 Published: 31 August 2010

References
1. Jung E: Simulations of valveless pumping using the immersed boundary method. PhD New York University, Courant

Institute of Mathematical Sciences 1999.
2. Ottesen JT: Valveless pumping in a fluid-filled closed elastic tube-system: one-dimensional theory with

experimental validation. J Math Biol 2003, 46:309-332.
3. Jung E, Peskin CS: Two-dimensional simulations of valveless pumping using the immersed boundary method. SIAM

J Sci Comput 2001, 23:19-45.
4. Moser M, Huang J, Schwartz G, Kenner T, Noordergraaf A: Impedance defined flow, generalisation of William

Harvey’s concept of the circulation–370 years later. International journal of cardiovascular medicine and science 1998,
1:205-211.

5. Thomann H: A simple pumping mechanism in a valveless tube. Journal of Applied Mathematics and Physics (ZAMP)
1978, 29:169-177.

6. Hickerson AI, Rinderknecht D, Gharib M: Experimental study of the behavior of a valveless pump. Experiments in
Fluids 2005, 38:534-540.

7. Kenner T, Moser M, Tanev I, Ono K: The Liebau-effect or on the optimal use of energy for the circulation of blood.
Scripta Medica (BRNO) 2000, 73:9-14.

8. Borzi A, Propst G: Numerical investigation of the Liebau phenomenon. Zeitschrift fur angewandte Mathematik und
Physik (ZAMP) 2003, 54:1050-1072.

9. Auerbach D, Moehring W, Moser M: An Analytic Approach to the Liebau Problem of Valveless Pumping.
Cardiovascular Engineering 2004, 4:201-207.

10. Manopoulos CG, Mathioulakis DS, Tsangaris SG: One-dimensional model of valveless pumping in a closed loop and
a numerical solution. Physics of fluids 2006, 18:1-16.

11. Hickerson AI, Gharib M: On the resonance of a pliant tube as a mechanism of valveless pumping. Journal of Fluid
Mechanics 2006, 555:141-148.

12. Schmid-Schonbein H: Hemorheology. In Comprehensive Human Physiology. Edited by: Greger R. Berlin, Heidelberg:
Springer-Verlag; 1996:2:1747-1792.

13. Fung YC: Biomechanics: mechanical properties of living tissues New York: Springer-Verlag 1981.
14. Fung YC: Biomechanics: Circulation New York: Springer-Verlag, 2 1997.
15. Posey J, Geddes L: Measurement of the modulus of elasticity of the arterial wall. Cardiovascular Research Center

Bulletin 1973, 11:83-103.
16. Brennan EG, O’Hare NJ, Walsh MJ: Transventricular pressure-velocity wave propagation in diastole: adherence to the

Moens-Korteweg equation. Physiol Meas 1998, 19:117-123.
17. Callaghan FJ, Babbs CF, Bourland JD, Geddes LA: The relationship between arterial pulse-wave velocity and pulse

frequency at different pressures. J Med Eng Technol 1984, 8:15-18.
18. Korteweg DJ: Uber die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Rohren. Ann Phys Chem 1878,

5:525-542.

doi:10.1186/1475-925X-9-42
Cite this article as: Babbs: Behavior of a viscoelastic valveless pump: a simple theory with experimental
validation. BioMedical Engineering OnLine 2010 9:42.

Babbs BioMedical Engineering OnLine 2010, 9:42
http://www.biomedical-engineering-online.com/content/9/1/42

Page 16 of 16

http://www.ncbi.nlm.nih.gov/pubmed/12673509?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12673509?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9522393?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9522393?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6716443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6716443?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Governing equations
	Numerical methods
	Definitions
	Areas and volumes
	Instantaneous flows
	Pressures
	Forcing functions
	Numerical integration
	Initial conditions
	Numerical accuracy

	Experiment
	Construction of a working valveless pump
	External compression
	Measurement of average flow and frequency
	Material properties of the soft section


	Results and discussion
	Conclusions
	Appendix A: maximal external sinusoidal pressure as a function of the desired compression fraction
	Appendix B: problems and exercises for students
	Authors' contributions
	Competing interests
	References

