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Abstract

Background: Cardiac autonomic neuropathy (CAN) in diabetes has been called a "silent killer",
because so few patients realize that they suffer from it, and yet its effect can be lethal. Early sub
clinical detection of CAN and intervention are of prime importance for risk stratification in
preventing sudden death due to silent myocardial infarction. This study presents the usefulness of
heart rate variability (HRV) and complexity analyses from short term ECG recordings as a
screening tool for CAN.

Methods: A total of 17 sets of ECG recordings during supine rest were acquired from diabetic
subjects with CAN (CAN+) and without CAN (CAN-) and analyzed. Poincaré plot indexes as well
as traditional time and frequency, and the sample entropy (SampEn) measure were used for
analyzing variability (short and long term) and complexity of HRV respectively.

Results: Reduced (p > 0.05)_Poincaré plot patterns and lower (p < 0.05) SampEn values were
found in CAN+ group, which could be a practical diagnostic and prognostic marker. Classification
Trees methodology generated a simple decision tree for CAN+ prediction including SampEn and
Poincaré plot indexes with a sensitivity reaching 100% and a specificity of 75% (percentage of
agreement 88.24%).

Conclusion: Our results demonstrate the potential utility of SampEn (a complexity based
estimator) of HRV in identifying asymptomatic CAN.

Background

As many as 22% of people with type 2 diabetes mellitus
(DM) suffer from cardiac autonomic neuropathy (CAN)
which leads to impaired regulation of blood pressure,
heart rate and heart rate variability (HRV). Around 75% of
people with diabetes die from cardiovascular disease such
as heart attack and stroke [1]. Silent ischemia is signifi-
cantly more frequent in patients with than in those with-
out CAN (38% vs 5%) [2]. Early sub clinical detection of

CAN for risk stratification and intervention for preventing
the potentially serious consequences of CAN especially in
people with diabetes are therefore of prime importance.

A noninvasive Ewing test battery [3] specifically designed
for identifying CAN consists of five tests but is less sensi-
tive to changes associated with cardiac autonomic neu-
ropathy compared to spectral methods[4]. Combining the
five test results allows classification into mild, moderate
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or severe CAN. The Ewing battery however requires
patient cooperation and more importantly is often not
able to be performed due to co-morbidities in the patients
that would benefit most [5]. These co-morbidities include
existing heart or respiratory disease, which is a counter
indication for the Valsalva manoeuvre. Use of antihyper-
tensive medication influences the outcome of the lying to
standing test that measures blood pressure changes on
standing and identifies orthostatic hypotension. The hand
grip test is hindered by lack of strength in the elderly and
more often by arthritis in the hands. The lying to standing
heart rate (HR) test is the easiest test to perform, although
it may be difficult for some with a lack of mobility as is
often found in the elderly [6].

New methods that are non-invasive and independent of
patient cooperation are preferable in the diagnosis of
CAN but still require further research to understand their
sensitivity and specificity in risk stratification for CAN.
The most common method used is heart rate variability
analysis [7]. A change in HRV is regarded as one of the
early signs of cardiac autonomic neuropathy [8]. How-
ever, conventionally used time and frequency domain
parameters of HRV are not always suitable for analysis
because of the non-stationarity characteristic of the ECG
recordings and the presence of nonlinear phenomena in
the physiological signal's parameter variability. Only a
few studies have applied new parameters based on non-
linear dynamics theory to HRV analysis in DM patients
[9,10]. Application of new signal processing techniques
based on nonlinear dynamics provides supplementary
information (i.e. hidden underlying mechanisms) about
systems involved in cardiovascular function and pathol-
ogy. The visual analysis of variability by the Poincaré plot
[11] and quantification of the unpredictability and com-
plexity of the heart rate using sample entropy [12] are
increasingly used because they can be computed from
shorter HRV records that are used in community screen-
ing.

