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Abstract

Background: Segmentation of the coronary angiogram is important in computer-
assisted artery motion analysis or reconstruction of 3D vascular structures from a
single-plan or biplane angiographic system. Developing fully automated and accurate
vessel segmentation algorithms is highly challenging, especially when extracting
vascular structures with large variations in image intensities and noise, as well as with
variable cross-sections or vascular lesions.

Methods: This paper presents a novel tracking method for automatic segmentation
of the coronary artery tree in X-ray angiographic images, based on probabilistic
vessel tracking and fuzzy structure pattern inferring. The method is composed of two
main steps: preprocessing and tracking. In preprocessing, multiscale Gabor filtering
and Hessian matrix analysis were used to enhance and extract vessel features from
the original angiographic image, leading to a vessel feature map as well as a vessel
direction map. In tracking, a seed point was first automatically detected by analyzing
the vessel feature map. Subsequently, two operators [e.g., a probabilistic tracking
operator (PTO) and a vessel structure pattern detector (SPD)] worked together based
on the detected seed point to extract vessel segments or branches one at a time.
The local structure pattern was inferred by a multi-feature based fuzzy inferring
function employed in the SPD. The identified structure pattern, such as crossing or
bifurcation, was used to control the tracking process, for example, to keep tracking
the current segment or start tracking a new one, depending on the detected
pattern.

Results: By appropriate integration of these advanced preprocessing and tracking
steps, our tracking algorithm is able to extract both vessel axis lines and edge points,
as well as measure the arterial diameters in various complicated cases. For example,
it can walk across gaps along the longitudinal vessel direction, manage varying
vessel curvatures, and adapt to varying vessel widths in situations with arterial
stenoses and aneurysms.

Conclusions: Our algorithm performs well in terms of robustness, automation,
adaptability, and applicability. In particular, the successful development of two novel
operators, namely, PTO and SPD, ensures the performance of our algorithm in vessel
tracking.
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Background
Accurate extraction of the coronary artery tree from coronary angiograms is important

for the diagnoses, treatment, and clinical study of various coronary artery diseases. In

particular, computer-assisted analysis can improve the performance of quantitative eva-

luation. It can reduce the inter- and intra-observer variations in determining the sever-

ity of coronary artery stenosis [1]. An efficient vessel extraction algorithm also enables

the detection of coronary artery motion, as well as the reconstruction of 3D vascular

structures from a single-plan or biplane angiographic system [2].

Anatomical structures, such as blood vessels, nerves, and bronchi, present themselves

as line-liked structures in 2D images or as tubular structures in 3D images. Over the

past 10 years, a variety of approaches have been developed for vessel segmentation

from 2D and 3D medical images [3], which typically differ in terms of basic strategies

or imaging modalities. Common segmentation approaches employ multiscale filters,

morphological segmentations, deformable models, front propagation methods, track-

ing-based methods, and ridge traversal-based methods. Although many of these

approaches are promising for vessel segmentation, developing fully automated, faster,

robust, and accurate vessel segmentation algorithms remains highly challenging

because of the complexity of vascular structures as well as large variations in image

intensities and noise.

Tracking-based methods [4-9] exhibit a natural advantage in extracting arterial axis

lines in the angiographic images because of their relative simplicity, as well as their

adaptability to variations in vessel diameters. In addition, their ability to capture

detailed quantitative descriptions of vessel axes, diameters, and boundaries, leads to

high levels of accuracy. Traditional tracking-based methods, however, are guided by

simple local features that limit their utility because of difficulties in efficiently integrat-

ing advanced features into canonical expressions for guiding the tracking. Therefore,

the use of minimum cost functions or multi-scale filters [10-13] to construct the track-

ing operator poses several advantages in the segmentation of coronary angiograms; this

approach, however, may also be problematic when meeting bifurcations or vessel

crossings because it can follow only the path with the strongest response.

In this work, we propose a fully automatic tracking-based method that can adapt to

varying vessel curvatures and diameters resulting from arterial stenoses or aneurysms.

It can also walk across intensity gaps along the longitudinal vessel direction, and man-

age vessel bifurcations and crossings.

Methods
An integrated framework was designed to solve the challenging problem of coronary

angiogram segmentation. The main components in this framework are summarized in

Figure 1. The automatically detected seed point is generally located near the root of

the arterial tree or on the main trunk. The probabilistic tracking operator (PTO) was

initialized with the initial seed point to search for a candidate artery element with the

most similar vessel geometries (including vessel feature, direction, and diameter) in the

neighborhood. The vessel structure pattern detector (SPD) was utilized in parallel to

classify each detected artery element as bifurcation or crossing. The artery element

classified as bifurcation is placed on the list of source data to enable tracking new
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vessel segments beginning from this artery element in subsequent tracking. The track-

ing algorithm stops when all points on the list of source data are tracked.

During the process mentioned above, local features and measures, such as the Gabor

response, vessel path, skeleton-line, and directional consistency, were also analyzed to

integrate the relational vessel attributes for probabilistic vessel tracking and structure

pattern identification. The PTO is designed to incorporate local features and measures

to determine candidate artery elements along the same vessel segment. These candi-

dates were selected particularly from the overlapping region between the binarized ves-

sel regions and a sampling disk centered at the current artery element under

consideration. The size of the sampling disk corresponds to the current vessel dia-

meter, thus rendering the PTO adaptive to varying vessel diameters in case of arterial

stenoses or aneurysms. Simultaneously, the SPD works to infer the vessel structure

pattern, such as the distal end, segment, bifurcation, and crossing. To complete struc-

ture pattern identification, the vessel feature profile scanned from a circle around the

current artery element was analyzed and a fuzzy inferring function was applied. In par-

ticular, multiple features such as vessel feature, direction continuity, and Gabor

responses at the peaks of the vessel feature profile were integrated into the fuzzy infer-

ring function for pattern identification.

