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Abstract

Background: The inverse problem of fluorescent molecular tomography (FMT) often
involves complex large-scale matrix operations, which may lead to unacceptable
computational errors and complexity. In this research, a tree structured Schur
complement decomposition strategy is proposed to accelerate the reconstruction
process and reduce the computational complexity. Additionally, an adaptive
regularization scheme is developed to improve the ill-posedness of the inverse
problem.

Methods: The global system is decomposed level by level with the Schur
complement system along two paths in the tree structure. The resultant subsystems
are solved in combination with the biconjugate gradient method. The mesh for the
inverse problem is generated incorporating the prior information. During the
reconstruction, the regularization parameters are adaptive not only to the spatial
variations but also to the variations of the objective function to tackle the ill-posed
nature of the inverse problem.

Results: Simulation results demonstrate that the strategy of the tree structured Schur
complement decomposition obviously outperforms the previous methods, such as
the conventional Conjugate-Gradient (CG) and the Schur CG methods, in both
reconstruction accuracy and speed. As compared with the Tikhonov regularization
method, the adaptive regularization scheme can significantly improve ill-posedness
of the inverse problem.

Conclusions: The methods proposed in this paper can significantly improve the
reconstructed image quality of FMT and accelerate the reconstruction process.

Background
Near-infrared (NIR) light can travel several centimeters through biological tissue, and

hence has the potential to qualify the molecular information by fluorochromes in tissue

[1]. Recently, there has been increasing interest in the molecularly-based medical ima-

ging method, such as fluorescent molecular tomography (FMT) [2-4], in which the

injected fluorophore may accumulate in diseased tissue. During the imaging process,

the tissue surface is illuminated with excitation light. Then, the fluorophores are

excited to emit the light, which is detected as fluorescence [5]. The process of fluores-

cent light generation and transportation through tissues can be described by a forward

model, so that the surface measurements can be predicted on the basis of a guess of
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the system parameters and the given source positions. To reconstruct an image, it is

necessary to calculate the internal optical and fluorescent properties with the given

measured data and sources [6].

One of the major challenges in the reconstruction of FMT is its high computational

complexity resulted from extremely large-scale matrix manipulations. Generally, the

iterative solution approaches, such as CG method [7] and Gauss-Newton (GN)

method [8], are more efficient than the direct solution approaches. Additionally, the

iterative methods based on the reduced system can be more efficient than those based

on the global system. One of such systems is the Schur complement system, which

was firstly used by Haynsworth [9]. The condition number of the Schur complement

of a matrix is never greater than that of the given matrix, and hence the convergence

properties of iterative solving of linear systems can be significantly improved [7,10]. In

this paper, we propose to adapt this idea for the FMT reconstruction. The most

important innovation of our method lies in its tree structured level-by-level decompo-

sition strategy, where decompositions in each level are performed in two ways. This

strategy is quite different from that in [10] where only one component of the global

solution is derived in the Schur complement system. The advantages of our method

are obvious because a further improvement in the reconstruction accuracy and speed

can be achieved with level-by-level Schur complement decomposition. Another contri-

bution of this paper is that we propose a modified spatially variant regularization

method incorporating the objective function to tackle the ill-posed nature of the

inverse problem.

Methods
Forward Model and Finite Element Formulation

FMT acquisitions are obtained through a two-step image formation model [11]. In the

first step, sources at several locations are used to illuminate the tissue. This step, in

frequency domain, is driven by the diffusion equation [12]

−∇ ⋅ ∇( ) + =D k Sx x x x xΦ Φ Ωon (1)

where the subscript x denotes the excitation wavelength; ∇ is the gradient operator;

Sx(W/cm3) is the excitation light source; Fx(W/cm2), Dx(cm), and kx (cm-1) represent

the photon fluence, the diffusion coefficient, and the decay coefficient, respectively; Ω

denotes the bounded domain of reconstruction.