Therefore, the aim of this study was to ascertain how and
which of the variability and complexity parameters of the
heart rate variability derived from the Poincaré plots and
sample entropy are different in DM patients with CAN
(CAN+) compared with DM patients without CAN (CAN-
) as a first step to determining the utility of these parame-
ters in identification of asymptomatic CAN during supine
rest.

Methods

Subjects and ECG signals

After standard exclusion criteria were applied to ensure
that any changes in HRV detected were due to the severity
of the diabetes, seventeen patients with Type 2 diabetes
mellitus were included in the study. Nine patients were
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CAN+, whilst the remaining eight were CAN-, being with-
out clinical signs and symptoms of CAN. The research
protocol was approved by Charles Sturt University Ethics
in Human Research Committee (03/164). Exclusion crite-
ria included for the CAN-, those with a history of cardiac
pathology, hypertension or on antihypertensive medica-
tion and those with less than 85% qualified sinus beats.
For the CAN+ all participants with greater than 85% qual-
ified sinus beats were included. ECGs were recorded over
20 minutes using a lead II configuration (Maclab ADIn-
struments Australia) and recorded on Macintosh Chart
version 4 with a sampling rate set at 400 Hz and a notch
filter at 50 Hz. CAN+ was determined using the reference
range for the lying to standing heart rate change (30:15
ratio) reported by Ewing [3]. Table 1 summarises the clin-
ical variables of the patient group.

ECG signals were edited using the MLS310 HRV module
(version 1.0, ADInstruments, Australia) included in the
Chart software package. High frequency noise was
removed with a 45 Hz low-pass filter and a 3 Hz high pass
filter adjusted for wandering baseline. Ectopic beats were
selected visually and deleted manually. Linear interpola-
tion was used to replace ectopic beats that occur immedi-
ately before and after the ectopic interval. Intervals
between successive R waves of the QRS complex (i.e.
instantaneous heart rate (IHR) in beats per min (bpm) =
60/R-R intervals in seconds) were calculated using the
algorithm developed by Pan and Tomkin [13]. The HRV
analysis described in the following sections was per-
formed on IHR of 1000 beats.

Conventional HRYV indices

We quantified several time domain HRV parameters:
mean IHR, standard deviation of normal IHR data
(SDNN) and the square root of the mean squared differ-
ence of the successive IHR data (RMSSD). Spectral analy-
sis was performed on linearly resampled (1 Hz) time
series using Welch's method [14]. The 256-point fast Fou-
rier transform was repeatedly computed with 50% overlap
between adjacent segments. Then spectral power of each
segment was computed and averaged. Hanning window
was applied to avoid spectral leakage. Subsequently, spec-
tral powers in the low frequency (LF) band (0.04-0.15
Hz) and high frequency (HF) band (0.15-0.40 Hz) were
obtained by integration. The normalized LF and HF pow-

Table I: Characteristics of the study population

Age Gender BMI DAN ratio
(Years)  (M/F) (kg.m2)
CAN+(n=9) 5212 5(4) 31.69+£547 0.95+0.03
CAN-(n =8) 56+ 14 3(5) 31.39£498  1.10 £ 0.04
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ers were calculated by LF/(Total Power-VLF) and LF/(Total
Power-VLF) respectively as per Task force recommenda-
tion [15]. The power in the very lower frequency (VLF)
band was set at < 0.04 Hz.

Poincaré plot analysis

The Poincaré plot is a popular two-dimensional visualiza-
tion tool for dynamic systems due to its intuitive display
of the dynamic properties of a system from a time series.
The length (SD2) and the width (SD1) of the Poincaré
plot images represent short and long-term variability of
any nonlinear dynamic system [11]. We developed math-
ematical formulations that relate each measure derived
from the Poincaré plot geometry to well-understood exist-
ing heart rate variability indexes [11]. A strong correlation
was found when comparing high frequency power of
heart rate signals (modulated by parasympathetic nervous
system) to SD1 [16]. SD2 was found to be well correlated
with both low and high frequency power (modulated by
both the parasympathetic and sympathetic nervous sys-
tem) [16]. The Poincaré plot was generated as a scatter
plot of current instantaneous heart rate (IHR) against the
IHR immediately preceding it. Using the method
described by Brennan [11], these plots were used to
extract indexes, such as length (SD2) and width (SD1) of
the long and short axes of Poincaré plot images.

