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Abstract
Background: Retina degenerative disorders represent the primary cause of blindness in 
UK and in the developed world. In particular, Age Related Macular Degeneration (AMD) 
and Retina Pigmentosa (RP) diseases are of interest to this study. We have therefore created 
new image processing algorithms for enhancing the visual scenes for them.

Methods: In this paper we present three novel image enhancement techniques aimed at 
enhancing the remaining visual information for patients suffering from retina dystrophies. 
Currently, the only effective way to test novel technology for visual enhancement is to 
undergo testing on large numbers of patients. To test our techniques, we have therefore 
built a retinal image processing model and compared the results to data from patient 
testing. In particular we focus on the ability of our image processing techniques to achieve 
improved face detection and enhanced edge perception.

Results: Results from our model are compared to actual data obtained from testing the 
performance of these algorithms on 27 patients with an average visual acuity of 0.63 and 
an average contrast sensitivity of 1.22. Results show that Tinted Reduced Outlined Nature 
(TRON) and Edge Overlaying algorithms are most beneficial for dynamic scenes such as 
motion detection. Image Cartoonization was most beneficial for spatial feature detection 
such as face detection. Patient's stated that they would most like to see Cartoonized images 
for use in daily life.

Conclusions: Results obtained from our retinal model and from patients show that there is 
potential for these image processing techniques to improve visual function amongst the 
visually impaired community. In addition our methodology using face detection and 
efficiency of perceived edges in determining potential benefit derived from different 
image enhancement algorithms could also prove to be useful in quantitatively assessing 
algorithms in future studies.

Background
There are thought to be 38 million people suffering from blindness worldwide [1], and this
number is expected to double over the next 25 years. Additionally, there are 110 million
people who have severely impaired vision. The low vision pathologies of this latter group
can be divided mainly into two categories; those that predominantly suffer from a loss of
visual acuity due to macular degenerations, and those that predominantly suffer from a
reduction in the overall visual field such as Retinitis Pigmentosa. In many countries, there is
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an increasing prevalence of diabetic retinopathy and an ageing population with 1 in 3
over the age of 75 being affected with some form of AMD [2].

Despite advances in treatment such as antivascular endothelial growth factor agents
for exudative age related macular degeneration (wet-AMD) and medical and surgical
management of glaucoma, there are still a significant number of conditions which lead to
severe sight loss. Dry AMD, and untreatable diabetic retinopathy, as well as inherited
retinal degenerations such as Retinitis Pigmentosa (RP) are significant examples of these
[3].

People with visual acuity impairment suffer from a range of problems affecting their
mobility and quality of life [4].

Electronically enhanced visual aids have been proposed which offer a number of dis-
tinct advantages over conventional low vision aids in low vision rehabilitation [5]. Pro-
thero [6] overlaid virtual cues on the real scene, to improved the mobility of patients with
Akinesia. Massof and Rickman [7] developed a low vision imaging system ("ELVIS") at
Johns Hopkins University, which mainly provides magnification and contrast enhance-
ment. Wolffsohn [8] overlaid edges on the original scenes, to enhance the television
viewing. Although the results were good, using the Gaussian filter as a scene pre-
smoothing before extracting the edges blurs the important features as well as the irrele-
vant textures.

The Harvard Vision Rehabilitation Lab group has published numerous papers in the
field of vision rehabilitation. They multiplexed minified edges over the original scene on
a see-through display [9]. However, there is the potential for inattentional blindness,
which is the inability of observers to maintain awareness of events in more than one of
two superimposed scenes. Apfelbaum [10], tested the effect of vision-multiplexing in
reducing the inattentional blindness phenomena, but he found that it does not have any
positive or negative effect on reducing the inattentional blindness. Also, Fullerton et al
[11] and Peli et al [12,13] have tackled the problem of enhancing television images by
overlaying extracted edges on the original images. However, patients reported some
inconvenience due to the appearance of randomly highlighted pixels which was due to
enhancing the noise as well as the major objects. Fernando [14], recently developed a
portable aiding system by applying a digital zooming and edge enhancement to the
scene, especially aimed at patients with RP.

Most of the work described above has been based on two main techniques; image
resizing and edge overlay. However, both approaches rely on edge extraction techniques
which can amplify irrelevant information such as noise or textural detail in addition to
significant features. Everingham [15] tackled the irrelevant information enhancement
problem by classifying the objects in the scene into eight main colored objects. Classifi-
cation allowed separation of those objects from irrelevant details. The limitation is that
the scene can only be separated on the basis of eight pre-defined objects with losing the
ability to see the natural color information of the visual scene.

Image enhancement and segmentation algorithms have been progressively developed
in the field of medical image processing [16-19]. However, scalability and implementabil-
ity of these algorithms on portable and low power consumption devices is our main con-
cern [20].

From the literature it is clear that there is a lack of objective assessment tools to quan-
titatively evaluate novel image enhancement methods, unless testing them on large num-
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bers of patients. In this paper we describe three image enhancement techniques
developed for patients with low vision due to retinal degeneration. To test these tech-
niques, we have built a retinal image processing model of the degenerate retina to assess
the degradation of the visual information. In our model, we aim to understand what
information is transferred to the visual cortex rather than assess detailed low-level syn-
aptic processing. Thus, our model aims to replicate the main centre-surround and color
opponent spatial information processing tasks of the retina. We then reconstruct the
image to assess loss of information and the impact of any visual defects. Using our mode,
we create a virtual scotomata and asses its impact on the original and enhanced scenes.
In order to form quantitative, we have used face detection as a key visual task. Using this
it is possible to assess the effect of different image enhancements for different types and
severity of retinal degeneration.