Vessel feature and direction maps

The intensity profile across the longitudinal direction of the vessel may highlight an

elevation or even a slight intensity dip at the center, depending on the contrast

between vessels and background. On the other hand, the profile along the longitudinal

direction of the vessel can be smooth [Figure 2(b)]. Accordingly, the multiscale detec-

tion or enhancement of vessel structures can be completed by convolving angiographic

image I(x) [where x = (x, y)] with normalized second-order Gaussian derivatives G (x;

sf) at different scales sf . The use of a Gaussian filter is important in reducing the

influence of noise, properly shaping the line profile and ensuring a large second deriva-

tive across the vessel.

Figure 1 Overview of the proposed tracking framework for the segmentation of X-ray angiograms
with (a) Preprocessing step, (b) Tracking step, and (c) Results.
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Figure 2 Show the angiographic images, feature maps and the cross-sectional profiles of coronary
artery. (a1) and (a2) depict two original angiographic images; (a3) and (a4) are their vessel feature maps,
respectively. Subfigure (b) depicts the cross-sectional profiles of the vessel in the original image and in the
corresponding feature map.
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In 2D cases, let ∇2 I (x, sf) be a Hessian matrix combined with Gaussian convolution

for angiographic image I(x). It can be written as
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where G (x; sf) denotes a Gaussian filter with standard deviation sf.

The bright line structure on a dark background can be reflected by a Hessian matrix

with a large negative eigenvalue l1 and a small eigenvalue l2 of positive or negative

sign; that is l1 < 0 and |l2| ≪ |l1|. Various response functions have been proposed in

previous studies [11-13]. We provide a similar response function to extract the vessel

structures by thresholding the eigenvalue map using a low threshold |rl|, expressed in
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where c is a constant. Note that l1 is negative in our case, with r f = − 2 . This

response equation provides a vessel discriminant function at scale sf. To integrate mul-

tiscale responses corresponding to different scales at each location x, we select the

maximum response across multiple scales, i.e.

Z Z f f n

∧

= =( ) max( ( ; )), ,...,x x    1
(3)

where s1 and sn are the minimum and maximum scales, determined according to

the range of vessel diameters in the angiographic images. In this paper, 14 scales were

used. For convenience, the resulting vessel features are normalized to 0[1] in this

paper. Vessel feature map Z
∧
( )x (Figure 2 (a3-a4)) may also be binarized for extracting

the vessels, and may further be thinned to obtain the skeletal lines representing the

vessels.

The vessel direction map is estimated using the best detected scale. First, the maxi-

mum of absolute eigenvalue |l1| is obtained at each location x by
| ( ) | max | ( ; ) |  opt ff

x x= 1 . Assuming that the eigenvector corresponds to lopt(x) is
vopt(x), the direction orthogonal to vopt(x) is then selected as the vessel direction at x.

For convenience, we again use v2 to represent the estimated vessel direction map later

in this paper.

Therefore, using this step of multiscale analysis, we obtain three separate maps from

the original angiographic images, namely, a vessel feature map, a vessel direction map,

and a map of skeleton lines. Next, an initial seed point x0 is automatically detected

from a point within the thinned vessel skeleton-lines, as well as with maximum vessel

feature intensity Z
∧
( )x 0

. The determined initial seed point is generally located near the

root of the arterial tree or the main trunk of the arterial tree. The data above are used

for the identification of consequential vessel pattern.
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Probabilistic tracking of coronary artery

A dynamic mechanism was designed for our tracking framework. First, a list for source

points (called source-list) was maintained to keep the initial seed point, as well as the

vessel bifurcations that were detected during the vessel tracking procedure. In addition,

a second list of crossings (called crossing-list) was designed to keep the possible cross-

ings of two vessels. Then, a sampling disk with about half the size of the vessel dia-

meter was used in the PTO to automatically track the artery segments (or branches)

one at a time, beginning from the seed point and stopping at the vessel termination.

During the tracking, the proposed SPD functioned simultaneously to report the local

vessel pattern as bifurcation, crossing, segment, or termination. All detected vessel

bifurcations were stored one at a time at the top of the source-list and were later used

as subsequent starting points for tracking their respective artery segments (or

branches). Finally, the vessel PTO and the SPD stop tracking and identifying vessels

once all vessels have been tracked and registered.

Tracking criterion

The tracking mechanism was designed based on the criterion of continuity properties of

luminance, position, and diameter of the general coronary artery in the angiographic

images. The appropriate incorporation of these properties into the PTO enables suc-

cessful management of the cases of vessel gap (caused by nonuniformity of the contrast

medium or inappropriate thresholding in the preprocessing step) and arterial lesion

(such as stenosis or aneurysm).

Description of PTO

Our PTO performs automatically along the coarse vessel path extracted from the ves-

sel feature map. It begins or stops tracking an artery segment (or branch), depending

on the structure pattern detected at current artery element et. The tracking problem at

simple artery positions, with no bifurcations, crossings, or terminations, is to determine

the next artery element et+1 in the vessel path. Each artery element et has four asso-

ciated attributes, namely position xt, vessel feature Z t

∧
( )x , direction vector jt = v2(xt),

and vessel diameter dt. These attributes guide the vessel tracking algorithm. For effi-

ciency, a sampling disk centered at the current artery element et was used to search

for a set of candidate elements {( , ( ), , ) | [ ,..., ]}x xt
i

t
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overlapping region between the sampling disk and the binarized vessel feature map.