Sample entropy analysis

Sample entropy (SampEn) values of IHR signals from all
subjects were calculated. SampEn was developed to
reduce the bias caused by the self matching in approxi-
mate entropy which is a mathematical approach to quan-
tifying the complexity and regularity of a system [12].
SampEn is defined as the logarithmic likelihood that the
patterns of the data that are close to each other will remain
close for the next comparison within a longer pattern.
SampEn does not use a template-wise approach when
estimating conditional probabilities. It only requires that
one template find a match of length m+1, then it com-
putes the logarithm of a probability associated with the
time series as a whole. Mathematical derivation can be
found in previous literature [12]. A brief description is as
follows.

Given a sequence of total N numbers of IHR such as IHR
(1), THR (2),.evee.. , THR (N). To compute SampEn of each
IHR data set, m-dimensional vector sequences p,, (i) were

constructed from the THR series [p,, (1), Py (2),-evevervenenne ,
Pm (N-m+1)], where the index i can take values ranging
from 1 to N-m+1. If the distance between two vectors p,,
(i) and p,, (j) is defined as |p,(j) pm(i)],

C(r)= Nﬂlnﬂ [number of vectors such that |p,,(j) -

pm(i)| <randi#j]
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Where m specifies the pattern length which is 2 in this
study, r defines the criterion of similarity which was var-
ied from 10~90% of the standard deviation of IHR data
(N = 1000 beats). C;m(r) is considered as the mean of the
fraction of patterns of length m that resemble the pattern
of the same length that begins at index i. Then the SampEn
is computed by using the following equation:

N—-(m-1)
PIRNCR())
=1 (1)
N Cimﬂ(r)

—
Il

SampEn(N, m, 1) =In

M
8

i=1

We divided the data set into smaller sets of length, i.e., m
= 2. The next step is to determine the number of subsets
that are within the criterion of similarity r, excluding the
self match. Then we repeat the same process for the sec-
ond subset until each subset is compared with the rest of

N-m+1
the data set. This process computes Z C{"(r) part of
i=1

equation (1) and N-m+1 = 1000-2+1 = 999. We then
repeated the same process for m = 3. Sample entropy is

then calculated using equation (1).

Surrogate data analysis

To prove any intrinsic relationship of the heart rate con-
trol system with SampEn, we followed a method of surro-
gate data analysis introduced by Theiler et al. [17]. For
each IHR series of all subjects, 10 surrogate IHR series
were obtained by randomly shuffling the original series.
Each surrogate data set had an identical IHR distribution
(i.e., same mean, SD, and higher moments) as the original
data sets and differed only in the sequential ordering of
[HR series. SampEn values are computed for 10 surrogate
data series. The mean values of the surrogate SampEn
were then compared with the SampEn computed for the
original THR data series. It was assumed that the presence
of the nonlinear structure in the dynamics of the original
data exist, given a statistically significant difference is
found when comparing the calculated SampEn of the
original series and the mean SampEn of the randomly
selected surrogate data series. The number of SD (stand-
ard deviations) (i.e. d) between the mean of original
indexes and the mean of the indexes of the surrogate data
sets (i.e. d = (original - surrogate)/SD of surrogate) was
computed. If d > 3, the difference between the original
data set and the surrogate data set was considered statisti-
cally significant [18].