In this paper: we developed three image enhancement techniques which are Image
Cartoonization, Edge Overlaying and Tinted Reduced Outlined Nature(TRON) algo-
rithms, which we have tested on both patients in trials and using our model. Image Car-
toonization has previously been described in the image processing community [21,22];
here we describe its first use on patients with retinal degenerations. In the case of edge
overlay, we have described an enhancement of this technique to improve segmentation
of key features and removal of unnecessary ones. Finally, we present the TRON algo-
rithm and its use in patients, which we believe will have advantages over edge only
images as it maintains chromatic information.

Methods
A) Image enhancement algorithms
Human vision has its highest resolution with best visual acuity located at the fovea in the
central macula much of the spatial processing of the visual cortex is designated to these
regions. Patients with degeneration of the fovea and macula perceive an extreme blurred
vision or a scotoma. In image processing terminology, there is a loss in the high fre-
quency components of visual information. In addition, low contrast images can be par-
ticularly problematic. In order to improve this, our intention is to enhance the key
features in the scene so as to enhance the effective contrast of the key features. As trans-
ferability to portable processing platforms is important, we have not attempted any form
of saliency. Instead we use processing functions similar to those carried out by the retina
and lower levels of the visual cortex which can be implemented on power efficient porta-
ble processing platforms [20,23].
TRON Algorithm
Low vision patients need a tool that can assist them in detecting moving objects nor-
mally without any delay or blurring effect. The Tinted Reduced Outlined Nature(TRON),
an algorithm which creates an edge-like image but maintains some chromatic content of
the visual scene, aims to increase the contrast between objects by highlighting the edges
of the moving objects and the edges between to distinguish objects while suppressing the
other homogeneous pixels in the scene. It is performed in three steps:

1) Simplification of the scene, using anisotropic filtering.
2) Extraction of the significant spatial derivatives, using a hierarchy method.
3) Boosting the original scene using the simplified spatial derivatives.

Image simplification is an important step before performing spatial derivatives (edge
extraction) so as not to extract high frequency noise and textures [24]. Gaussian filtering
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is a commonly used kernel for this purpose [25]. While it is effective at noise removal, it
removes high frequency information, thus blurring the edges of the significant object
boundaries.

Median filtering can be used to remove speckle noise. It is applied uniformly across an
image, smoothing all pixels which appear to be considerably different to their neigh-
bours. Thus while, it is very effective in the elimination of speckle noise, it is often at the
expense of a slight blurring of the scene [25].

We therefore use a non-linear anisotropic smoothing technique to eliminate noise and
low importance textures, while avoiding smoothing across object boundaries. It is an
iterative process which progressively smoothes the image while maintaining the signifi-
cant edges by reducing the diffusivity at those locations having a larger likelihood to be
edges [26]. The process is defined as follows:

It(x) denotes the image intensity at position x and time t(I0(x) is the image at time t = 0
which is the original);  is the gradient operator, and div is the divergence operator; c(x)
is the diffusion coefficient (c(x) approaches 0 near edges, whereas it approaches 1 in
homogeneous regions). The equivalent equation in the discrete domain is:

Where n denotes the iteration number, Δt is the time step (it controls the accuracy and
the speed of the smoothing) and IH, IV, ID1, ID2 represents the gradient in four direc-
tions.

The diffusion coefficient is then calculated from the following equation.

After simplification, the next step is to obtain the gradient map. We use an algorithm
described previously by Fleck [27] which based on a modified Canny filter [28]. Briefly,
simple masks [-1, 0, 1] are used to compute the first derivative in four directions: H (hor-
izontal), V (vertical), D1, and D2 (diagonal). The X and Y gradients are then computed by
projecting the diagonal differences on both axes.

The amplitude of the gradient is:

∂
∂
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As simple high frequency (small kernel) derivatives of this form can be lossy in their
boundary detection, we use a multi-scale pyramidal approach to obtain lower frequency
(large kernel) derivatives. This is the equivalent of using multiple higher order kernels,
but is more efficient in processing terms [29].

The final stage in the TRON algorithm to rescale the original image according to a
weighting function W based on the gradient map. The gradient map is normalized to a
fractional dynamic range between 0:1. We then define a threshold value K below which
all the pixels will be raised to K. The original image is multiplied by the weighting func-
tion as given by:

Figure 1(c), Shows the outcome of this algorithm compared to the basic edge detection
from a first order derivative shown in Figure 1(b). The advantages of this technique over
edge only images, is that it is more robust against noise and textures, and it maintains
some of the chromatic information of the visual scene. By controlling the threshold K
value we can increase or decrease the color information.
Cartoonization Algorithm
Image Cartoonization is a technique used to create stylized images that facilitate viewer
recognition of the shapes by reducing visual clutters such as shadows and textures details
[21,22]. This method improves the contrast of visually important features, by simplifying
and reducing contrast in low-contrast regions and artificially increasing contrast in
higher contrast regions. Our version of the algorithm has four main steps;

1) Simplification of the image with anisotropic filtering
2) Calculating the spatial derivatives of the image
3) Quantization of the colors of the simplified image to create cartoon like images
4) Combining the quantized image with the negative of the gradient map

The Algorithm starts by smoothing the original image using the above anisotropic dif-
fusion filter as described in equations (1) to (3), above. The anisotropic diffusion is
applied to the color image by converting it to the YCbCr color space [25], after that the Y
(the intensity channel) is diffused. Then the YCbCr image is converted back to the RGB
format. The gradient image calculated as given in equations (6) above, and normalized
between 0 and 1. We then define two threshold values, min, max and we set all pixels of
the normalized gradient image below min to 0 and all the pixels above max are set to 1.