From artery element t to t+1, the probabilistic tracking can be formulated by a maxi-

mum posterior probability (MAP), expressed as
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The sequent modeling was based on the aforementioned continuity properties of the

artery vessel. During tracking vessel length [Figure 3(a)], three local terms were used

to constrain the candidates based on vessel feature continuity, longitudinal direction

continuity, and diameter continuity. The first term, Z t
i∧

+( )x 1
, was acquired from the

vessel feature map at candidate position x t
i
+1 . The second term to some extent, kept

the vessel tracking from being interrupted by noise, pseudo contours, and crossing,

although more assurances should come from the structure pattern detection result, as
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described in aforementioned sections. Given vector Vt
i
+1 pointing from current posi-

tion xt to candidate point x t
i
+1 , a deflection of vessel direction  t

i
t
i

t
V+ += ∠ − ∠1 1

[Figure 3(a)] yields a means of the longitudinal continuity. In the case of vessel cross-

ing or paralleling with each other (especially for thin vessels), the third term of dia-

meter continuity enables the tracking of the current vessel segment/branch to proceed

without being affected by neighboring vessels. Given dt
i
+1 and dt as the vessel dia-

meters, respectively at candidate point x t
i
+1 and current artery element xt, increment

∇ = −+ +d d dt
i

t
i

t1 1| | yields the measure of diameter continuity. Altogether, the estima-

tion of the optimal candidate gives emphasis to the continuity properties, which is also

the basic idea for probabilistic tracking. In the following paragraph, we provide further

discussion to mathematically model.

Figure 3 Show the probabilistic tracking and diameter measurement along vessel path. (a) is the
description of the probabilistic tracking. (b) depicts the estimation of vessel diameter using the vessel
feature profile of transversal line Ct+1i.
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First, the relationship between the sampling instance and the posterior probability

can be described as
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All feature measures in the left of the abovementioned expression are normalized

before participation in the estimation of probability. In particular, maximal vessel fea-

ture Z
∧

max
and maximal diameter dmax are determined from all Ns candidate points in

the sampling disk, and are used to normalize the respective measures. Note that in

practice, estimated vessel direction ∠jt can be reversed; thus, it should be considered

in the normalization of  t
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+1 . Given normalized measures
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where sZ,t, sθ,t, and sd,t are the standard deviations, which can be estimated by cal-

culating the variances of the corresponding measures in all Ns candidates. For example,

sZ,t is estimated as
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ing all distribution functions in Eq. (6), the optimal estimation of artery element et+1
can be obtained by
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PTO uses adaptive parameters adjusted according to Eq. (7) based on all candidates

in the sampling disk. Thus, it can successfully estimate the artery elements along the

vessel path even in cases of gaps and arterial lesions. The gap is generally regarded as

the region of a longitudinal narrow crack with a width less than the vessel radius,

whereas the arterial lesion presents as a short or long component of the longitudinal

region with large variations in vessel diameter and, at times, weak luminance. During
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the vessel tracking, the candidates running into the gaps can be crossed out by the

continuity terms, thus enabling PTO to continue working. On the other hand, in case

candidates run into the regions of the artery lesion, the PTO still carries on, even with

large variations in vessel diameter.

Artery diameter estimation

Considering that the blood vessels have measurable abnormalities in diameter, inten-

sity, and tortuosity, the artery diameter of candidate x t
i
+1 should be estimated adap-

tively by analyzing its 1-D vessel feature profile orthogonal to the vessel direction. All

candidates sitting along the sample profile have the same vessel diameter estimated (as

described next). For example, in Figure 3(b), another candidate x t
j
+1 sitting at the

peak of the profile has the same vessel diameter as x t
i
+1 . The profile can be repre-

sented by transversal line Ct
i
+1 with a single pixel width, as shown in Figure 3(b). Can-

didates x t
i
+1 and x t

j
+1 have the same profile, and thus the same diameter.

The feature values in the particular profile can be obtained from vessel feature map

Z
∧ . The vessel diameter on this profile can be measured through the convolution of

the normalized second derivative of the 1-D Gaussian function with the profile. Stan-

dard deviation s in the 1-D Gaussian function should be adjusted during the vessel

diameter estimation. Standard deviation 
∧ that results in the largest response among

all convolution results with the use of different standard deviations is finally selected

as the estimated diameter for all candidates sitting on the same profile. Using this

method, we can estimate vessel diameter dt
i
+1 for candidate x t

i
+1 .

This vessel diameter estimation process proceeds automatically without user interaction.

The relevant diameter estimation results are demonstrated in the experimental section.

Inferring structure pattern of artery vessel

When the PTO works on current artery element xt, the SPD should also work in parallel

to report the structure pattern to guide the PTO. Our SPD performs in the following

manner. First, a circular pattern detector is centered on current artery element xt. It

then acquires the circular cross-section profile from vessel feature map Z
∧ . Subse-

quently, it captures local vessel measures, including the number of peaks in profile (Mt),

the azimuth vector directing from the detector center to every peak (pm), and the Gabor

response on each peak (go.m). Finally, it returns the structure pattern inferred by a fuzzy

inferring operator using the fuzzy membership degrees of multi-feature fuzzy subsets.