In the second step, the fluorophores are excited to emit the fluorescence. The second

step can be modelled by a second diffusion equation

−∇ ⋅ ∇( ) + = =
−

D k S
q axf

im m m m m xΦ Φ Φ Ω


1
on (2)

where the subscript m indicates the emission wavelength, ω(rad/s) denotes the mod-

ulation frequency of the source. Sm is the emission light source. The diffusion coeffi-

cient Dx,m(cm), and the decay coefficient kx,m (cm-1) are defined, respectively, as[6]

Dx m ax mi ax mf sx m, , , ,= + + ′( )⎡
⎣

⎤
⎦

−
3

1
   (3)
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k
i
cx m ax mi ax mf, , .= + +   (4)

where μax,mi (cm
-1) denotes the absorption coefficient due to endogenous chromo-

phores; μax,mf (cm
-1) represents the absorption coefficient due to exogenous

fluorophores; ′ ( )− sx m, cm 1 is the reduced scattering coefficient; q is the quantum

efficiency of the fluorophore; τ(s) is the lifetime of fluorescence; and finally, c(cm/s)

is the speed of light in the medium.

Here, the Robin-type boundary conditions are implemented on the boundary ∂Ω of

domain Ω to solve the above diffusion equations

n ⋅ ∇( ) + = ∂D bx x x xΦ Φ Ω0 on (5)

n ⋅ ∇( ) + = ∂D bm m m mΦ Φ Ω0 on (6)

where n is a vector normal to the boundary ∂Ω, bx,m is the Robin boundary

coefficient.

To solve the forward problem within the finite element method (FEM) framework, the

domain Ω is divided into P elements and joined at N vertex nodes. The solution Fx,m is

approximated by the piecewise linear function Φ x m xi mi ii

N
, ,= ∑   , with �i (i = 1...N)

being basis functions [13]. Hence, equations (1) and (2) can be rewritten as

A Sx x x = (7)

A Sm m m = (8)

where

S x m

x m

x m N

S

S

h

h

,

,

,

=

( )

( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

′

′





1 Ω

Ω

 (9)

A x m

x m N x m

N x m N N

a a

a a

h h

h h
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, ,

=

( ) ( )

( ) ( )

Ω Ω
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   

   

1 1 1

1



 


xx m,

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(10)

The elements of finite element matrix Ax,m can be obtained from the formula

a D d k d b ds
h

hhh

i j x m x m i j x m i j x m i jΩ

ΓΩΩ

Ω Ω       ,
, , , ,( ) = ∇ ⋅ ∇ + + ∫∫∫∫∫∫ (11)

with Ωh and Γh being the bounded domain and its boundary, respectively.

Inverse Process of FMT

The inverse process of FMT is to estimate the spatial distribution of the optical or

fluorescent properties of the tissues from measurements [14]. In the discrete case, the
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reconstruction problem can be defined as the optimization of the objective function

E G= − ( )1
2

2
y x (12)

where G is the forward operator, || || is L2-norm, x and y are the calculated optical

or fluorescent properties of the tissues and the detector readings, respectively.

Suppose that the objective function E attains its extremum at x + Δx, expanding the

gradient of the objective function E’ about x in a Taylor series and keeping up to the

first-order term leads to

′ +( ) = ′ ( ) + ′′ ( ) =E E Ex x x x xΔ Δ 0 (13)

Equation (13) can be further written as [15]

J y J J H y xT TΔ Δ Δ= −( ) (14)

where T denotes the transpose, Δy = y - G(x) is the residual data between the

measurements and the predicted data. The Jacobian matrix J is a measure of the rate of

change in measurement with respect to the optical parameters. It describes the influence

of a voxel on a detector reading. H is the Hessian matrix, whose entries are the second-

order partial derivatives of the function with respect to all unknown parameters describ-

ing the local curvature of the function with respect to many variables [16].

Introducing the Tikhonov regularization term to tackle the ill-posedness of the

inverse problem and ignoring the Hessian matrix, the solution to the linearized recon-

struction problem can be described as follows

Δ Δx J J I J y= +( )−T T
1

(15)

where l is a regularization parameter, which can be determined by the Morozov dis-

crepancy principle [17], I is an identity matrix.

