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Abstract

Background: Polysomnography (PSG) is used to define physiological sleep and
different physiological sleep stages, to assess sleep quality and diagnose many types
of sleep disorders such as obstructive sleep apnea. However, PSG requires not only
the connection of various sensors and electrodes to the subject but also spending
the night in a bed that is different from the subject’s own bed. This study is
designed to investigate the feasibility of automatic classification of sleep stages and
obstructive apneaic epochs using only the features derived from a single-lead
electrocardiography (ECG) signal.

Methods: For this purpose, PSG recordings (ECG included) were obtained during the
night’s sleep (mean duration 7 hours) of 17 subjects (5 men) with ages between 26
and 67. Based on these recordings, sleep experts performed sleep scoring for each
subject. This study consisted of the following steps: (1) Visual inspection of ECG data
corresponding to each 30-second epoch, and selection of epochs with relatively
clean signals, (2) beat-to-beat interval (RR interval) computation using an R-peak
detection algorithm, (3) feature extraction from RR interval values, and (4)
classification of sleep stages (or obstructive apneaic periods) using one-versus-rest
approach. The features used in the study were the median value, the difference
between the 75 and 25 percentile values, and mean absolute deviations of the RR
intervals computed for each epoch. The k-nearest-neighbor (kNN), quadratic
discriminant analysis (QDA), and support vector machines (SVM) methods were used
as the classification tools. In the testing procedure 10-fold cross-validation was
employed.

Results: QDA and SVM performed similarly well and significantly better than kNN for
both sleep stage and apneaic epoch classification studies. The classification accuracy
rates were between 80 and 90% for the stages other than non-rapid-eye-movement
stage 2. The accuracies were 60 or 70% for that specific stage. In five obstructive
sleep apnea (OSA) patients, the accurate apneaic epoch detection rates were over
89% for QDA and SVM.

Conclusion: This study, in general, showed that RR-interval based classification,
which requires only single-lead ECG, is feasible for sleep stage and apneaic epoch
determination and can pave the road for a simple automatic classification system
suitable for home-use.
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Introduction
Sleep is defined as the naturally recurring state of rest during which consciousness of

the world is suspended [1]. Sleep is categorized into two types: Rapid Eye Movement

(REM) and Non-Rapid Eye Movement (NREM). REM and NREM sleep alternate cycli-

cally through the night. NREM sleep is further divided into four stages (NREM 1 to

NREM 4) [2,3].

Sleep shows a complex, highly organized pattern of diverse physiological variables.

Polysomnography (PSG) is used to define physiological sleep and the different physio-

logical sleep stages, to diagnose many types of sleep disorders including narcolepsy,

restless legs syndrome, REM behavior disorder, parasomnias, and sleep apnea [4]. A

PSG system is typically placed in a sleep laboratory and includes a minimum of eleven

channels, including electroencephalogram (EEG), electromyogram (EMG), electroocu-

logram (EOG), oxygen saturation (SpO2), and one channel electrocardiogram (ECG).

Multi-channel data is simultaneously recorded both on continuously moving chart

paper and to a computer system for analysis and displaying purposes [5]. 30-second

epochs are the basic time periods on which data analysis and interpretation is per-

formed. For special purposes, occasionally longer or shorter epochs are scored.

Typically, manual sleep stage classification is based on three data sources: EEG, EOG,

and chin EMG [6]. Using this dataset, each epoch is scored as wake, REM, or one of

the NREM stages. The limiting aspects of this type of data acquisition are the place-

ment of EEG electrodes on the scalp, and the manual scoring.

Sleep apnea is a complete or near complete cessation of airflow for at least 10 sec-

onds. There are three forms of sleep apnea: central, obstructive, and mixed [7]. Breath-

ing is interrupted by the lack of respiratory effort in central sleep apnea; in obstructive

sleep apnea, breathing is interrupted by a physical block to airflow despite respiratory

effort. In mixed sleep apnea, there is a transition from central to obstructive features

during the apnea events. Sleep apnea detection is performed by the overnight acquisi-

tion of ECG, airflow measurement, respiratory effort and SpO2 in addition to EEG,

EOG, and EMG.

Hypopnea is defined as a reduction in the amplitude of the airflow of at least 50%,

lasting at least 10 seconds, followed by either a decrease in SpO2 of 4%, or signs of

physiological arousal [8].

Apnea/Hypopnea Index (AHI) or Respiratory Disturbance Index (RDI) is defined as

the total number of apneas and hypopneas per hour. AHI or RDI are used to assess

the quality of sleep. AHI values are typically categorized as 5-15 mild, 15-30 moderate,

and above 30 listed as severe. If a 7-hour sleep (840 epochs), for example, includes a

total number of epochs with apnea and hypopnea over 35 (i.e., approximately 4% of

the epochs are apneaic), this subject is diagnosed as mild sleep apnea patient. For a

severe apnea patient in 25% of the epochs apnea or hypopnea is observed.

Although sleep apnea is a respiratory event, it can affect the systems in the body,

especially the cardiovascular system. Therefore, the ECG can provide very valuable

information about apneaic events [9].