To make paint-like effect on the image we quantize the luminance Y channel of the
color image into bins:

TRON age Input age WIm Im= × (7)

Figure 1 TRON algorithm and the effect of image smoothing. A low contrast image (a) and its first order 
gradient image using 3x3 Sobel kernel (b) compared to the TRON algorithm with the threshold value K set to 
0.1 (c).
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Q(x) is the quantized image, Δq is the bin width, q(x)nearest is the closest bin color to the
current pixel f(x) and φq is a matrix used to control the sharpness transition between one
bin to another. The full description of this method has been described previously by
Winnemoller et al [30] and is presented in more detail in the Appendix.

To increase the visual distinctiveness of high contrast regions in the image we com-
bined the negative of the corresponding extracted spatial derivatives described in equa-
tion (6) above. This negative gradient map overlay gives a notable edge enhancement, as
can be seen in Figure 2. Figure 2(b) shows the cartoonized image without color quantiza-
tion and Figure 2(c) shows the Cartoonization with the color quantization effect.
Edge Overlaying Algorithms
The edge overlay algorithms use the same mathematics as those previously described.
Here, we recolor and overlay gradient map onto either the original image, or a simplified
version of the original image. Thus contrast should be improved compared to the origi-
nal.

Wolffsohn et al. [8] previously tested a similar enhancement algorithm on visual
impaired patients while watching television. The difference here is that Wolffsohn
extracted the contour map with and without Gaussian smoothing. Thus, with smooth-
ing, the image is slightly blurred compared to anisotropic simplification, and without
results in the highlighting of many unwanted gradients as shown in Figure 3(b-d). Addi-
tionally, the Wolffsohn algorithm only used a 3 × 3 kernel, which makes it difficult to
highlight the relevant contours over the irrelevant ones. In this paper we apply a simplifi-
cation preprocessing step, as described in equations (1) to (3) above, to extract only the
significant spatial derivatives. Additionally, we use a pyramidal approach to obtain the
spatial derivatives across a range of spatial frequencies. Figure 3(e-f ) shows the outcomes
of the edge overlaying on the original image without smoothing and with Gaussian
smoothing, respectively. Figure 3(g-h) shows the overlaying on the original and cartoon
images when smoothing the image using the anisotropic diffusion filter.
B) Degenerate retina model
There has been considerable previous work on modeling the human retina dating from
Hubel and Wiesel [31]. The majority of this literature focuses on physiological aspects of
the retinal function [32]. Other objectives include models for retinomorphic imaging
systems which aim to mimic the human eye [33], and models for electronic retinal pros-
theses [34]. The majority of these models have been focused on modeling the normal
retina rather than determining how information is distorted in the case of retinal degen-
eration.

Q x q x
q

f x q xnearest q nearest( ) ( ) tan h( .( ( ) ( ) ))= + −Δ
2

j (8)

Figure 2 Image Chartoonization. A low contrast image (a) the cartoon image without color quantization (b) 
and the cartoon image with color quantization level set to 4(c).
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Our model focuses on the centre surround spatial processing function of the retina.
We reconstruct the chromatic and achromatic spatial information pathways being sent
to the visual cortex. We can then reconstruct these for assessment of the visual informa-
tion content.

The human retina is composed of several layers, organized in a highly structured net-
work that extracts and pre-processes visual information from the image projected upon
it [35,36]. Visual perception starts with image capture by the rod (achromatic, scotopic
photoreceptors) and cones (chromatic - photopic photoreceptors). Our model ignores
the difference between scotopic and photopic ranges as most imaging systems can only
record with 8-bits of dynamic range and generally perform poorly at low light. We there-
fore separate the image matrix into achromatic (rod), blue (s-cone), green (m-cone), and
red (L-cone) and yellow (for convenient opponent processing).

The centre surround spatial processing function in the retina results from the arrange-
ment of the bipolar cells in particular and their connectivity to the retinal ganglion cells.
The Horizontal cells perform smoothing and automatic gain control, the former can be
performed through simple Gaussian filtering and the latter through histogram equaliza-
tion. The amacrine cells are active in the achromatic and temporal processing, though
we do not implement the latter as for this work we are investigating still images. The ret-
ina has two main visual pathways which transmit visual information to the visual cortex:

• The parvocellular pathway (P), which is responsible for transmission of chromatic 
spatial features, and is the dominant pathway from the central vision.
• The magnocellular pathway (M), which is responsible for achromatic and low-light 
spatio-temporal feature detection and is dominant in the peripheral vision.

In this work we are interested in the effect of spatial feature enhancement. Thus we
model the P pathway and the non-temporal processing aspects of the M pathway. Our

Figure 3 Edge overlaying algorithm. A low contrast image (a), (b) shows the extracted edges without apply-
ing any presmoothing filter edges and when smoothing using simple Gaussian (20 × 20 kernel size) and aniso-
tropic diffusion filters in (c) and (d), respectively. (e-g) are the edge overlaid images when superimposed by 
edges extracted from the original image, simplified image by Gaussian and anisotropic diffusion filters, respec-
tively. (h) is the overlaid on the cartoon image.
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model is constructed from a linear combination of a set of spatial filters applied to the
chromatic and achromatic color channels of the image matrix. Figure 4, shows the struc-
ture of our model. Our model represents the main processing layers of the retina, but we
do not account for spike coding effects.
A. Simulating foveal vision
To reduce the amount of information passing through the optical nerve to the visual cor-
tex region, the visual system of primates has a space-variant nature where the resolution
is high in the fovea and gradually decreases towards the periphery of the visual field.
Effective vision is possible due to rapid scanning (saccades) of the eye across the vision
scene. By this method it is possible to achieve very high resolution via the fovea, while
maintaining a rapid wide field of vision. To simulate this sampling behaviour we use a
multi-scale resolution sampling methods [37,38], by dividing the image into two regions;
fovea and periphery. The model has a 1:1 ratio of pixels in the fovea. The peripheral
region is divided into concentric rings of equal width, which equivalent to one pixel.
Each ring is blurred by a Gaussian function with kernel size growing exponentially with
radial distance from the fovea. These variations with eccentricity represent the increas-
ing size of retinal receptive fields with distance from the fovea.