Adaptive Regularization Scheme

The problem of image reconstruction for FMT is ill-posed [18]. The Tikhonov

regularization technique, as mentioned above, is one of the major methods to reduce

the ill-posedness of the problem [19]. However, there exists one protrudent difficulty

for this technique in the determination of the regularization parameter. A general

unexpected characteristic of the NIR imaging is that the resolution and contrast of the

reconstructed images degrade with the increased distance from the sources and the

detectors [20]. Considering the fact that the value of the regularization parameter has

important effect on the contrast and resolution of the resultant images, one strategy to

solve this problem is to use a spatially variant regularization parameter. Meanwhile, it

can be inferred that the objective function is related to the regularization parameters

[15]. During the process of minimizing the objective function, decreasing l will speed

up the convergence if the value of objective function is decreasing, otherwise increas-

ing l can enlarge the searching area (trust-region). Upon the basis of these considera-

tions, we propose a modified regularization method both adaptive to the spatial

variations and the objective function.
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Suppose that the number of measurements and the number of the vertex nodes are

M and N, respectively. Thus, we have for the matrices in equation (15): Δx ÎRN × 1,

Δy ÎRM × 1, J ÎRM × N, and I ÎRN × N. To construct a spatially variant regularization

framework, the inverse term of (JTJ + lI)-1 in equation (15) is replaced with (JTJ + l)-1,
which results in the following equation

Δ Δx J J J y= +( )−T T
1

(16)

where λ =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥






1

2

0 0

0

0

0 0


 

  
 N

is a diagonal matrix. Equation (16) can be rewritten

as

J J x J yT

N N

T

x

x

x

Δ

Δ
Δ

Δ

Δ+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=






1 1

2 2


(17)

with Δxi (i = 1, 2, ..., N) being the component of the vector Δx. It can be easily seen

that each node pi (i = 1, 2,...,N) in the reconstructed domain is regularized by a corre-

sponding regularization parameter li (i = 1, 2,...,N) respectively. Obviously, the above

mentioned Tikhonov regularization can be regarded as a special case of equation (17)

when l1 = l2 = ... lN = l.
It was pointed out in [21] that, the resolution and contrast of the images decrease

with the increment of the regularization parameters and vice versa. Therefore, the

adaptive regularization parameter li can be defined as follows to compensate the

decrease of the resolution and contrast with the increased distance from the sources

and detectors:

i c c i s i m

i
i s i m

= + × −
− + −

− + −( )
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

1 2 exp
max

r r r r

r r r r

⎥⎥
⎥
⎥

=i N1 2, , , (18)

where ri is the position of node pi, rs and rm respectively denote the positions of the

source and detector closest to the node pi, c1 and c2 are two positive parameters deter-

mined empirically in our paper.

To make the regularization parameter adaptive to the objective function as defined in

equation (12), we propose to incorporate it in the regularization as follows

i c c E i s i m

i
i s i m

= + × × −
− + −

− + −( )
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟1 2 arctan exp

max

r r r r

r r r r ⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=i N1 2, , , (19)

In equation (19), the arctan function is used to guarantee a relatively small fluctua-

tion range of the regularization parameters and avoid too large values of them.

Obviously, regularization parameters determined from equation (19) relate to the

objective function in a similar manner to that as pointed out before. In such a way, the
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regularization parameters are adaptive not only to the spatial variations but also to the

variations of the objective function to accelerate the convergence.

Reconstruction Based on the Schur Complement System

As has been pointed out previously, the iterative methods based on the Schur comple-

ment system can be more efficient to solve large-scale problems. Hence, we propose to

reconstruct the tomographic image of FMT with level-by-level decomposition in the

Schur complement system.

For convenience of discussions, equation (16) can be further rewritten in a more

compact form as

k x bΔ = (20)

where k = JTJ + l and b = JT Δy.

To solve the inverse problem of FMT in the Schur complement system, the solution

space Rn is firstly decomposed into two subspaces of U and V with dimensions m and

n-m, respectively. Let [Γ Ψ] be an orthonormal basis of the solution space Rn. The basis

of the m-dimensional coarse subspace U is formed by the columns of Γ Î Rn × m and

the columns of Ψ Î Rn × (n-m) form the basis of the (n - m) dimensional subspace V.

Therefore, the solution to equation (20) can be expressed with the bases of the two

subspaces as follows

Δx = + u v (21)

where u and v are the projections of Δx on the subspaces U and V, respectively.

Because both the condition number and the scale of the system can be reduced after

Schur complement decomposition, we propose to further decompose both the projec-

tions u and v level by level with the Schur complement decomposition along two paths

in a tree structure, and then solve the subsystems in the Schur complement systems.

Our approach is different from that proposed in [10], where only the projection v is

solved in the Schur complement system. The level-by-level Schur complement decom-

position can be schematically illustrated as in Figure 1. We derive the iterative system

in the following discussions.