PSG recordings obtained in sleep laboratories require not only the connection of var-

ious sensors and electrodes to the subject but also spending the night in a bed that is

different from the subject’s own bed. One can argue that these requirements might

affect the subject’s sleep characteristics and a simpler acquisition system for home-use

Yılmaz et al. BioMedical Engineering OnLine 2010, 9:39
http://www.biomedical-engineering-online.com/content/9/1/39

Page 2 of 14



can be more efficient and accurate in assessing sleep quality. Along these lines, recently

an at-home sleep analysis system (Alice PDx, Philips, Einthoven, The Netherlands) has

been commercialized to help diagnose mainly the obstructive sleep apnea (OSA). This

system measures patient airflow using nasal cannula and/or oral thermistor, and SpO2.

Patients can administer the system in their home before going to sleep, and data is

then transferred to a physician via a memory card.

Another system in which ECG electrodes (for power spectral analysis of the heart

rate) combined with a miniature body movement sensor (a piezo film accelerometer)

are attached to the chest was proposed for a simple and inexpensive differentiation

between the wake, REM and NREM stages (U.S. Patent Number 5280791). In addition,

a wristwatch, which monitors one’s sleep cycle from wakefulness to REM by tracking a

succession of body movements (using an accelerometer), has recently been available in

the market (Sleep Tracker Pro, Innovative Sleep Solutions Inc., Atlanta, GA, USA).

Along with these commercial products and patents, in a recent study, Hamann and

coworkers showed that the synchronization between the heartbeat and breathing pat-

tern is significantly enhanced during certain stages of sleep. By mathematically analyz-

ing heart rate throughout the night, they obtained information about breathing and

sleep stages of subjects [10].

Finally, in the last years, a number of studies involved the use of single-lead ECG

recordings (for example, Holter monitor data) for the detection of obstructive sleep

apnea (OSA). In 2000, the aim of the “Computers in Cardiology Challenge” was to

pave the way to the development of approaches for detecting and quantifying sleep

apnea based on only ECG. Penzel et al. [11] reported the comparison of the methods

used in the challenge and investigated how several of the most successful strategies

can be combined. They reported that the algorithms made use of frequency-domain

features to estimate changes in heart rate and the effect of respiration on the ECG

waveform performed the best. Very recently, Mendez and coworkers [9] tested time-

varying autoregresive model and k-nearest-neighbor method for the same purpose on

Physionet sleep apnea dataset.

Since manual scoring is a subjective and time-consuming process, various automatic

sleep staging and OSA detection studies have been carried out. They mainly involve

four steps: i) Preprocessing of the data obtained using PSG or other acquisition sys-

tems (e.g. noise cancellation, removal of the highly noisy epochs), ii) feature extraction

(e.g. power spectral density, R-peak detection, Wavelet Transform, time-frequency ana-

lysis), iii) supervised or unsupervised classification approaches for final decision, and

iv) performance analysis by comparing the computer-generated results with the sleep

experts’ interpretation. Previously, automatic methods aiming the sole use of ECG

[9,11,12], EOG [13], or EEG [14,15] have been investigated.

Because placement of multiple electrodes on the scalp is a tedious procedure and can

properly be performed by experienced sleep technicians only, placement of three self-

adhesive electrodes on the thorax for single-lead ECG recordings may be a better

option for sleep staging at home. An ECG-based alternative would also be useful for

OSA detection instead of nasal airflow sensor and SpO2 based approach. Thus, there is

a need for simple automatic sleep analysis methods based on ECG recordings.

In this study, a single-lead ECG signal was used for automatic sleep stage classifica-

tion and OSA detection. The features derived from solely the beat-to-beat intervals
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computed at each epoch served as the basis of the study. The computation of the fea-

tures selected here did not require any spectral or wave shape analysis. Three well-

known classification approaches, k-nearest-neighbor (kNN), quadratic discriminant

analysis (QDA), and support vector machines (SVM) on the sleep ECG recordings

from 8 healthy subjects and 9 OSA patients were investigated. The methods studied

range from simple (kNN) to more complicated (SVM) classification approaches.

Materials and Methods
Study Population and Signal Acquisition

In this retrospective study we have worked on polysomnography data of 17 subjects (5

men). All data analyzed were collected as part of routine diagnosis and treatment,

therefore we did not need an ethical committee approval. The data consisted of

recordings of 32 channels of physiological parameters (Somno Star Alpha Series 4,

Sensor Media Corporation, Yorba Linda, CA) at Gülhane Military Medical Academy,

Psychiatry Clinic Sleep Laboratories, Ankara, Turkey. Along with the EEG, EOG and

EMG recordings, signals from sensors for oronasal respiration, thoracic and abdominal

movement, oxygen saturation, and electrical activity of the heart (ECG) were acquired.

Sleep experts (the authors SY and FO) manually performed the sleep stage determina-

tion on the subjects using the PSG recordings. Each 30-second epoch was annotated as

one of the four NREM stages, or wake, or REM stage. The experts also annotated each

epoch whether there was an obstructive apneaic period (existence of OSA) or not.