Detecting the peaks of the vessel-feature profile

The pattern detector samples of vessel features Z
∧ along the circular cross-section pro-

file are centered at current artery element xt with radius rt = a·dt/2. Generally, the

range of parameter a in a Î [1,1.5] is preferred for better measurement because in

this case, the radius of circular pattern detector is a little bit larger than half of vessel

diameter dt of current artery element xt; thus, the structure around xt can be adap-

tively and completely captured. The resulting vessel feature profile is called circular

template T(x,r,t), which consists of a fixed number (e.g., 150) of vessel features sampled

over the circumference of a circle (xt, rt). The same number of vessel features Z
∧ is

sampled to make the SPD adaptive to different sizes of vessel diameters. Therefore,

even for small vessels, the same number of points is also sampled. Because vessel
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feature map Z
∧ is defined in discrete domain, the bilinear interpolation is used for

sampling features from Z
∧ when generating circular template T(x,r,t).

The sampling process is demonstrated in Figure 4, in which the vessel feature pro-

files are sampled by the circular templates (T(x,r,t)) in 4(a2)-4(c2). The typical profiles

are shown in 4(a3) - 4(c3). To detect the peaks in each profile, first-order derivative

dT(x,r,t) of T(x,r,t) is computed through the circular convolution of T(x,r,t) with the first-

order derivative of the 1-D Gaussian filter. Figures 4(a4) - 4(c4) shows the magnitude

profile of the resulting first-order derivative |dT(x,r,t)|. The local minima of the deriva-

tive magnitude correspond to the maxima or minima of the vessel feature profile along

T(x,r,t). The peaks of the profile corresponding to maxima can be detected according to

the derivative signs. For example, a peak of the profile corresponds to the sign transi-

tion of the first-order derivative from positive to negative. In this manner, we can

detect all peaks along with their locations [e.g., z{pm = (xm, ym), m = 1,...,Mt}], where

Mt is the total number of peaks.

Figure 4 Using the circular pattern detector to characterize the vessel structures, in the cases with
bifurcation, paralleling, and crossing patterns. (a1)-(c1) are original images and the respective regions
of interest. (a2)-(c2) are the corresponding direction maps overlaping with circular pattern detectors. (a3)-
(c3) are the corresponding vessel-feature profiles on the circular template T(x,r,t). (a4)-(c4) are the
corresponding magnitude profiles of the first-order derivative dT(x,r,t).
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The resulting peaks provide the SPD vessel with several important properties, such as their

positions, vessel features, vessel directions, as well as their relationships with the center of

pattern detector (xt). To better infer the pattern of the vessel structure, more relevant metric

features, such as the Gabor features described in the next section, should be extracted.

The Gabor responses at locations of the peaks

Considering that the peaks of the circular profile provide useful information for struc-

ture identification, we first discuss how to infer the case in which two points (apart

less than a few pixels) are located at the same vessel axis line. This case may also be

called “co-vessel.” To detect whether peak point pm = (xm, ym) and detector center

(Od) are located in the same segment of the vessel, the Gabor filter operator [14,15]

was used for local description. As a function of orientation, frequency, and scale, the

operator can characterize the dominant attributes at peak point pm = (xm, ym). Note

that this responds strongly to the isolated vessel strip, but exhibits a weaker or no

response to the noise.

Given the relationship between the Gabor filter scale and the frequency with 2s =

2πf = T, several masks by the Gabor operator can be defined by the real component of

the Gabor function with a size of T × T. The masks of different scales are shown in

Figure 5(b). Thus, to characterize local attributes, such as direction and “co-vessel” at a

peak point, we merely need to compute the responses of several Gabor masks, and

retain only the related parameters corresponding to the maximum response. Although

none of these parameters are invariant to common image transformation, such as scal-

ing and rotation, only one set of parameters corresponds to maximum response gmax

Figure 5 The feature integration, Gabor masks, and structure detection near artery bifurcation. (a)
illustrates circular pattern detector and feature integration. (b) is an examples of five Gabor masks, and
their parameters, where (b1) T1 = 5, θ1 = π/2, f1 = 0.2; (b2) T2 = 9, θ2 = π/2, f2 = 0.111; (b3) T3 = 13, θ3 = π/
2, f3 = 0.077; (b4) T4 = 9, θ4 = 3π/4, f4 = 0.111; (b5) T5 = 5, θ5 = 3π/4, f5 = 0.2. (c) illustrates the problem of
the uncertainty of the node positions.
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at the considered position. Given vector Vo,m directing from the detector center to the

peak position (xm, ym), the following response measure go,m represents the degree with

which peak pm = (xm, ym) belongs to the same vessel axis line of the center point of

the pattern detector

    o m V m mg
G x y

o m, , / ,
max

arg | ( , ) |
,

= ∠
1

 max (9)

Where 0 <go.m < 1. With an image sized 512 × 512, the size of the mask (s) is equal
to the vessel diameter, which ranges from 3 to 14 pixels. Therefore, the resulting mea-

sure go,m reflects the relationship between peak pm and the detector center. For exam-

ple, the resulting measure go,m at peak pm is lower if mask orientation Vo,m does not

accord with the local vessel direction, that is, there is no “co-vessel” existing between

the peak point and the detector center.