Suppose that the subsystem at the ith level is as follows

S x bi j i j i j, , ,( ) ( ) ( )=Δ (22)

where S(i, j) is the Schur complement matrix with the subscript (i, j) being the jth (j = 0,

1,..., 2i) term at the ith (i = 0, 1,..., L) level in the tree structure as illustrated in Figure 1.

Particularly, S(0,0) is the global matrix k as defined in equation (20). To solve this system

in the Schur complement system, equation (22) will be further decomposed at the i+1th

level. Thus, the solution Δx(i,j) is firstly expressed with the bases of the two subspaces as

Δ Δ Δx x xi j i j i j i j i j, , , , ,( ) ( ) + −( ) ( ) +( )= + 1 2 1 1 2 (23)

where Δx(i+1,2j-1) and Δx(i+1,2j) are the projections of Δx(i,j) on the subspaces formed

by the columns of Γ(i,j) and Ψ(i,j), respectively.
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Substituting equation (23) into equation (22) yields

S S
x

xi j i j i j i j

i j

i j
, , , ,

,

,
( ) ( ) ( ) ( )

+ −( )

+( )
⎡
⎣

⎤
⎦

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 
Δ

Δ
1 2 1

1 2

== ( )b i j, (24)

Multiplying both sides of equation (24) from the left by [Γ(i,j) Ψ(i,j)]
T, we can obtain

   i j i j

T

i j i j i j i j

i j

, , , , , ,

,

( ) ( ) ( ) ( ) ( ) ( )
+ −( )⎡

⎣
⎤
⎦

⎡
⎣

⎤
⎦S S

xΔ

Δ
1 2 1

xx
b

i j
i j i j

T

i j
+( )

( ) ( ) ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ⎡
⎣

⎤
⎦

1 2,
, , ,  (25)

Thus, equation (25) can be further rewritten into a two-by-two block system

S S

S S

x

x

i j i j

i j i j

i j

i

, ,

, ,

,

,

( ) ( )

( ) ( )

+ −( )

+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

11 12

21 22

1 2 1

1

Δ

Δ 22

1

2j

i j

i j( )

( )

( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

b

b

,

,

(26)

where S Si j i j
T

i j i j, , , ,( ) ( ) ( ) ( )=11   , S Si j i j
T

i j i j, , , ,( ) ( ) ( ) ( )=12   , S Si j i j
T

i j i j, , , ,( ) ( ) ( ) ( )=21   ,

and S Si j i j
T

i j i j, , , ,( ) ( ) ( ) ( )=22   , while the two components on the right-hand side

(RHS) of equation (26) are b bi j i j
T

i j, , ,( ) ( ) ( )=1  , and b bi j i j
T

i j, , ,( ) ( ) ( )=2  . From equa-

tion (26), it can be seen that S(i,j)11 and S(i,j)22 correspond to the equations for the

unknowns of Δx(i+1,2j-1) and Δx(i+1,2j), respectively, while S(i,j)12 and S(i,j)21 define the

coupling between these two sets, which will be eliminated in the following discussions.

Applying block Gaussian elimination to equation (26) leads to [22]

S S

0 S

x

x

i j i j

i j

i j

i j

, ,

,

,

,

( ) ( )

+( )

+ −( )

+( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣

11 12

1 2

1 2 1

1 2

Δ

Δ
⎢⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )

+( )

b

b

i j

i j

,

,

1

1 2

(27)

Δx

( )1,1Δx ( )1,2Δx

( )2,1Δx ( )2,2Δx ( )2,3Δx ( )2,4Δx

( )3,1Δx ( )3,2Δx ( )3,3Δx ( )3,4Δx ( )3,5Δx ( )3,6Δx ( )3,7Δx ( )3,8Δx

… … … … … … … …
Figure 1 Schematic illustration of Schur complement decomposition with a tree structure. The
global solution Δx is decomposed with the Schur complement system level by level along the two paths
in the tree structure.
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where S S S S Si j i j i j i j i j+( ) ( ) ( ) ( )
−

( )= −1 2 22 21 11
1

12, , , , , , which is called the Schur comple-

ment with respect to S(i,j)11[7], b b S S bi j i j
T

i j i j i j i j
T

i j+( ) ( ) ( ) ( ) ( )
−

( ) ( )= −1 2 21 11
1

, , , , , , ,  . From equa-

tion (27), we have

S x S x bi j i j i j i j i j, , , , ,( ) + −( ) ( ) +( ) ( )+ =11 1 2 1 12 1 2 1Δ Δ (28)