Because this study solely required single-lead ECG, the associated signal (lead II) was

extracted from each subject’s PSG recordings. The sampling frequency used for ECG

acquisition was 200 Hz and the band-pass filter cut-off frequency values were set at

0.5 Hz and 40 Hz.

From 17 subjects enrolled in the study, 8 did not have any known health problems

(healthy group), and 9 were previously diagnosed with obstructive sleep apnea (OSA

group). The average age for the healthy group (1 man) was 27.2 (min. 26, max 34),

and for the OSA group (4 men) it was 52.3 (min. 43, max. 67). The average sleep dura-

tion for the healthy group was 7.1 hours (min. 5.4, max. 8.4 hours), and for the OSA

group it was 6.9 hours (min. 6.2, max. 7.3 hours). Table 1 shows the average percen-

tage of the duration of each sleep stage for healthy and OSA group. In addition, in an

average of 12.7% of the epochs, an apneaic event was detected. In our OSA group, the

rate of epochs with apnea ranged from 5% to 25%, which represents different severity

of the disease, from mild to severe. As depicted in Table 1, the mean Apnea/Hypopnea

Index (AHI) for the OSA group was 21 (from 6.5 to 41.2).

ECG Preprocessing and Feature Extraction

A Matlab-based (The Mathworks Inc., Natick, MA, USA) custom ECG viewer software

allowed the user to visually select the epochs to be included in the subsequent studies.

The selection criteria were the noise level and number of arrhythmic beats present in

Table 1 The average percentage values obtained for different sleep stages for healthy
and OSA group

Wake % NREM 1% NREM 2% NREM 3% NREM 4% REM % AHI

Healthy 5.5 1.8 58.6 6.0 15.1 13.0 N/A

OSA 14.5 4.6 70.0 2.6 1.1 7.5 21
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the ECG data for a particular epoch. Contractions of heart ventricles produce relatively

large potential deflections in the ECG signal, known as the R-peaks. The intervals

between these peaks in the ECG are referred as beat-to-beat or RR intervals.

The subsequent analysis on the selected epochs was comprised of three steps: (1)

beat-to-beat (RR) interval computation for each epoch, (2) feature extraction from RR-

interval values for each epoch, and (3) classification of stages (or apneaic periods)

using one-versus-rest approach. In order to determine RR-intervals, an R-peak detec-

tion algorithm was executed. Illanes-Manriquez and Zhang [16] developed this algo-

rithm in which R-peak was detected with an indicator that took into account the

amplitude and the curvature of the ECG signal to distinguish the R-waves from the

other waves of the ECG signal. Once the R-peaks were determined, RR intervals were

computed. If an RR-interval value was less than 500 or greater than 1500 milliseconds,

it was excluded from the analysis.

The features selected for the classification efforts were derived from the RR-interval

values of each epoch. They were the median, inter-quartile range, and mean absolute

deviation values. The median is the RR interval value for which half of the values are

higher, half lower. The Inter-Quartile-Range (IQR) is the difference between 75th and

25th percentiles of the RR interval value distribution. The Mean Absolute Deviation

(MAD) is the mean of absolute values obtained by the subtraction of the mean RR

interval values from all the RR interval values in an epoch, i.e.,

MAD mean abs RR_vector mean RR_vector= ( − ( )( ) .

The purpose of the selection of these features was to exclude the outliers from the

analysis. Features like mean, standard deviation, and range are affected by the outliers,

and thus classification performance deteriorates when these features are included in

the analysis. The performances of each of these features were also tested and found to

yield lower classification accuracy rates. No features extracted from the ECG waveform

were used, because the aim here was to be as simple and accurate as possible by just

working with the RR-intervals.

Using these features, we have designed classifiers to predict sleep stage and apneaic

epochs. We have used and compared the performances of the following classification

methods: k-nearest-neighbor, quadratic discriminant analysis, and support vector

machines. While using these classification methods, our labeling approach was in the

form of one-versus-rest. For example, in wake epoch prediction, the epochs with wake

stage formed class 1 and all other stages class 2. Similarly, for REM epoch prediction,

the epochs with REM stage formed class 1 and all other stages class 2, and so on. In

OSA prediction, feature vectors corresponding to OSA and non-OSA epochs were

labeled as class 1 and 2, respectively. To be more specific on the feature selection pro-

cedure, again, with the possible 6 features mentioned above we formed the feature vec-

tors for each class, for example, median values coming from class 1 to one vector and

class 2 to the other vector, and performed two-sample t-test on these vectors. As a

result of the t-test, p-values for each subject were computed. This was repeated for

each 2-class comparison. The average of p-values indicated that the median, iqr, and

mad were more discriminative than the other three.
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Classification Methods

Classification considers a set of samples x (feature vectors) of an object or event, each

of which has a known class label [17]. This set is referred to as the training set. If we

assume that the feature vectors x are d-by-1 column vectors and there are n samples

in the training set, then the training set will constitute d-by-n data matrix. The pro-

blem is then to build appropriate models (or classifiers) using the training data to be

able to make predictions about the class of new samples. In this study, the use of three

classification (also known as supervised learning) methods in sleep staging and apneaic

epoch detection was investigated.