We assume that the number of pixels in the input image approximates the number of
cones sampling the retinal image. The number of pixels representing the fovea region in
the input image is calculated based on the biological size of the fovea with respect to the

Figure 4 Retinal model structure. Structure of the normal retina model (simulating the foveal vision and the 
functions of the OPL) firstly by simulating the foveated vision using a multi-scale resolution sampling approach. 
Pixels in the fovea region are set to 1:1 from the input image while peripheral pixels are blurred by a Gaussian 
function with exponentially growing kernel size with radial distance from the fovea. The macular degeneration 
block is used here to simulate the degenerated photoreceptors. Then color is separated into four channels; Lu-
minance, Red, Green, Blue and Yellow to be used in simulating the color opponent channels. The processed 
image is then reconstructed in the reconstruction module (three channels are reconstructed here; the Lumi-
nance, R/G and B/Y channels). Images are shown beside each stage for illustration.
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retina. These dimensions are 1 mm and 42 mm respectively [35]. Thus, for an image size
of 800 × 800, the number of pixels representing the fovea will approximately be 20 × 20.
The foveal output image will be:

Where r is the radial distance of the pixel (x, y) from the centre of the input image, and
Gσ(x, y) is a two dimensional Gaussian averaging filter with a standard deviation σ equal
to log(r). Figure 4, shows the output of applying the eccentricity simulation on an input
image.
B. Color separation
The next stage in the model after simulating the foveal-peripheral vision is to account for
the color separation in the retina. Input images are 2D matrices, with RGB components.
In contrast, the chromatic information in the human retina is encoded into two color
opponent channels; green-red and blue-yellow, and one achromatic channel. We there-
fore convert to a LGRBY color space [25].

The L channel represents absolute luminance and extends from 0 (black) to 100
(white). The other two channels GR and BY represent the greenness-redness and the blue-
ness-yellowness color opponents respectively. Negative values of GR indicate green while
positive values indicate magenta; similarly, BY negative values indicate blue and positive
values indicate yellow. Pixels for which GR = BY = 0 are achromatic and thus the L chan-
nel represents the achromatic scale of grays from black to white.
C. Horizontal layer
The horizontal cells serve as a negative feedback gain control on cone cells, adapting the
reduction of glutamate release to increasing illumination. As the 8-bit dynamic range of
most jpeg images is small, we consider the variation in illumination small, and thus we
did not consider gain control in this model, although histogram equalization can be used
to ensure optimal use of the 8-bit intensity range.

There are three types of the horizontal cells; HI (achromatic), HII and HIII (chromatic)
cells. These cells have direct electrical synapses with each other and provide inhibitory
feedback to the photoreceptors, with receptive field increasing towards the periphery.
They are absent in the fovea. The horizontal cell function can be modeled with a diffu-
sion process which results in a Gaussian-weighted spatial averaging of the cone inputs
over the cell's RF.

The output of the horizontal cell can be obtained by convolving the cone output with
an average Gaussian filter.

Where L, R, G, B and Y represent the five separated channels: Luminance, Red, Green,
Blue and Yellow.

I x y r G x y I x y rfoveal( , , ) ( , ) ( , , )= ∗s (9)

G x y e x y
s

s

ps
( , ) ( )/= − +1

2 2
2 2 22 (10)

Horz x y G x y Cone x yL R G B Y L R G B Y, , , , , , , ,( , ) ( , ) ( , )= ∗ (11)
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D. Bipolar layer
Bipolar cells receive their inputs predominantly from the cones with some inhibitory
feedback from the horizontal cells. ON bipolar cells depolarize with decreasing gluta-
mate (increasing photo response) from the connecting photoreceptors, whereas OFF
bipolar cells hyperpolarize. The synapses of surrounding ON and OFF bipolar cells to
the retinal ganglion cells generate the centre-surround processing phenomena. In mam-
mals, the ratio of the centre diameter field to the surround diameter one is range
between 1:10 [39].

The centre-surround characteristics of the bipolar cells can be modeled in mathemati-
cal form as a difference of two Gaussian low pass filters (DoG). The surround filter, is
more low-pass than the centre one. The DoG output to the retinal ganglion cells can be
mathematically described as follows:

σs and σc are the surround and centre standard deviation of the Gaussian filter. The
ratio between the surround sigma to the centre one is considered to be 1:2, which give a
reasonable agreement with the physiologically measured value [40]. Using this ratio
value results in a receptive field diameter of the surround larger than the centre diameter
by 5 to 6 times.