S x bi j i j i j+( ) +( ) +( )=1 2 1 2 1 2, , ,Δ (29)

It can be found that the condition number of matrix S(i+1,2j) is smaller than that of

matrix S(i,j)[9]. Hence, solving the inverse problem in the Schur complement system at

the i+1th level will be more efficient than solving it at the ith level. We herein solve

equation (29) using the biconjugate gradient method [23]. Its advantage is that it does

not square the condition number of the original equations [24]. Basically, the biconju-

gate gradient method can be used to solve the large-scale systems with the fastest

speed among all the generalized conjugate gradient methods in many cases [25]. The

algorithm for solving equation (29) can be summarized as follows

Algorithm 1

1. Input an initial guess Δx(i+1,2j)0;

2. Initialize d0 = f0 = r0 = p0 ¬ b(i+1,2j) - S(i+1,2j)Δx(i+1,2j)0;

3. For k = 0, 1, 2... until convergence do






k

k k k k

k k k i j k

k

pk
Trk

fk
T

i j dk

v v d

r r d

p

←
+( )

← +
← −

+

+ +( )

+

S

S

1 2

1

1 1 2

,

,

11 1 2

1 1

1

1 1

← −

← + +

← +
←

+( )

+ +

+

p f

pk
T rk

pk
Trk

d r d

f p

k k i j
T

k

k

k k k k

k k







S ,

++ +1  k kf

End for

After the derivation of Δx(i+1,2j) from equation (29) with algorithm 1, the next task is

to obtain the other component of Δx(i+1,2j-1) for the synthesis of the solution Δx(i,j).

Here, Δx(i+1,2j-1) is also solved in the Schur complement system due to its low condi-

tion number.

Eliminating the block S(i,j)12 in equation (26) using block Gaussian elimination with

S(i,j)22 as pivot block, we have

S 0

S S

x

x

i j

i j i j

i j

i j

+ −( )

( ) ( )

+ −( )

+( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2 1

21 22

1 2 1

1 2

,

, ,

,

,

Δ

Δ

⎡⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ −( )

( )

b

b

i j

i j

1 2 1

2

,

,

(30)
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where S S S S Si j i j i j i j i j+ −( ) ( ) ( ) ( )
−

( )= −1 2 1 11 12 22
1

21, , , , , and b b S S bi j i j
T

i j i j i j i j
T

i j+ −( ) ( ) ( ) ( ) ( )
−

( ) ( )= −1 2 1 12 22
1

, , , , , , ,  .

Thus S(i+1,2j-1) is the Schur complement with respect to S(i,j)22.

From equation (30), we can obtain

S x bi j i j i j+ −( ) + −( ) + −( )=1 2 1 1 2 1 1 2 1, , ,Δ (31)

Thus, the solution Δx(i+1,2j-1) can be obtained in a same manner as in Algorithm 1,

and the only difference is that Δx(i+1,2j), S(i+1,2j), and b(i+1,2j) should be replaced with

Δx(i+1,2j-1), S(i+1,2j-1), and b(i+1,2j-1), respectively. Solving equation (31) is computationally

efficient because of the reduced condition number in the Schur complement system

[7]. Moreover, such a strategy of deriving both Δx(i+1,2j-1) and Δx(i+1,2j) in the Schur

complement system can be implemented in a parallel manner, since equations (29)

and (31) are decoupled. Therefore the subsystem at the ith level as in equation (22)

can be decomposed into the two linear subsystems at the i+1th level, i.e., Schur com-

plement systems as in equations (29) and (31). After obtaining Δx(i+1,2j-1) and Δx(i+1,2j),

they are then substituted into equation (23) to yield the solution Δx(i,j) at the ith level.