k-Nearest-Neighbor

The k-Nearest-Neighbor (kNN) is a nonparametric pattern classification approach,

which has been used in many different applications in science and engineering as a

benchmark classifier because of its relatively robust performance. It is a simple techni-

que, in which the classification of a feature vector x is performed by assignment of x

to the class that is most frequently encountered among the k nearest samples. In other

words, the test vector x is thought to be at the center of a sphere whose radius is

grown until it encloses k samples from the training set, hence the name “k-nearest-

neighbor”. The label of the most frequent samples is assigned to the test vector [17].

This classifier relies on a metric or a distance function among the patterns. It is usually

the Euclidean distance, which is also the metric used in this study. Other metrics pre-

ferred in the literature are the Minkowski (a special form of this metric is the Manhat-

tan distance) and the Tanimoto metric [17]. The k is a user-defined integer, which is

an odd number in two-class cases. We experimented with different k values and k = 5

turned out to be the best choice in our application.

This approach can be viewed as an attempt to estimate the posterior probabilities P(ci
|x) (given a feature vector x, probability that it belongs to the ith class, denoted by Ci )

from neighboring k training samples.

Quadratic Discriminant Analysis

In Quadratic Discriminant Analysis (QDA), it is assumed that the class-conditional

probability density functions (PDFs), P(x|ci) , are in the form of d-dimensional multi-

variate normal (Gaussian) distributions [17]:

P x x m x m|
( ) | |

exp ./ /ci d
i

i
T

i i( ) = − −( )⎡
⎣⎢

⎤
⎦⎥

−( )−1

2

1
22 1 2

1

 Σ
Σ (1)

Here, i is the class index, mi and Σi are the d-by-1 mean vector and the d-by-d cov-

ariance matrix for class i, | | and ( )T are determinant and transpose operators respec-

tively. In our case, d (the number of features) is 3, since we have chosen to work with

3 RR-interval based features. In QDA, mean vectors and covariance matrices, which

are assumed to be different for each class, are estimated using the maximum likelihood

approach. For minimum-error-rate classification, we need to assign x to the class with

the highest posterior probability [17]. Using Bayes’ formula for conditional expecta-

tions, we can express the posterior probability P(ci|x) as:
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where P(ci)is the prior probability of class i, which simply corresponds the prevalence

of class i in nature, P(x) is called the evidence, which is nothing but the probability of

coming across the sample x in the feature space. We note that, while comparing pos-

terior probabilities, the evidence factor P(x) can be ignored in Eq. (2), as it is indepen-

dent of the class index i. Then, the class conditional PDF, P(x|ci), which is also

referred to as the likelihood in the literature, scaled by the class prior probability, P(x |

ci) , that is the numerator in Eq. (2), will correctly reflect the posterior probability.

When implementing the QDA classifier, usually P(ci)P(x | ci) term is not calculated

directly, instead its natural logarithm, referred as the discriminant function, is used:

ln | ln lnP P P
d

c c c ii i i
T

i i( ) ( )⎡⎣ ⎤⎦ = ( ) − ( ) − −( ) − −( )−x x m x m
2

2
1
2

1
2

1 Σ lln Σ i (3)

The d
2
In(2π ) term can be dropped as it is independent of i, the class index. We

note that the discriminant functions given by Eq. (3) are quadratic in x, hence the

name quadratic discriminant analysis.

If one has the knowledge of the prior probabilities, P(ci ) , from past experience for

instance, then they can be used directly in Eq. (3). In this study, we have assigned the

above-mentioned percentages (see Table 1) of one sleep stage as the probability of

occurrence of that specific stage P(c1 ) and the probability of the occurrence of other

stages as 1 - P(c1 ). For a test feature vector x, if ln[P(c2)P(x|c2)] > In[ P(c1)P(x|c1)],

then x is categorized as class 2, c2, otherwise as class 1, c1.

Support Vector Machines

Support vector machines (SVMs) is basically a binary (two category) classifier that

relies on nonlinear mapping of the training data to a higher dimension, thus the trans-

formed data can always be separated by a hyper-plane. Each pattern x is transformed

to another pattern using some suitable kernel function y = f (x). A linear discriminant

in the transform y space is g(y) = WT y, where W is the weight vector perpendicular

to the hyper-plane characterized by g(y) = 0. With this form, a linear discriminant

function must go through the origin. However, if we augment W and y with b and 1

respectively, then the linear discriminant can have an offset b. The idea is to find a

separating hyper-plane which ensures zkg(yk ) ≥ 1, where zk = ± 1 is an indicator vari-

able for pattern k, according to whether pattern yk = f(xk ) is in c1 or c2.