The multi-feature based fuzzy inferring function (FIF)

Four types of patterns can be inferred, namely, vessel termination (i = 1), artery seg-

ment (i = 2), bifurcation (i = 3), and crossing point (i = 4), where variable i denotes

the index for the ordinal structure pattern of the artery vessel. With effects from noise

and pseudo edge, the number of peaks in each of these four types of patterns might be

higher than the actual one. For example, by comparing the circular cross-section pro-

file of different cases (Figure 4), we can observe that more than two peaks might occur

in the profile of the artery segment, and more than three or four peaks might occur in

the profile of the bifurcations or crossings, respectively. Without loss of generality, the

circular pattern detector detects the number of peaks from the ordinal structure pat-

tern according to Mt ≥ 1, Mt ≥ 2, Mt ≥ 3 and Mt ≥ 4 [Figure 5(a)]. Thus, the number

Mt can be regarded as a pseudo pattern of the artery structure. On the other hand,

each peak pm has two metric features important to pattern identification: vessel feature

Z pm
∧
( ) at peak pm, and response measure go,m of Gabor mask function

G x yV m mo m∠ , , / , ( , )   . The relationship between the pattern detector and the metric

features for a typical artery bifurcation is shown in Figure 5(a).

In the following section, the fuzzy subsets are defined for all metric features, as well as

for number of peaks Mt. They will then be integrated for pattern inferring of point xt.

Definition 1: In the region Ω = ≤ ≤ ∈
∧ ∧

{ , , , | ; , [ , ]}, ,p Z M m M Zm m o m t t m o m 1 0 1 ,

given that fuzzy subsets F
m Z,

∧ and Fm,g correspond to the metric features of peak pm,

and fuzzy subset FM
i
t t,x corresponds to the i-th pseudo pattern at current position xt,

the membership degrees of these fuzzy subsets can be defined by the standard Gaus-

sian function as





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o m
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where. Z Zm m
∧ ∧

=max max ., gmax = maxm go,m, and m = 1,...,Mt. The above expres-

sions, 
m Z,

∧ and μm,g, represent the respective degrees of membership of two metric

features at current position xt, which are used to ensure that each peak pm is located

at the center of the vessel. Meanwhile, M
i

t t,x provides the membership degree of the

pseudo pattern based on the number of peaks. According to the abovementioned

membership degrees, the structure patterns of current position xt can be inferred by

the following definition.

Definition 2: In the same region Ω, given Ji(xt) the fuzzy subset of the structure pat-

tern belonging to the i-th pattern at current position xt, the relationship between fuzzy

set Ji(xt) and the fuzzy sets of the metric features is given by

J F F Fi t
m

M

m Z m

M

m M
it t

t t
( ) { } { } { }

,
, ,x x=

= =
∧   

1 1
 (11)

The membership degree of Ji(xt) is given by:

   J
i

t
m

M

m Z m

M

m M
it t

t t
( ) ( ) ( ), , ,x x= ∧ ∧ ∧ ∧

= =1 1
(12)

where it is shown that the direct inferring of the local vessel structure can be hardly

implemented using  J
i

t T( )x > with threshold Ta. Therefore, the optimal pattern

inference should be based on the principle of maximum membership degree and can

be expressed as

 J
i

t
i

J
i

t
0

1

4
( ) [ ( )]x x= ∨

=
(13)

which infers the artery structure at current position xt belonging to the i0-th pattern.

When the detector center is near the vessel node (e.g., bifurcation or crossing), the

resulting node position can be ambiguous; for example, a few of the redundant posi-

tions may possibly be the node positions because of the similarity of their metric fea-

tures to those of the actual node. To solve this problem, a second local maximum

operation is performed to obtain a preferable node position. Given n redundant posi-

tions near the bifurcation, with the membership degrees { ( ),..., ( )} J
i

t J
i

t
n3 31x x and ,

the preferable one should be located at

x x
x

∧ =
=

arg max ( ( ))
, ,...,t

k k n
J
i

t
k

1

3 (14)

In Figure 5(c), the numbers 2 and 3 represent the two structure patterns determined

in the corresponding locations by the proposed pattern detector. Pattern detection

result is used to guide the vessel tracking process.

Manipulation of vessel tracking process and organiztion of tracking results

Appropriate termination conditions for vessel tracking are important to achieving bet-

ter tracking performance. Our vessel tracking algorithm stops tracking the current

artery segment or branch once one of the following conditions is satisfied: (1) a new

vessel bifurcation is detected, which should be dealt with appropriately; (2) vessel fea-

ture Z t

∧

+( )x 1
at position xt+1 along the vessel path is below a certain threshold, such
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as when a value is slightly higher than the background (this threshold is set as 0.05 in

this paper); (3) the current path overlaps with a vessel path previously detected, except

when a crossing point on the vessels has been detected and recorded in advance; (4)

the source-list is empty and no new node is found; and (5) the new point is outside

the image field. In all cases except for vessel crossing, the last valid vessel point is

marked as a termination point, and the algorithm starts tracking the other vessel with

the seed point placed at the top of the source-list.

The artery segment is a vessel length with two end-points at two nodes, or at an ori-

gin point and a node, whereas the artery branch is a distal vessel with a distal point.

Either the artery segment or branch is composed of artery elements. Considering these

artery elements arranged at intervals (or with “look-ahead distance”) of less than the

radius of the sampling disk, polylines are used to connect the artery elements by linear

interpolation. The generated polylines are treated as an approximation of vessel center-

lines, and have high probability inside the binarized vessel structures.