The whole reconstruction algorithm is summarized as follows

Algorithm 2

1. Set x0 to an initial guess;

2. x ¬ x0, calculate b and k at x in equation (20) with the adaptive regularization

scheme as in equation (19);

3. The global system of equation (20) is decomposed with the Schur complement

system level by level in a same manner as the decomposition of equation (22) into

equations (29) and (31) to obtain the subsystem S(i,j)Δx(i,j) = b(i,j) at the ith level for

i =1,..., L and j =1,..., 2i, the subspaces at the ith level are formed by the columns of

Γ(i,j) and Ψ(i,j), respectively;

4. Set i = L;

For j = 1,..., 2i do

Combining equations (26), (27), and (30), solve S(i+1,2j)Δx(i+1,2j) = b(i+1,2j) and

S(i+1,2j-1)Δx(i+1,2j-1) = b(i+1,2j-1) with Algorithm 1, where Δx(i+1,2j-1), S(i+1,2j-1), and

b(i+1,2j-1) are used instead of Δx(i+1,2j), S(i+1,2j), and b(i+1,2j) when Algorithm 1 is

employed for the latter case;

End for

5. While i ≥ 0

{

For j = 1,..., 2i do

Substitute the solutions Δx(i+1,2j) and Δx(i+1,2j-1) into equation (23) to obtain the

solution Δx(i,j) at the ith level;

End for

i = i - 1;

}

6. x0 ¬ x0 + Δx(0,1);
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7. If ||Δx(0,1)|| > ε

go to 2;

Else

x ¬ x0, output x.

As mentioned before, the Schur complement system has a smaller condition number

than that of the system from which it is constructed [7]. As a result, iterative methods

based on the Schur complement systems can be more efficient than the methods

based on the global matrix as in equation (20) due to its reduced scale and the smaller

condition number. Therefore, the proposed algorithm can be expected to be more effi-

cient than the conventional ones, as the results demonstrated in the next section.

Results and Discussion
In this work, assuming that the scattering coefficients are known, we focus on the recon-

struction of the absorption coefficient μaxf. Two phantoms as illustrated in Figure 2 are used

to evaluate the proposed algorithm. Figure 2(a) contains one object, and Figure 2(b) contains

two objects of different shapes. Table 1 and Table 2 outline the optical and fluorescent para-

meters in different regions of the simulated phantoms corresponding to Figures 2(a) and

2(b), respectively. Four sources and thirty detectors are equally distributed around the cir-

cumference of the simulated phantom. The simulated forward data are obtained from equa-

tions (1) and (2), in which Gaussian noise with a signal-to-noise ratio of 10dB is added to

evaluate the noise robustness of the algorithms. The parameters c1 and c2 in equation (19)

are, respectively, set to 0.2 and 2. The initial guesses for solutions Δx(i+1,2j) and Δx(i+1,2j-1) of

equations (29) and (31) are set to 0. The initial value of x0 is set to 5 mm-1. The subspace

created from the right singular vectors of the singular value decomposition (SVD) is optimal.

Since SVD is computationally expensive, it is expected that a subspace close to SVD sub-

space will do almost as good. Thus, the choice of an oscillatory basis can be a basis created

Figure 2 Simulated phantoms for FMT. (a) One object with absorption coefficient μaxf of 0.2 mm-1 on
the background medium with μaxf of 0.06 mm-1, and (b) two objects of different shapes, one of which
with high absorption coefficient of 0.2 mm-1 and the other with low absorption coefficient of 0.15 mm-1,
and the background medium with absorption coefficient of 0.06 mm-1.
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by sine or cosine functions with increasing frequency [26]. Here discrete cosine basis is

employed in the simulations. To reliably evaluate the performance of different methods for

the inverse problem, the best way is to use an independent forward model, which is different

from the one employed in the inverse problem, to generate the synthetic data [27]. There-

fore, in our case, a finer mesh as shown in Figure 3 with 169 nodes and 294 triangular ele-

ments is used to generate the forward simulated data.

Table 1 Optical and fluorescent properties of one-object phantom

Excitation light μaxf(mm-1) μaxi(mm-1) ′ − sx mm( )1 q τ(ns)

Background 0.06 0.02 5.0 0.3 0.5

Object 0.2 0.02 5.0 0.3 0.5

Emission light μamf(mm-1) μami(mm-1) ′ − sm mm( )1 q τ(ns)

Background 0.006 0.01 2.0 0.3 0.5

Object 0.1 0.01 2.0 0.3 0.5

Table 2 Optical and fluorescent properties of two-object phantom

Excitation light μaxf(mm-1) μaxi(mm-1) ′ − sx mm( )1 q τ(ns)

Background 0.06 0.02 5.0 0.3 0.5

Objects 0.15, 0.2 0.02 5.0 0.3 0.5

Emission light μamf(mm-1) μami(mm-1) ′ − sm mm( )1 q τ(ns)