In training an SVM, the objective is to find the separating hyper-plane with the lar-

gest margin. This guarantees that the classifier will have a superior generalization per-

formance [17]. The distance from any hyper-plane to a transformed pattern yk is |g(yk
)|/||W||, and there is a positive margin b, for which zkg(yk )/||W|| ≥ b . The goal then

becomes finding the weight vector W that maximizes b. Since there may be infinitely

many weight vector pointing into same optimal direction of the separating hyper-

plane, the constraint b ||W|| = 1 is imposed on W for uniqueness. The support vec-

tors are the transformed training patterns for zkg(yk) = 1 (just on the hyper-plane),

which carry all the relevant information about the classification problem. A kernel

function f( ) capable of well separating the data gives rise to a small number of support

vectors and low error rate. Therefore, the selection of the kernel function is important.
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These functions might be polynomials, Gaussians, or other basis functions such as

radial basis functions. In our implementation the kernel function was first order poly-

nomial. In the optimization process we used quadratic programming with a method

called sequential minimal optimization [18,19]. This method breaks the optimization

problem down into sub-problems that may be solved analytically, eliminating the need

for a numerical optimization at each step.

Evaluation of Classification Performance

Given a set of samples we first randomly divide it into two parts as training and test

sets. Then the classifier is trained (model is estimated) using the training data and clas-

sification accuracy is estimated by verifying the predictions of the trained classifier on

the test set. As the given set of samples varies the classification accuracy rate also var-

ies. Therefore, the classification accuracy rate is a random variable as such it has a bias

and variance with respect to the actual classification accuracy rate associated with the

underlying classification problem [20]. While separating the overall set of samples into

training and test sets, if the size of training set increases the bias in the estimation of

classification accuracy decreases and the variance increases. Inversely, if the size of test

set increases the bias increases and the variance decreases. A common technique to

assess classification performance is 10-fold cross-validation (CV). In this approach the

overall set of samples is randomly divided into 10 approximately equal and balanced (i.

e., the distribution of samples into different classes is similar) parts. Then, each time

one of these subsets is excluded from the overall set of samples and used as the test

set and the remaining samples are used as the training set. This cycle is repeated over

the 10 subsets and the resultant classification accuracy rates are averaged to produce

10-fold CV accuracy rate. For a subject with total number of 800 epochs, for example,

partitioning produced 10 subsets with 80 epochs each. Therefore, the training set (720

epochs) and test set (80 epochs) included totally separate sets of data. The 10-fold CV

was repeated for each classification method (kNN, QDA, and SVM) on each subject.

The classification accuracy here refers to the ratio of correct decisions (i.e., true posi-

tives plus true negatives) to the total of number of cases. In some cases it may be

more insightful to report the classification performance using two separate indicators,

namely sensitivity and specificity, however in our case, false positives and false nega-

tives are equally important in evaluating performance of sleep stage and apneaic epoch

determination. We also used Cohen’s Kappa index (CKI), which measures agreement

between predicted and actual categorizations. The CKI has a correction for agreements

that may occur by chance [21].

Results
We have processed a total of 14,219 epochs and selected 13,439 (94.5%) of them for

the subsequent classification study. From each selected epoch median, iqr, and mad

values were computed from the associated RR values. Figure 1 shows the features and

the corresponding sleep stages (hypnogram), simultaneously, with respect to epoch

numbers throughout the night’s sleep of one representative healthy subject. We note

that the variation of the median values on this figure has been shown with half of the

values for compactness of the graphic. Figure 2 depicts the comparison of the actual

stages and the automatic sleep stage classification results using QDA with respect to
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epoch numbers from one healthy subject. This figure graphically demonstrates the per-

formance of one of our classification approaches with two states, one of the sleep

stages (such as wake) and the other stages. In Figure 3, the performance of the SVM

method as the classification approach in detecting the apneaic epochs is shown for one

subject from the OSA group. The comparison is represented by the apneaic epochs

defined by an expert and those automatically classified.

Figure 1 Simultaneous display of the hypnogram from one healthy subject and the associated
values of the features computed from each epoch. The red lines show wake, NREM 1 to 4, and REM
sleep stages with respect to epoch numbers throughout the night’s sleep (hypnogram). Because of
simultaneous display, on the hypnogram wake and REM are at the levels of 500 and 250 ms, respectively.
NREM 1 to 4 stages are shown at 400 to 100 ms levels, respectively. Blue, green, and black graphs indicate
median (values are halved for better representation), interquartile range (iqr), and mean absolute deviation
(mad) of RR values obtained from each epoch.

Figure 2 Classification performance of one healthy subject with respect to the epoch number
using QDA as the method of choice. The red lines show the actual stage as wake or other stage, and
blue lines show the estimated stage as wake or other stages. We imposed an offset between the actual
and classification results in order to make them easy to differentiate.
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We report here the percentage of accurate classifications for each of the six sleep

stages (wake, NREM 1, 2, 3, 4, and REM) for one-vs-rest scheme. Cohen’s Kappa

Index (CKI) values are also included in the tables. Tables 2 and 3 present the accuracy

levels for healthy and OSA groups, respectively. In addition to the accurate classifica-

tion percentage of each stage for each group we present the total accuracy indicating

the performance obtained throughout the night. As shown in Tables 2 and 3, the sleep

stage classification study demonstrated that SVM was the best method for each stage

individually and weighted overall. This was true for both healthy subjects and OSA

group. QDA and SVM performed similarly well and significantly better than kNN.