In the retina, centre surround processing is carried out for Red-centre/Green-sur-
round, Green-centre/Red-surround, Blue-centre/Yellow-surround (parvocellular path-
way) and achromatic ON-OFF centre-surround (magnocellular pathway). In this model
we calculated five centre-surround signals as following:

The size of the surround Gaussian kernel is set to 5 times larger than the size of centre
kernel in each ON/OFF channel. Although there is no Yellow-centre/Blue-surround pro-
cessing in the retina, we have included it here for purposes of processing symmetry.
E. Image reconstruction
Reconstruction can be achieved by reversing the processing operations carried out in the
three retina layers. The output of DoG process of the bipolar cells can be considered as a
spatial derivative of the achromatic, R/G and B/Y channels. Given this derivative (gradi-
ent) G for each channel, our task is to reconstruct an image I whose gradient I is very
similar to G. To achieve this, we can solve the equation I = G. However, since the gradi-
ent image is a modified one from the actual gradients of the L, GR and BY channels of the
LGR BY image, the resulting gradient field G = [Gx, Gy] may not be integrable [41]. To
overcome this situation, we have to find a suitable function I, whose gradient should be
very close to G using the least square error approach by searching the space of all 2D
potential functions, that is, to minimize the following integral in 2D space:
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Where

According to the Variational Principle, a function F that minimizes the integral must
satisfy the Euler-Lagrange equation:

Then we can drive a 2D Poisson equation:

Where 2 is the Laplacian operator and ·G is the divergence of the gradient G. There
are different methods to solve the Poisson equation; such as finite difference methods,
finite element methods and spectral methods. The fastest method is to solve it by using
the fast Poisson solver method, which uses the fast Fourier transform to invert the Lapla-
cian operator [42]. Figure 4, shows the result of a reconstructed image by solving the
Poisson equations for the three opponent channels; Luminance, RG and BY channels.
F. Macular degeneration simulation
The model described above simulates a normal retina. Degeneration can be imple-
mented by turning off photoreceptors after the foveal simulation (eccentricity simula-
tion) but before the color separation. We can thus create scotomata similar to that found
in AMD patients.

The degeneration process starts by generating a binary mask that simulates these
lesions on the scotoma region. The function that generates this mask takes three param-
eters; the location of the fovea with respect to the whole image (this refers to the area in
the image where the person is fixating on it), the size of the degenerated area relative to
the macula size, and the degree of degeneration.

Where M is the mask output, Xfovea, Yfovea is the x and y position of the fovea, S is the
size of the defected region and D is the degree of degeneration. The output pixel of this
mask is 0 or 1; 0 (black) pixels represent regions of photoreceptor loss [where M(x, y) =
0] and 1 (white) pixels correspond to responsive regions of the normal photoreceptor
[where M(x, y) = 1]. To simulate the blurring effect, the output is not simply set to zero.
Rather, it has been ablated to simulate the diffusion of the photoreceptor loss by filling in
the black spots with a Gaussian average of the pixels of the adjacent spots of healthy pho-
toreceptors (pixels). Figure 5, shows the output of the mask for a fovea fixated to the top
right part of an image with size of degeneration equivalent to the same size of the macula
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region which biologically equal to 6 mm (equivalent to 144 × 144 pixels for a 1008 × 800
image) [35].

The simulated degenerate retina is then the output of overlaying the foveal image with
the degenerated mask.

Figure 4, shows the degenerate retina model after adding the macular degeneration
part and the output image of each block is shown beside each stage.
C) Patient clinical trial protocol
27 patients were tested at the Oxford Eye hospital, John Radcliffe Hospital UK with
approval from the Oxfordshire ethics committee. Of the patients; 9 were diagnosed with
Retinitis Pigmentosa (RP), including 1 individual with Pseudoxanthoma Elasticum and 1
individual with Leber's Hereditary Optic Neuropathy. The remaining had macular
pathologies, predominantly Stargardt's disease. The average visual acuity (VA) in the
better eye in this cohort was 0.63 ± 0.07 (Range: -0.26: 1.14) and the average contrast
sensitivity (CS) in the better eye was 1.22 ± 0.08 (Range: 0.15:1.65). The heterogeneity of
the patient conditions was to allow us to broadly determine the effect of different severi-
ties and types of retinal degeneration on our enhancement methods.

Patients were presented with 25 sets of images and 4 sets of videos sequences. Images
enhanced with our algorithms were randomly interspersed to even out the effect of
memory. For each image, patients were asked to identify key scene features and were
asked to rank different version of each image for both ease of major feature identifica-
tion, and willingness to perceive images in this way in everyday life. In the case of the
video sequences, these were placed next to each other and the patients asked to give
viewing preference. The images and videos were projected to the patients using the
Panasonic PT-AX200E projector with resolution of 1280 × 720 and maximum projection
brightness (At a distance of 2 m from the projection wall) of 2000 Lumens, in a darkened
room. The distance between the patient and the wall was kept to 1.5 m and the dimen-
sion of the projected screen was 110 cm width and 79 cm height so that the field of view
was maintained at 40°.

I I Menerated fovealdeg = × (19)

Figure 5 Simulating scotoma (photoreceptor loss). The macular degeneration mask simulated in the 
mode: a) is the original image; b) is the foveated image with fovea focusing to the upper right part of the image; 
c) is the mask output that simulates retinal deterioration in the macula. Black pixels represent regions of pho-
toreceptor loss; white pixels correspond to responsive regions of the normal photoreceptor mosaic. In this ex-
ample, the black pixels cover a total of 100% of the macula region; d) is the degenerated image.
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Results and Discussion
The results in this paper are divided into two sections; results obtained from testing the
four image enhancement algorithms in our model, and results obtained from testing
these algorithms on patients with retinal degeneration.
Simulation results
The inputs into the model consist of original (unprocessed), and modified scenes and
video sequences. The model was varied for various degrees of severity of retinal degener-
ation.
1) Model simulation testing on still images
15 low contrast images were selected and enhanced with the four image enhancement
algorithms. Then degenerated versions of these images were developed from the simula-
tor. Model parameters included the size of the macular degeneration, strength of degen-
eration and fovea location. These were fixed for each image group to make an equal
comparison of each algorithm. The outputs of the original and enhanced versions of
each image were tested for perception efficacy by calculating the percentage of extracted
edges on each image relative to the overall pixels on the image according to these three
steps:

1) The gradient image was calculated as given in equations (6) above for each image.
2) Scaling the gradient image intensity between 0 and 255.
3) Summing up the intensities over the whole gradient image and dividing the result 
on the total number of pixels, according to this equation:

Where G is the gradient image with dimension of M × N
Figure 6, shows the output of two images and enhanced versions thereof which have

been passed through the degenerate retina model. The percentages of extracted edges
are described under each image to show the efficacy of each algorithm. The percentage
of extracted edges is higher in the images which have undergone prior visual enhance-
ment processing. We do not present the output from the edge on cartoon algorithm in
Figure 6 as it looks very similar to the edge on original processing function in this case.
The average percentage of extracted edges over the 15 images for the unprocessed and
processed images is shown in Figure 7.

From figure 7, it is highly significant that the TRON algorithm shows the highest per-
formance in detecting and perceiving edges (P < 0.0176) followed by the Cartoonization
(P < 0.0322) and edge overlaying (P < 0.0578).

In order to relate our simulator with the patient results, we tested our algorithms on
the Pelli Robson's contrast sensitivity method [43] using our model for validation. Based
on this method, we developed 16 (800 × 800) images with a white background and a gray
box (of 44% the diameter of macula) with contrast ranging from 0 to 2.26. Each image is
repeated 14 times to simulate the effect of eccentricity from the center of the macula.
The eccentricity step was 30 pixels (equivalent to 0.26 of the macula's diameter). Degen-
erated versions of these images were developed from the simulator with a virtual sco-
toma of the same macula's size added to the center. Figure 8 shows a sample of image
with contrast of 1.8 and eccentricity of 12.74 mm from the centre of the macula. Pro-
cessed versions of these images have been generated using our three algorithms. The
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percentages of extracted edges have been calculated for the degenerated images before
and after enhancement. Figure 9(a-c), shows the percentages of extracted edges for the
unprocessed and processed image at contrasts of 2.26, 1.66 and 0.75 respectively. We can
see that there is not much difference between the processed and unprocessed image of
high contrast. The efficacy of the processed image over the unprocessed ones increases
while decreasing the object's contrast as shown in Figure 9(b-c). This observation is
clearly shown in Figure 10, which shows the percentage of extracted edges at eccentricity
of 5.46 mm with respect to the patient CS (which opposite to the object's contrast here).
To illustrate more what Figure 10 shows, the percentage of extracted edges at CS of 0.75
will be increased from 4.5 to 16.5. There is not much difference between the unpro-
cessed and processed image neither at very low nor very high object contrasts. This is
because the image processing algorithms we have used have difficulty in detecting very
low contrast features. For high contrast objects, the enhancement algorithms will not

Figure 6 The outcomes of the retinal model for each algorithm. Testing the efficiency of image enhance-
ment algorithms using the outputs from the retina model by calculating the percentage of extracted edges in 
the unprocessed and processed images. a) The macula here is looking to the lower right corner; b) The macula 
here is looking to the upper right corner. Percentage of edge detection (relative to the entire image) is shown 
under each image.
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add more detail to the object recognition process. However, the effort needed to recog-
nize the processed image over the unprocessed is still decreased.

In order to determine more real-world effects of our algorithms, we examined the
effect of our image enhancements on faced detection. This is an important function for
daily interaction and is one of the key deficits affecting low vision patients. In computer
vision field, face recognition algorithms initially perform the detection of a face, followed
by identification of its distinguishing characteristics to perform identification [44]. Sepa-
rate detection and recognition stages in the process of face perception in the human
visual system has also been described in the neuropsychology literature [45]. For our
purposes, as recognition involves much higher levels of cortical function, we use face
detection as a primary test of the image enhancement algorithms.

Detecting faces requires the extraction of features that are common to all faces. In this
paper we use two separate methods to test the efficiency of our algorithms in detecting
faces; the first method is the Viola-Jones method [46], This is a featurebased algorithm,
which attempts to detect the presence of certain facial features. It uses a cascade of
increasingly complex filters, or feature detectors to improve performance to give a
robust but quick detection. The first filter in the cascade consists of only two simple fea-
tures, each composed of a few rectangular light and dark regions. Subsequent stages of
filtering are performed only on regions scoring positive at any preceding stage. The
Viola-Jones algorithm uses filter templates similar to the centre-surround phenomena in
the human visual perception and is therefore additionally beneficial to this work. The
second method is the Kienzle [47] appearance-based algorithm, which uses machine
learning techniques to find relevant characteristics of face and non-face images. Then it
builds discriminant function (i.e., decision surface, separating hyperplane, threshold
function) to discriminate between these relevant characteristics of the faces and non-
faces classes. Kienzle used the Support Vector Machines SVM classifier as the discrimi-

Figure 7 The efficiency of image enhancement algorithms. The efficiency of image enhancement algo-
rithms using the outputs from the retina model by calculating the average percentage of extracted edges in 
the unprocessed and processed images over 6 different images.
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nation or the decision surface between the faces and non-faces classes [48]. SVM is a
method to train polynomial function, neural networks, or radial basis function (RBF)
classifiers. A full description of this method can be found in Kienzle paper.