Background 0.002 0.01 2.0 0.3 0.5

Objects 0.03, 0.05 0.01 2.0 0.3 0.5

Figure 3 Mesh used for forward solver of FMT. The mesh contains 169 nodes and 294 triangular
elements.
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It is well known that the most significant superiority of the anatomical imaging mod-

ality lies in the high spatial resolution. Hence, it will be helpful to improve the image

quality and accelerate the reconstruction process if we use the anatomical image as

prior information for mesh generation. The reconstructed domain is firstly uniformly

discretized according to the Delaunay triangulation scheme, after which the uniform

mesh is refined only for the areas with large variations of the pixel values. To simulate

this idea, we employ the images shown in Figures 4(a) and 4(b) with a resolution of

100 × 100 pixels as the prior images corresponding to Figures 2(a) and 2(b), respec-

tively. The meshes are generated as shown in Figure 5 for the inverse problem of

FMT. The mesh with 122 nodes and 212 triangular elements (Figure 5(a)), and the

Figure 4 Model of prior image. (a) The prior image corresponds to Figure 2(a), and (b) the prior image
corresponds to Figure 2(b).

Figure 5 Meshes used for inverse problem of FMT. (a) Mesh with 122 nodes and 212 triangular
elements, and (b) mesh with 148 nodes and 264 triangular elements..
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mesh with 148 nodes and 264 triangular elements (Figure 5(b)) are generated incorpor-

ating the prior information as shown in Figures 4(a) and 4(b), respectively.

Figures 6(a) and 6(b) show, respectively, the reconstructed images of μaxf for one

object phantom using the adaptive regularization scheme and Tikhonov regularization

method. Figures 7(a) and 7(b) depict the results for two objects phantom from the

above two different algorithms. Here, both of the results from Figures 6 and 7 are

based on the CG method. As seen from Figures 6 and 7, better reconstructed results

can be achieved from the adaptive regularization scheme. To quantitatively assess the

accuracy of the different algorithms, the mean square error (MSE) is introduced

MSE = −( )⎧
⎨
⎩

⎫
⎬
⎭=

∑ 1 2

1
N axf

calc
axf
actual

i
i

N

  (32)

Figure 6 Reconstructed images of absorption coefficient due to exogenous fluorophores μaxf for
one object. (a) Reconstructed result with the adaptive regularization scheme, and (b) reconstructed result
with the Tikhonov regularization method.

Figure 7 Reconstructed images of absorption coefficient due to exogenous fluorophores μaxf for
two objects. (a) Reconstructed result with the adaptive regularization scheme, and (b) reconstructed result
with the Tikhonov regularization method.
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where N is the total number of nodes in the domain. The superscript calc denotes

the values obtained using reconstruction algorithms; and actual denotes the actual dis-

tribution of μaxf which is used to generate the synthetic image data set. Table 3 lists

the performance of the reconstruction algorithms in terms of MSE. It can be seen that

the adaptive regularization scheme can significantly improve the quality of the recon-

structed images and achieve a smaller MSE in either case.

Figure 8 shows the reconstructed images of μaxf for one object phantom using the

different algorithms after 1, 15, and 30 iterations, respectively. After 30 iterations, the

reconstructed image from the proposed algorithm has a relatively higher contrast than

those obtained from the other two algorithms. Figure 9 depicts the reconstructed

Table 3 Comparison of performance of methods

Methods One object Two objects

Adaptive regularization scheme 2.973 × 10-4 2.860 × 10-4

Tikhonov regularization method 5.352 × 10-4 4.892 × 10-4

Figure 8 Reconstructed images of absorption coefficient due to exogenous fluorophores μaxf for
one object. (a)-(c) with the CG method, (d)-(f) with the Schur CG method, and (g)-(i) with our method.
The reconstruction results after one iteration are shown in the first column, 15 iterations in the second
column, and 30 iterations in the third column.
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images of μaxf for two objects phantom using the different algorithms, from which it

can be seen that the proposed method can reconstruct the images more accurately

than the other two methods even after the first iteration. According to the third col-

umn of Figure 9, the reconstructed image quality based on our algorithm is signifi-

cantly improved as compared with that based on the other two methods.