Results
The proposed algorithm was tested on both simulated images and real image

sequences with stenosis vessel and aneurysm. To obtain images with acceptable quality,

the cranial and caudal angles, as well as the X-ray dose, were adjusted so that the X-

rays travel a moderate distance. Our vessel tracking algorithm was implemented in

MATLAB 7.0 on a Pentium IV PC (with CPU 2.8 G and 512 M memory).

Our algorithm was first tested on various simulated artery vessel images to adjust its

parameters. Actual images were used to evaluate the actual performance of the algo-

rithm by comparing the algorithm-segmented structure and vessel length of the entire

artery network with those produced by expert cardiologists. The tracking algorithm

has several distinguishing characteristics: (a) it is robust to the starting position

detected; (b) it can detect and identify a larger area of the artery tree without any man-

ual intervention; and (c) it can accurately distinguish the narrows resulting from the

gaps in the vessel feature map or those caused by real vessel stenosis.

In our algorithm, total computational time T consisting of two major components

T1, T2, and one minor component T3, were spent on preprocessing (36.7 s), tracking

(15.7 s), and connecting artery elements (1.4 s), respectively.

General effects of vessel segmentation are listed in the first column of Table 1, where

the results of right coronary artery (RCA) and the left coronary artery (LCA) in the

real angiographic images are compared separately. In Table 1, L∑ and L denote the

length of algorithm-segmented vessels (in pixels) and the total vessel length delineated

by expert cardiologists, respectively. The percentage of the detected artery segments

(DAS %) and the extracted vessel length (EVL %), as well as the identification ratio

(IR %) of the arterial structure was computed to evaluate the performance of our algo-

rithm. In particular, the IR % is defined as the percentage of the correct parts of vessel

length in the entire length of algorithm-segmented vessels. As openly reported in lit-

erature, the DAS % produced by Haris et al. [16] reached 90%, while the EVL % pro-

duced by Schrijver et al. [4] was less than 78%. On average, our algorithm can reach

94.7% for DAS % and 88.1% for EVL %.

Other detailed experiments and performances are introduced in the next section.
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Arterial vessel simulation and algorithm evaluation

Simulated data were created for the arterial segment [Figure 6(b)] and the simulated

arterial tree (SAT) [Figure 6(c)]. In particular, various levels of Gaussian smoothing

were applied to simulate the spatial blurring in an X-ray projection. The SAT in Figure

6(c) was generated to simulate artery characteristics, such as curving, overlapping, and

bifurcating. For these simulated images, all information related to vessel segments, cen-

terline, and local structure are known beforehand. We can analyze the algorithm char-

acteristics given that various levels of white Gaussian are added to these images.

The performance of our algorithm can first be evaluated using the simulated images,

such as vessel segments A to F. Given an initial seed point at the left end of the vessel

segment in A, B, E, and F of Figure 6(b), the PTO can automatically track vessels and

measure their diameters. The measured diameters along the vessel are consistent with

varying morphology, such as stenoses and aneurysms. The resulting mean errors are

listed in Table 2, where Lx denotes the length of the simulated arterial segment, e0 and

ed denote the mean error of the resulting vessel centerlines and diameters, respectively.

Under zero-level Gaussian noise, the mean errors of estimated centerlines and dia-

meters of stenosis or aneurysm vessels are no more than 0.02 and 0.04, respectively. In

case of close proximity (such as C) and local gap (such as D), the tracking results

depend on distance dP between two neighboring vessels and gap-width wG, respec-

tively. Suppose that r1 and r2, and rD denote the radii of two neighboring vessels and

the radius of the detector, respectively. To enable the algorithm to operate through the

vessel despite influence from the neighboring vessel and the gaps, the limiting distance

and gap-width would be dP ≥ (r1 + r2)/2 and wG <rD, respectively. The entire length of

the skeleton lines of the SAT is 948 pixels, and is entirely involved in the testing.

The results of structure identification on the SAT and real angiograms are provided

in the following sections.

Experiments on structure pattern inferring

Two experiments were performed on simulated and real images to test the capability

of our algorithm to infer the structure patterns in the artery tree. The performances

Table 1 Statistical results on artery tracking and structure identification in real
angiographic images

Images,
Num.

EVL
(%)

IR
(%)

L¯ L∑ Average identification rate of bifurcation (N¯b/
W¯b,i=3)

Average
identification rates

of different
patterns (%)

b = 1 b = 2 b = 3 b = 4 b = 5 Total i =
1

i =
2

i =
3

i =
4

SAT, 1 99.8 99.6 950 948 1/1 2/2 2/2 3/4 0/0 8/9 100 100 88.9 75

LCA, 128 87.2 98.3 1868 1629 1.00/
1.00

2.00/
2.00

7.11/
7.22

5.13/
6.12

0.32/
1.34

15.56/
17.68

98.9 98.7 88.0 72.8

RCA, 32 91.7 99.1 947 868 1.00/
1.00

3.10/
3.15

2.65/
2.70

0.30/
0.33

0.01/
0.02

7.05/
7.20

98.3 99.5 97.9 77.5

Mean 88.1 98.5 1677 1477 1.00/
1.00

(100%)

2.22/
2.23

(99.6%)

6.22/
6.32

(98.4%)

4.16/
4.96

(83.9%)

0.26/
1.08

(24.1%)

13.86/
15.58
(89.0%)

98.8 98.9 90.0 73.7

Note: L∑ and L¯ denote the length of algorithm-segmented vessels and the total vessel length, respectively. Nb/Wb

denotes the rate of bifurcation identification., where Nb denotes the number of correctly detected bifurcations for the
b-th level vessel branch, while Wb denotes the total number of the detected bifurcations.