Because the NREM 2 stage covers the 60 or 70% of the night sleep, the accuracy levels

decreased from 80-90%’s (for other stages) to 60-70%. Overall results indicate that out

of 4 stages 3 were classified correctly using only three heart-rate-related features.

Figure 3 Classification performance of one subject from OSA group with respect to the epoch
number using SVM as the method of choice. The red and blue lines show the actual and estimated
class of an epoch as with apnea or without apnea, respectively. We imposed an offset between the actual
situation and classification results in order to make them easy to differentiate.

Table 2 The average performances of kNN, QDA, and SVM classification methods in
sleep stage classification on healthy subjects

Classification Sleep Stages Total

Method Wake NREM1 NREM2 NREM3 NREM4 REM Accuracy

kNN 322/350 105/109 2159/3773 352/390 775/943 655/836 4414/6407

= 92% = 97% = 58.2% = 90.3% = 82.2% = 78.4% = 68.9%

CKI = 0.95 CKI = 0.98 CKI = 0.55 CKI = 0.95 CKI = 0.90 CKI = 0.91

QDA 332/350 106/109 2253/3773 366/390 821/943 695/836 4581/6407

= 94.9% = 97.9% = 59.7% = 93.8% = 87.1% = 83.2% = 71.5%

CKI = 0.97 CKI = 0.98 CKI = 0.56 CKI = 0.96 CKI = 0.94 CKI = 0.95

SVM 334/350 107/109 2328/3773 368/390 824/943 709/836 4684/6407

= 95.6% = 98.5% = 61.8% = 94.3% = 87.4% = 84.9% = 73.1%

CKI = 0.98 CKI = 0.99 CKI = 0.59 CKI = 0.98 CKI = 0.95 CKI = 0.95

The value in each cell shows the number of epochs with accurate estimations divided by the total number of epochs of
that specific stage and the corresponding percentage. Cohen’s Kappa Index (CKI) is given for each stage and
classification method. The last column indicates the total classification accuracy obtained throughout the night for each
method.
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When CKI value approaches to 1, the performance of one particular approach is more

valuable and less prone to be by chance. Most of the values obtained in this study are

close to 1 except for the case with NREM 2 stage.

Table 4 shows the results of the OSA detection study. A similar observation with the

sleep stage study was that the QDA and SVM outperformed kNN. In five patients the

accurate detection rates were over 89% for better performing methods. It is important

to note that one OSA patient had neither NREM 3 nor NREM 4, and in five patients

NREM 3 was observed while NREM 4 did not exist.

Discussions and Conclusion
The aim of this study was to investigate the potential use of single-lead ECG record-

ings in sleep stage classification and obstructive sleep apneaic epoch detection. Visual

inspection of the ECG data and RR-interval determination were the basic processing

steps. The median, inter-quartile range, and mean absolute deviation values computed

from RR-intervals obtained from each epoch served as the features used in the classifi-

cation procedure. The k-nearest-neighbor, quadratic discriminant analysis, and support

vector machines were preferred as the methods of classification. The ECG data came

from healthy subjects and OSA patients. Therefore, it was possible to test the features

and classifiers using single-lead ECG for both groups.

For proper feature extraction and classification procedures, going over the data from

each epoch was critical, and certainly improved the quality of the study. This was also

useful in visual inspection of the R-peak detection performance. The algorithm used

Table 3 The average performances of kNN, QDA, and SVM classification methods in
sleep stage classification on OSA group

Classification Sleep Stages Total

Method Wake NREM1 NREM2 NREM3 NREM4 REM Accuracy

kNN 817/1022 307/333 3124/4975 152/159 71/75 465/538 4957/7102

= 80% = 92.3% = 62.8% = 95.5% = 94.6% = 86.4% = 69.8%

CKI = 0.93 CKI = 0.93 CKI = 0.60 CKI = 0.94 CKI = 0.97 CKI = 0.95

QDA 878/1022 317/333 3487/4975 154/159 72/75 492/538 5425/7102

= 85.9% = 95.3% = 70.1% = 97.2% = 96.8% = 91.4% = 76.4%

CKI = 0.97 CKI = 0.95 CKI = 0.65 CKI = 0.98 CKI = 0.98 CKI = 0.97

SVM 883/1022 318/333 3517/4975 155/159 72/75 494/538 5461/7102

= 86.4% = 95.5% = 70.7% = 97.6% = 97.0% = 91.9% = 76.9%

CKI = 0.98 CKI = 0.98 CKI = 0.72 CKI = 0.98 CKI = 0.98 CKI = 0.97

The representation is similar to that of Table 2.