We selected 14 images with different sizes of faces to give a sum total of 166 faces.
Firstly, the original and processed images were degenerated by using our retina simula-
tion model and then the output from the model fed to the Viola-Jones and Kienzle face
detection algorithms. Each image underwent different levels of degeneration, starting
from no degeneration to 4 times the biological macula size in increasing steps of 0.4, so
in total we had 11 levels of degeneration for each image. Figure 11, shows the detected
face rounded by squares in the original and cartoonized image with three levels of degen-
eration; no degeneration, medium degeneration and severe degeneration. Results show
higher contrast around the faces of the cartoonized images.

Figure 12, shows the performance of each algorithm in enhancing the process of
detecting faces compared to the original image using both the Viola-Jones and Kienzle
algorithms, respectively. We can see that Cartoonization has the highest efficiency in
detecting faces which was expected as Cartoonization enhances the contrast between
boundaries while keeping the color information in the scene intact. Edge overlaying on
cartoon images is less effective compared to Cartoonization in detecting faces when

Figure 8 Sample of the simulated image using the Pelli Robson's contrast sensitivity test. The size of sc-
otoma here is equivalent to the same size of macula. The contrast of object is 1.8 with eccentricity of 12.74 mm 
from the macula's centre. The arrows show the direction of eccentricity (E) from the macula's centre and the 
diameter (D) of the scotoma (which equals to the macula's diameter here).
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using the Viola-Jones algorithm and there is not much difference between it and the Car-
toonization alone when using the Kienzle method. The original images were ranked as
third and edge overlay on original was ranked last. We find that the TRON algorithm is
not efficient in detecting faces. This is because the Viola-Jones used rectangular features

Figure 9 Efficacy of enhancement algorithms on the simulated pelli Robson's images at different ob-
ject contrasts. (a-c) The efficacy of each algorithm compared to the original image on an image with object 
of 2.26, 1.66 and 0.75 contrasts, respectively, based on the Pelli Robson's method with respect to the eccentric-
ity from the macula.
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(templates) that compare relative intensities of adjacent regions, and the Kienzle method
works on the intensity level of the image pixels. In contrast, the TRON algorithm focuses
mainly on enhancing the edges over the salient information in the scene. This suppresses
most of the intensity information in the image and keeps only the boundaries between
contrast regions.
2) Testing dynamic scenes
Our purpose in this work is to develop algorithms to improve spatial feature recognition.
In dynamic scenes, we hypothesize that enhancing the boundaries of moving objects will
make their perception easier. We therefore tested our enhancement algorithms on 10
different video files, and determined efficacy on the basis of any improvement in motion
detection of significant features. Snapshots for four of them are shown in Figure 13.

All of the ten files have been tested on our retinal model, and the first four of them
have been tested on the patients. All the video files have frame rates of 25 fps and dura-
tion of 17 to 39 seconds. The files had been processed with our four image enhancement

Figure 10 The efficacy of enhancement algorithms on the simulated pelli Robson's images at eccen-
tricity of 5.46 mm from the macula's centre. The efficacy of each algorithm compared to the original image 
on an image with object at 5.46 mm from the macula's centre when changing the object contrast values.

Figure 11 Testing the ability of detecting faces in original and cartoonized image with different level 
of macular degeneration. a) the original image to the left and the cartoonized version from it before the ret-
ina modelling, b) detection of faces on both the original image (left) and the cartoon image (right) without 
macular degeneration; only the foveal effect is shown here, c) with medium degeneration, and c) with severe 
degeneration.
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algorithms, and the degenerated versions of them (the unprocessed and processed files)
were generated from our retina simulation model. The degeneration diameter was fixed
in all the files to 2.5 times the size of the macula, to make a comparison. Motion detec-
tion between successive frames was detected for each file in 4 different levels to simulate
different frame rates, e.g. motion was detected between 2, 3, 4 and 5 successive frames
along the whole video length. To detect motion, we just do frame subtraction according
to this equation:

Then, the average motion detection from these different frame rates was used as the
percentage of extracted edges as mentioned above in the method of measuring the per-
centage of perceived edges, and according to this equation:

Motion ection K Frame i j Frame i j KK Kdet ( ) ( , ) ( , ); := − =−1 2 5 (21)

Figure 12 The performance of face detection when image enhancement algorithms are used. The num-
ber of detected faces over all the 14 images with different levels of macular degeneration for the original and 
the four image enhancement algorithms using the Viola-Jones face detection method (a) and Kienzle method 
(b).
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Figure 13 Snapshots of the four videos used in the trial. Snapshots of the four videos used in the trial. a) is 
an indoor video for a person doing different activity, b) an aquarium scene, c) and d) are two outdoor scenes 
for cars moving and people crossing the road.

Figure 14 The efficiency of image enhancement algorithms in perceiving motion over 4 different mov-
ie files.
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These percentage values of extracted edges were used to compare the efficiency of
each algorithm for each movie file. Figure 14, shows the average percentage of extracted
edges over the 10 files. We can see that the TRON algorithm shows the highest percep-
tion for edges (highest perception of detecting motion) (P < 0.0385).
Patients' results
1) Results from the still images
Patient data were divided into two groups: Group 1 comprised 11 patients who preferred
to see more than 70% of the images in the processed version, and who had an average
maximum contrast sensitivity of 1.02 ± 0.12, with an average VA of 0.8 ± 0.06 in their
better eye. Group 2 comprised 16 patients who preferred unprocessed images had an
average maximum contrast sensitivity of 1.35 ± 0.09, with an average VA of 0.52 ± 0.11 in
their better eye. Figure 15, shows the distribution of all the patients preference for the
processed images over the unprocessed images based on their CS and on their VA,
respectively. From this figure we found that patients with CS 0.45 - 1.2 and VA greater
than 0.9 showed a reasonable benefit from using our image enhancement algorithms.