Shoujun et al. BioMedical Engineering OnLine 2010, 9:40
http://www.biomedical-engineering-online.com/content/9/1/40

Page 15 of 21



Figure 6 The simulations of arterial vessels: (a) the local coordinate system of vessel simulation;
(b) the simulated arterial segments; (c) the SAT.

Table 2 Parameters and mean errors in testing of the phantoms of arterial segments

A B C D E F

SV 1 1 1 1 1 1

SB 0 0 0 0 0 0

sB 3.2 3.2 3.2 3.2 4.0 3.2

Lm 13 13 13, 6 13 9 15

Lr 13 5 13, 6 13 18 10

Lx 120 120 120, 125 120 120 120

sw 0 0 0 0 0 0

e0 0.01 0.01 0.01,0.02 0.01 0.02 0.02

ed 0.02 0.04 0.05,0.05 0.02 0.04 0.03
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on identification of all four different patterns, as well as separate performances on the

detection of bifurcation are reported.

The first experiment was conducted on the SAT image. Based on results of estimated

membership degrees  J
i

tX( ) in Eqs. (13) and (14), the attributes of all interesting

points in Figure 6(c) can be well characterized by our algorithm. Overall, the captured

membership degrees corresponded well to four different structure patterns, such as the

membership degree distribution between N1-N4 in Figure 7. For vessel overlapping

cases, such as local superposition between the two vessel segments N2-N4-N5-D and

N1-N4-N5-C, the structure ambiguity (between N4 and N5) might be difficult to

resolve using only a single-view projection, although it might be resolved by observing

vessel motion or radius information from sequence images as done by human obser-

vers while reading cine-angiograms. In short, our multi-feature based fuzzy inferring

method is capable of accurately estimating the structure patterns from 2D images.

The second experiment was performed on actual angiogram images selected from

the angiogram sequences. The related results are provided in the second and third col-

umns of Table 1. The lower level of the arterial structure can be inferred with higher

IR %, and the recognizable vessels can reach up to the fifth level at best. In practice,

the cardiovascular surgeon is often interested in the vessels below the fourth level;

thus, the performance of our algorithm is promising. The second column of Table 1

also displays the rate of bifurcation identification (Nb/Wb). Here, Nb denotes the num-

ber of correctly detected bifurcations for the b-th level vessel branch, while Wb (≥Nb)

denotes the total number of the detected bifurcations, including the incorrectly

detected ones.

Experiments on vessel tracking and measurement

We also evaluated the respective contributions of the probability terms of the continu-

ity properties given in Eq. (6) to the vessel tracking. By rewriting Eq. (8) as

x
∧

+ =t Z df q q q1 ( , , )
, three different types of PTO, namely, x

∧

+ =t f q1 ( ) ,

x
∧

+ =t Zf q q1 ( , )
, and x

∧

+ =t Z df q q q1 ( , , )
, can be constructed. Their respective

results are compared in Figure 8, where the paths traced in the same sub-image were

obtained by the same PTO. Figures 8(b1) and 8(b2) show that the direction constraint

term in Eq. (6.2) can effectively compel the sampling disk and the pattern detector to

move ahead, but it can often be lost in edges, pseudo contours, neighboring vessels, or

Figure 7 The fuzzy memberships measured along the vessel axis, starting from point N1 to N4 in
the SAT.
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even noise. By incorporating the vessel feature term, that is, using x
∧

+ =t Zf q q1 ( , )
,

the vessel tracking result can be improved, as shown in Figures 8(c1) and 8(c2). Using

all terms together, that is, using x
∧

+ =t Z df q q q1 ( , , )
, the vessel tracking result can be

further improved; this is reflected as the smooth and accurate tracking paths detected

in Figures 8(d1) and 8(d2). In addition, if only the vessel feature or diameter term is

used, the tracking model almost stops near the initial seed position. These visual

results are not shown here.

Figures 8(c1) and 8(c2) also yield a typical case in which the algorithm can success-

fully manage the close proximity or crossing of vessels, as well as varying vessel curva-

tures, which validates a number of attractive characteristics of the PTO. For example,

the algorithm can run across the local vessel gap, proceed along the current vessel

branch in spite of crossing, and successfully manage arterial stenoses and aneurysms.

The diameter estimation errors at the artery elements are less than 0.23 pixels on aver-

age. The results of the axis line estimation along the artery segments in the SAT image

indicate that more errors appear near the nodes, with 1.36 pixels on average. These

results show that the axis line estimation error at the nodes is controlled within a limited

extent. For actual angiograms, we compared the automatically extracted arterial axis

lines with the standard arterial centerlines delineated by an expert cardiologist. We also

obtained good results, with a mean error of 0.17 pixels and the maximum error close to

half of the respective vessel radius. These errors are produced by noise, as well as large

curvatures or abnormal morphologies at the locations of vessel nodes.

Vessel stenosis

We tested a simple method to determine the position and severity of coronary artery

stenosis in the given images, which can be used as an additional evaluation criterion for

our tracking algorithm. Our algorithm was able to detect the arterial stenosis. An exam-

ple in which the diameter of arterial stenosis is tracked and measured is shown in Figure

9. According to stenosis evaluation using the grading scheme of the visual analysis of

the American Heart Association [17], %-LENGTH stenosis is estimated as %-LENGTH

stenosis = (1-Lr/Lm) × 100%, where Lr and Lm are the estimates of the minimal diameter

of the stenotic part of a vessel and the mean diameter of the nonstenotic part,

Figure 8 Comparison of the results of vessel-tracking using the PTO based on different continuity
terms. (a1) & (a2) two original images. (b1) & (b2) using the PTO simply based on qθ. (c1) & (c2) using the
PTO based on qθ and qz. (d1) & (d2), using the PTO based on complete terms. (e1) & (e2), measuring the
vessel diameters, respectively along the vessel paths in (d1) and (d2).
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respectively. During tracking and detection, the vessel length of interest begins or termi-

nates when %-LENGTH is 25% higher or lower than the minimum classified value. The

vessel length of interest can be described by the rectangular sash in Figure 9.