Table 4 The average performances of kNN, QDA, and SVM classification methods in
apnea detection

Classification Method Mean Worst Best

kNN 718/904 = 79.5% 615/904 = 68% 808/904 = 89.4%

CKI = 0.94 CKI = 0.91 CKI = 0.95

QDA 788/904 = 87.2% 687/904 = 76% 854/904 = 94.5%

CKI = 0.97 CKI = 0.95 CKI = 0.98

SVM 789/904 = 87.3% 683/904 = 75.6% 854/904 = 94.5%

CKI = 0.98 CKI = 0.95 CKI = 0.98

The values on the “Mean” column are the average percentages of accurate estimations. The “Worst” and “Best”
classification accuracies across OSA subjects are also included.
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for this purpose gave highly successful results. In addition to the three-abovementioned

features, the mean, standard deviation, and range values computed on each epoch were

tested, however, did not yield sufficient accuracy levels. The features based on ECG

wave shape, for instance QT or QRS duration, required the automatic delineation of

the ECG signal, which is not a trivial task. Especially, determination of the end-of-T-

wave is difficult with automatic analysis. We tested a wavelet-based approach for this

purpose; however, its performance was not promising, and thus QRS and QT interval

values became unreliable for any further classification efforts. That is why we pro-

ceeded with the beat-to-beat interval, which is relatively simple.

We examined the performance of three classification methods because each had a

different modeling capacity. The kNN uses no modeling at all, whereas the QDA mod-

els the data as consisting of groups or classes with multivariate Gaussian distributions,

which is somewhat restrictive. After transforming the data to a higher dimensional

space, SVM separates transformed data into two categories with an optimal margin.

Both in sleep stage classification and OSA detection purposes, the QDA and SVM

methods performed similarly well and better than the kNN approach. We should note

here that our SVM implementation utilized a simple linear kernel; with more complex

kernels it should be possible to further improve the performance of SVM classification.

Out of 6 possible sleep stages, the classification accuracy was over 83% for 5 stages

using the QDA and SVM approaches. Interestingly, the performance of classifiers was

better for the OSA group than the healthy group. Another note is that using these

methods it was possible to determine whether a person is sleeping or not with an

accuracy of ~95% (for healthy group) or ~85% (OSA group). Our results signify that

OSA detection using the approach proposed here is feasible and can be an alternative

to the systems that use oronasal airflow sensors.

A limitation of this study was the number of subjects whose ECG recordings were

obtained. The subjects with consistent ECG morphologies and heart rate characteristics

were selected. In addition, subjects with cardiac problems were excluded from the

study. Moreover, certain epochs with high amplitude artifacts caused by the body

movements that dominated the ECG signal were also excluded in the subsequent ana-

lysis. Even though the number of subjects was limited, the number of epochs was large

enough (over 13,000 epochs) to make statistical comparisons.

In a future study, we will deal with the automatic detection of noisy epochs in terms

of signal itself and the computed RR-interval values. Furthermore, because the QDA

method requires the knowledge of prior probabilities of each class the author chose

here to use the average incidence percentages as the prior probability values, which is

different for healthy and OSA groups. The QDA was the method of choice here

instead of linear classifier because of its higher modeling capability with two different

covariance matrices for each class, in contrast to linear classifier where there is the

restriction of identical covariance matrix. We will deal with the automatic detection of

noisy epochs in terms of signal itself and the computed RR-interval values, so that

visual inspection of each epoch will not be required. Moreover, automatic delineation

of Q, S, start-of-T-wave, and end of T-wave fiducials will provide new ECG-based fea-

tures in the near future.

As for the issue of multi-category classification of sleep stages, kNN and QDA can

readily be used in such a classification setting. Whereas for the SVM, we need to resort
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to either one-versus-one or one-versus-rest methods to convert SVM, which is basi-

cally a binary classifier, into a multi-category classifier. Actually, we have already

experimented with a multi-category classification approach, namely QDA, but classifi-

cation accuracies for different sleep stages did not reach to satisfactory levels, e.g. were

less than 70%. However, we are confident that with additional simple fiducial-based

single-lead ECG features, we will be able to design classifiers for the explicit classifica-

tion of each sleep stage.

This study in general showed that RR-interval based classification, which requires

only one channel ECG, is feasible for sleep stage and apneaic epoch determination and

can pave the road for a simple automatic sleep analysis/classification system.

Acknowledgements
We would like to thank Drs Osman Erogul at Gulhane Military Hospital and Aykut Erdamar at Baskent University for
their thoughtful suggestions.

Author details
1Faculty of Engineering, Electrical-Electronics Engineering Department, Zirve University, Gaziantep, Turkey. 2Natural and
Applied Sciences Institute, Biomedical Engineering Department, Başkent University, Ankara, Turkey. 3Psychiatry Clinic,
Military Hospital, Diyarbakır, Turkey. 4Psychiatry Clinic, Gülhane Military Medical Academy (GATA), Ankara, Turkey.