Figure 16(a), is similar to what we have got from Figure 15. However, in this we show
the distribution of preference for each algorithm over the whole patients CS range. Simi-
lar to the conclusion we have got from our model, which shown in figure 10, medium
contrast scenes got a reasonable benefit from using the image enhancement algorithms.
The distribution of cases according to the CS values is shown on the top of figure 16(a).

Figure 16(b), shows the patients' preference to the enhanced images relative to the
original version, for the two groups of patients. Group 1 who preferred 70% of the images
in the processed format and Group 2 who preferred the processed images less than 70%.
For Group 1, we found that image Cartoonization was the most preferable for those
patients, especially for images with low contrast, luminance and feature size. This was
expected, as Cartoonization increases the contrast between the foreground objects and
background. Furthermore, the added negative edges in the Cartoonization process
added more contrast enhancement to the relevant features. Alternatively, edge overlay
was preferred for scenes with high luminance and large-major features. One possible
explanation is that high luminance can cause glaring and in that case, the differentiation
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Figure 15 The distribution of patient's preference to the processed images. Based on their (a) contrast 
sensitivity CS, and (b) their visual acuity VA.
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between scenes objects will be difficult. Hence, by making a separation between fore-
ground objects and background with different color can be more convenient for these
patients. These results conclude that, Cartoonization and edge overlaying are the best
for feature detection and recognition. TRON was least chosen, because it suppresses
most of the natural and color information on the scene.
2) Results from video
Figure 17(a), shows the results of patient preference in the motion detection tests for the
two groups of patients. Patients from both groups preferred the processed videos over
the unprocessed in enhancing the recognition and motion of objects. Figure 17(b), shows
that the patients with CS between 0.4:1.2 and VA greater than 0.9 show a strong prefer-
ence for the TRON algorithm. We can therefore conclude that TRON algorithm is the
most useful in detecting objects which are moving (P < 0.0336). These results coincide
with those from our model. This is because that TRON suppresses low frequency infor-
mation and emphasizes high frequency information, so that it keeps very high contrast
difference between moving objects and background.

From these observations we can conclude that presently there is no single algorithm
which can be used for all the patients in all the circumstances. However, if implemented

Figure 16 The patient's preference to each algorithm over the unprocessed images (Static scene). 
(a)the patient's preference to the processed and unprocessed images according to their CS. the distribution of 
patients according to their CS is shown above the figure. (b)the preference of image enhancement over the 
original for both groups who preferred the 70% of images in the processed format and the others who pre-
ferred the enhanced images less than 70%.

Figure 17 The preference to video processed over the unprocessed. (a)the preference of video enhance-
ment over the original for both groups of patients.
(b)The preference for patients of the first group with CS (0.45-1.2) and VA (> 0.9).



Al-Atabany et al. BioMedical Engineering OnLine 2010, 9:27
http://www.biomedical-engineering-online.com/content/9/1/27

Page 23 of 25
on a wearable augmented vision headset, patients could select the appropriate algorithm
given the personal preference and visual situation. For example, TRON may be most
appropriate for navigation. Alternatively Cartoonization and edge overlay may be most
appropriate for watching television or more static scenes.

Conclusions
In this article we have described three different image enhancement algorithms devel-
oped for patients suffering from retinal degenerative diseases. Additionally, we have pre-
sented an image processing model for retinal degeneration which we have used to
evaluate the efficiency of these algorithms. The image processing model allows us to
reconstruct the information stream towards the visual cortex and assess our algorithms
using objective tests such as face detection. Results from this model show that TRON
and edge overlaying algorithms are very useful in detecting spatial features in dynamic
scenes and perceiving the edges of simple objects in static scenes. Image Cartoonization
improves face detection. The same enhancement algorithms have also been tested on
group of patients with primarily macular degenerations. When we analyzed the results
from these patients we found that patients with CS range from 0.45 to 1.2 and VA greater
than 0.9 derived the highest benefit from using these algorithms. This is highly consis-
tent with the data from our model. Furthermore, the patient preference for the Car-
toonization algorithm in static scenes and the TRON algorithm for dynamic scenes is
also consistent with the findings from our model. In addition, to the identification of
potential benefit of these two algorithms to the visually impaired, our testing methodol-
ogy itself would be expected to be very useful in this field, as the ability to objectively
determine efficacy of enhancement algorithms for those with low CS and VA will be
beneficial for future studies. In the long run, we believe image enhancement algorithms
such as that we present could perform the basis of the front end processing interface for
retinal prosthesis [49] or new forms of visual assistive devices.

Appendix: Short description of the Cartoonization algorithm
The Luminance channel is quantized into bins according to these equations:

N is the number of bins which fixed in this paper to 8 bins. The numerator in equation
(23) is set to 100 because the maximum value of the luminance channel is 100. f(x) is the
pixel value of the luminance channel. INT means that the luminance channel will be
rounded to the nearest integer value.

In equation (8), if φq is fixed, then the transition sharpness is independent of the under-
lying image, creating many noticeable transitions in large smooth-shaded regions. To
minimize these transitions, φq is defined to be a function of gradient image. We allow
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hard bin boundaries only where the gradient is high. In low gradient regions, bin bound-
aries are spread out over a larger area.

According to Winnemoller et al [30], the sharpness range is set between [Λφ Ωφ] and
the gradient range to [τmin τmax]. The calculated gradient is clamped to [τmin τmax] and
then φq is generated by linearly mapping the clamped gradient map to [Λφ Ωφ].

We found that setting τmin = 0.1 and τmax = 0.4 of the normalized gradient image and
the sharpness range to Λφ = 3 and Ωφ = 25 give better edge enhancement.
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