We investigated how the MSE changed against the number of iterations for different

algorithms. Figure 10 shows a fast convergence of our algorithm with a less MSE than

the other two algorithms. In addition, the CG method converges slower than the

Schur CG method and our method, which means that solving the inverse problem

based on the Schur complement system is superior to that based on the global system.

The computation time of different algorithms is further investigated in our work to

evaluate the convergence rate. Table 4 lists the computation time after 30 iterations

for different algorithms. From this table, it can be seen that the time needed for our

algorithm after 30 iterations is less than that of the Schur CG method. Although the

former is a little bit longer than the time needed for the CG method, our algorithm

needs only less than 5 iterations to achieve the precision of the CG method after 30

iterations. As a result, the CG method needs much more iterations to achieve a given

precision of reconstruction than our method. Therefore, compared with the other two

methods, the proposed algorithm is more efficient and stable.

Figure 9 Reconstructed images of absorption coefficient due to exogenous fluorophores μaxf for
two objects. (a)-(c) with the CG method, (d)-(f) with the Schur CG method, and (g)-(i) with our method.
The reconstruction results after one iteration are shown in the first column, 15 iterations in the second
column, and 30 iterations in the third column.
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To further validate the proposed algorithm for 3D reconstruction, a phantom as illu-

strated in Figure 11 is used for simulations. Within this phantom, a small cylindrical

object is suspended. In Figure 11, the dashed curves represent the planes of measure-

ments. Four sources and sixteen measurements are used for each plane in the simula-

tions. The mesh for reconstructing the 3D image is shown in Figure 12, which

contains 858 nodes and 3208 tetrahedral elements. Figures 13 and 14 depict the recon-

structed 2D cross sections of the 3D phantom shown in Figure 11 using the Schur CG

method and the proposed algorithm, respectively. Table 5 lists the performance of the

40m
m

20mm

Figure 11 Simulated phantom for 3D reconstruction. The phantom of radius 10 mm and height
40 mm with a uniform background of μaxf = 0.005mm-1 , which is positioned at x = 10mm, y = 0mm and
z = 20mm. The small cylindrical anomaly has a radius of 2 mm and height 6 mm with μaxf = 0.01mm-1.
The anomaly is positioned at x = 15mm, y = 0mm and z = 20mm. The dashed curves represent the
measurement planes, at z = 15mm, z = 20mm, z = 25mm.

Table 4 Computation time of FMT image reconstruction for 30 Iterations

Methods One object Two objects

CG 62s 86s

Schur CG 203s 281s

Our algorithm 141s 179s

Figure 10 Number of iterations versus MSE between the original and the reconstructed images.
(a) Reconstruction of one object, and (b) reconstruction of two objects.
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above two methods for a quantitative comparison. From this table, we can conclude

that our proposed algorithm can also speed up the reconstruction process and achieve

high accuracy for the 3D case.

Conclusion
In this paper, we developed a novel image reconstruction method of FMT, based on

the tree structured Schur complement decomposition in combination with the adaptive

regularization scheme. The proposed approach decomposes the global inverse problem

level by level with the Schur complement decomposition, and the resultant subsystems

are solved with the biconjugate gradient method. The spatially variant regularization

Figure 12 3D mesh for image reconstruction. 3D mesh for image reconstruction with 858 nodes and
3208 tetrahedral elements.
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parameter is determined adaptively according to the objective function. Simulation

results demonstrate that the proposed method outperforms the previous methods,

such as the CG and the Schur CG methods, in both reconstruction accuracy and

speed.
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Figure 14 Reconstructed images using the proposed algorithm. Reconstructed images using the
proposed algorithm, which are 2D cross sections through the reconstructed 3D volume. The right-hand
side corresponds to the top of the cylinder (z = 40 mm), and the left corresponds to the bottom of the
cylinder (z = 0 mm), with each slice representing a 10 mm increment.

Table 5 Performance comparison of reconstruction methods for 3D case

Methods Schur CG Our algorithm

Computation time (s) 3527 2215

MSE 3.629 × 10-3 1.241 × 10-3

Figure 13 Reconstructed images using the Schur CG method. Reconstructed images using the Schur
CG method, which are 2D cross sections through the reconstructed 3D volume. The right-hand side
corresponds to the top of the cylinder (z = 40 mm), and the left corresponds to the bottom of the
cylinder (z = 0 mm), with each slice representing a 10 mm increment.
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