Authors’ contributions
BY conceived of the study and drafted the manuscript. MHA provided technical support in implementation of
classification methods and helped drafting the manuscript. EA performed signal processing and feature extraction on
the data. SY and FO conducted sleep scoring and helped interpreting the results. All authors have read and approved
the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 6 March 2010 Accepted: 19 August 2010 Published: 19 August 2010

References
1. Murali NS, Svatikova A, Somers VK: “Cardiovascular physiology and sleep”. Frontiers in Bioscience 2003, 8:636-652.
2. Dement W, Kleitman N: “Cyclic variations in EEG during sleep and their relation to eye movements, body motility

and dreaming”. Electroencephalogr Clin Neurophysiol 1957, 9:673-90.
3. Thorpy JJ, Yager J: The Encyclopedia of Sleep and Sleep-Disorders Facts on File Inc., New York 1991.
4. Šušmáková K: “Human sleep and sleep EEG”. Measurement Science Review 2004, 4(2):59-74.
5. Kushida CA, Littner MR, Morgenthaler TM, et al: “Practice parameters for the indications for polysomnography and

related procedures: An update for 2005”. Sleep 2005, 28:499-519.
6. Rechtschaffen A, Kales A, Eds: A Manual of Standardized Terminology, Techniques and Scoring System for Sleep

Stages of Human Subject. US Government Printing Office, National Institute of Health Publication, Washington DC
1968.

7. Morgenthaler TI, Kagramanov V, Hanak V, Decker PA: “Complex sleep apnea syndrome: is it a unique clinical
syndrome?”. Sleep 2006, 29(9):1203-9.

8. Young T, Peppard PE, Gottlieb DJ: “Epidemiology of obstructive sleep apnea: a population health perspective”. Am J
Respiratory and Critical Care Medicine 2002, 165(9):1217-39.

9. Mendez MO, Bianchi AM, Matteucci M, Cerutti S, Penzel T: “Sleep apnea screening by autoregressive models from a
single ECG Lead”. IEEE Trans Biomed Eng 2009, 56(12):2838-49.

10. Hamann C, et al: “Automated synchrogram analysis applied to heartbeat and reconstructed respiration”. Chaos
2009, 19(1):015106.

11. Penzel T, McNames J, de Chazal P, Raymond B, Murray A, Moody G: “Systematic comparison of different algorithms
for apnoea detection based on electrocardiogram recordings”. Medical & Biological Engineering & Computing 2002,
40:402-407.

12. Karlen W, Mattiussi C, Floreano D: “Sleep and wake classification with ECG and respiratory effort signals”. IEEE Trans
on Biomed Circuits and Systems 2009, 3:71-78.

13. Virkkala J, Hasan J, Värri A, Himanen S, Härmä M: “The use of two-channel electro-oculography in automatic
detection of unintentional sleep onset”. J Neuroscience Methods 2007, 163(1):137-144.

14. Oropesa E, Cycon HL, Jobert M: “Sleep stage classification using wavelet transform and neural network”. ICSI
Technical Report TR-99-008, March 1999.

15. Doroshenkov LG, Konyshev VA, Selishchev SV: “Classification of human sleep stages based on EEG processing using
hidden Markov models”. Biomedical Engineering translated from Meditsinskaya Tekhnika 2007, 41(1):24-28.

16. Illanes-Manriquez A, Zhang Q: “An algorithm for QRS onset and offset detection in single lead electrocardiogram
records”. Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
2007, 541-544.

17. Duda RO, Hart PE, Stork DG: Pattern Classification New York, John Wiley 2001.

Yılmaz et al. BioMedical Engineering OnLine 2010, 9:39
http://www.biomedical-engineering-online.com/content/9/1/39

Page 13 of 14

http://www.ncbi.nlm.nih.gov/pubmed/13480240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/13480240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16171294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16171294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17040008?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17040008?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19709961?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19709961?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19335010?dopt=Abstract


18. Mak G: The Implementation Of Support Vector Machines Using The Sequential Minimal Optimization Algorithm Master’s
Thesis, McGill University, Montreal, Canada 2000.

19. Cristianini N, Shawe-Taylor J: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods
Cambridge, Cambridge University Press, 1 2000.

20. Asyali MH, Colak D, Demirkaya O, Inan MS: “Gene Expression Profile Classification: A Review”. Current Bioinformatics
2006, 1(1):55-73.

21. Witten IH, Ian H: Data mining: Practical machine learning tools and techniques Morgan Kaufmann series in data
management systems 2005, 153-168.

doi:10.1186/1475-925X-9-39
Cite this article as: Yılmaz et al.: Sleep stage and obstructive apneaic epoch classification using single-lead ECG.
BioMedical Engineering OnLine 2010 9:39.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Yılmaz et al. BioMedical Engineering OnLine 2010, 9:39
http://www.biomedical-engineering-online.com/content/9/1/39

Page 14 of 14


	Abstract
	Background
	Methods
	Results
	Conclusion

	Introduction
	Materials and Methods
	Study Population and Signal Acquisition
	ECG Preprocessing and Feature Extraction
	Classification Methods
	k-Nearest-Neighbor
	Quadratic Discriminant Analysis
	Support Vector Machines
	Evaluation of Classification Performance

	Results
	Discussions and Conclusion
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