In the testing, 35 angiograms with 40 stenosis positions were used to evaluate the

correctness of stenosis identification, in which all the standard vessel stenoses, as well

as their severities were provided beforehand by the expert cardiologist. As a result, 33

stenosis objects are correctly detected and the number of false negatives and false posi-

tives are seven and one, respectively. The average correctness rate of stenosis severity

identification reaches 68.3%, in comparison with the given stenosis severity levels.

Discussion
In this paper, we analyzed image data and vessel structures within X-ray projections. A

structure distinction exists between the crossing and bifurcation of vessel segments.

Two crossing vessel segments have no spatial structure connection, whereas vessel

bifurcations (which in general produce three vessel segments) have a structural con-

nection among them. Vessel bifurcation enables low-level vessel segment separation to

two high-level ones at the bifurcation point where these vessel segments have different

features in their diameters and direction continuity. However, in single-view X-ray pro-

jection, two spatial overlapping vessel segments may appear connected to each other at

a crossing-point, where the vessel segments maintain their respective features of dia-

meter and direction continuity near the point. The abovementioned vessel continuity

of different cases can address, in part, 2D structure ambiguity.

In our algorithm, three parameters can be adjusted to achieve better segmentation

results. These include threshold value rl in the vessel function Eq. (2), the radius of

sampling disk rS, and the radius of pattern detector rD. These parameters can be

adjusted according to the overall performance integrated from the three percentages,

DAS %, EVL %, and IR %. For instance, parameter rl may be optimized according to

lim
r r

DAS r EVL r IR r
r DAS r EVL r IR 

  
  →

+ +
⋅ + +’

( ) ( ) ( )
( ( ) ( ) (

Δ Δ Δ
Δ rr))

→ 0

Figure 9 Tracking and measuring vessel width using the real angiographic images with arterial
stenosis. (a) Original angiogram with arterial stenosises; (b) Location and measurement of the stenosises.
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The optimization for parameters rS and rD can be conducted similarly. Using the

simulated images with different levels of noise, we can determine the optimal values

for these three parameters. In the absence of noise, rl is computed as r f = − 2 ;

parameters rS and rD turn out to be equal, that is, rS = rD, and are both equal to

current diameter dt of the vessel under tracking.

In the experiments, the time spent in tracking depends on the length of the detected

vessel, look-ahead distance st, and vessel diameter dt. Look-ahead distance st is deter-

mined by the diameter of the sampling disk, which is designed to vary with the dia-

meter of current vessel dt. The ranges of these parameters are 1 ≤ st ≤ 7 (pixels) and 3

≤ dt ≤ 15 (pixels), respectively, which agree with the required relationship 1 ≤ st ≤ dt/2.

Similarly, more artery elements can result in more computational time.

The rate of bifurcation identification (Nb/Wb) in the second column of Table 1 is

related to EVL % and independent of IR % because the IR% is calculated only by the

detected vessel points. In addition, the IR % of bifurcation and crossing are relatively

lower than that of other structure patterns, which is mostly caused by the structure

ambiguity in the 2D image acquisition. According to the testing on SAT, the error

ratio is correlated with the effects of image noise and the diameter of the detector.

Based on the results on 40 stenosis objects, the application for the diagnosis of ste-

nosis severity levels do not appear to be very reliable because of the use of single-view

projection images. The accurate quantification and analysis of stenotic lesions is actu-

ally very complicated and has been elaborately discussed by Sato et al. in [18]. The

importance of designing an acquisition system for acquiring “good” images, in which

stenotic lesions can be displayed clearly, rather than simply analyzing the given images

by common clinic systems, is therefore important.

Conclusions
We developed a vessel tracking framework for the segmentation and measurement of the

arterial tree in angiographic images, and applied it to actual clinical data. Based on the var-

ious evaluation results using both simulated and actual data, our algorithm demonstrates a

very impressive performance in tracking and measuring artery trees. The particular advan-

tages include efficient handling of vessel nodes, such as bifurcation or crossing; distin-

guishing between bifurcations and crossings, and automatically locating their positions;

and automatic adaptation to varying vessel diameters in the coronary artery. These advan-

tages were made clear with the introduction of our tracking strategies.

Our algorithms are able to locate stenosis or aneurysm positions in a number of

given images. Naturally, the actual 3D morphology cannot be simply inferred through

the 2D structure patterns. The use of 2D angiograms can pose ambiguity in determin-

ing vessel connectivity, particularly in cases with vessel overlapping. This indicates the

importance of extending our algorithm to 3D applications to achieve certain diagnostic

functions. Moreover, although our fuzzy inferring function is found relatively effective

in integrating spatial characteristics of centerline, orientation, diameter, and density

along the coronary blood vessels, the performance of structure pattern identification

might be further improved, if we can effectively employ advanced learning-based meth-

ods, such as support vector machine, to identify the vessel structure patterns. These

ideas will be explored further in our future studies.
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