Statistical analysis

Results were expressed as means ( + SD). The non-para-
metric Mann-Whitney U-test was performed to allow for
pairwise testing for significant differences of HRV param-
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eters between the two groups. A value of p < 0.05 was con-
sidered significant. The non-parametric test was used
because of the non-Gaussian distribution of the variables
as ascertained by the Lilliefors test. The relative impor-
tance of HRV features was determined by receiver-operat-
ing curve (ROC) analysis [19], with the area under the
curve for each feature represented by ROC area. A ROC
area value of 0.5 indicates that the distributions of the var-
iables are similar in both populations. Conversely, a ROC
area value of 1.0 would mean that the distribution of the
variables of the two populations do not overlap at all

Classification

A classification tree was then built using the discriminant
variables as indicated by the ROC curves. The first variable
used was the one that identified the best separation
between the CAN+ and CAN- subjects. The other variables
were then introduced according to a descending order of
discriminative capacity. For each continuous variable, the
cutoff value acting as a separator to make the decision was
chosen as that offering the smallest number of misclassi-
fication, i.e. that which minimises the sum of false-posi-
tive and false-negative results. Sensitivity, specificity and
percentage of agreement were calculated on a learning
sample of this last analysis. The principle of the Classifica-
tion and Regression Trees (CART) method [20] is to look
at all possible splits for all variables included in the anal-
ysis. The results are in the form of an inverted tree. CART
begins with a root node and, through a process of yes/no
questions, generates descendant nodes. Some nodes are
terminal nodes, meaning that a final determination for
classification is reached while other nodes continue to be
split until terminal nodes are reached. Initially the
method CART uses to select its questions for splitting
nodes needs to be addressed. Then each splitting rule is
ranked in order on the basis of a goodness-of-split crite-
rion. Once a best split is found, CART repeats the search
process for each subsequent node, continuing recursively
until further splitting is impossible or stopped. Then,
CART proceeds by growing trees until it is not possible to
grow them any further. It generates a maximal tree and a
set of subtrees. A leave-one-out cross-validation scheme
was adopted to evaluate the generalization ability of the
tree. Cross-validation procedures have been used in a
number of classification evaluations, particularly for lim-
ited data sets [21]. In this scheme the data set was uni-
formly divided into 17 subsets with one used for testing
and the remaining 16 records used to construct the deci-
sion tree. This was repeated for other subsets so that all
subsets were used as the testing sample.

Results

Conventional HRY parameters

All assessed conventional HRV parameters (except mean
IHR) in the time domain (SDNN, RMSSD) as well as fre-
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quency domain (LF, HF) were reduced in CAN+ patients
(Table 2). However, results are not statistically significant.

Poincaré plot indexes

Seventeen ECG recordings were analysed. Two represent-
ative examples of IHR time series and their corresponding
Poincaré plots taken from the HRV patterns of CAN+ and
CAN- DM patients are presented in Figure 1. The IHR (Fig-
ure 1A) of a CAN- subject with mean IHR of 61 + 2 bpm,
and its corresponding Poincaré plot (Figure 1B) with
indexes SD1 = 2.32, SD2 = 6.67, SD1/SD2 = 0.34, are vis-
ually different from the IHR characteristics of a CAN+ sub-
ject (Figure 1C) with similar mean IHR 61 + 1 bpm, and
its corresponding Poincaré plot (Figure 1D) with indexes
SD1=1.49,SD2 =3.24,SD1/SD2 = 0.46. Table 2 summa-
rizes the results from average values of Poincaré indexes of
the two groups. Although a marked reduction of SD1 and
SD2 in the CAN+ group was observed, no significant dif-
ferences were found.

The principle of Poincaré plot construction is taken from
nonlinear dynamics theory, but indexes used for its quan-
tification are essentially linear [11]. However, this plot
can provide supplementary information about beat to
beat HRV structure which cannot be obtained by conven-
tional time and frequency domain analysis [22]. From the
Poincaré plot indexes, CAN+ subjects had all measures
reduced (Table 2). The decreased long term HRV (repre-
sented by the length, SD2) and decreased beat to beat
HRV (represented by the width, SD1) was expected in
CAN+ patients as the reduction of Poincaré plot indexes
(SD1, SD2) was confirmed in other studies with parasym-
pathetic nervous system dysfunction [23,24].

SD1/SD2 represents the ratio of short term and long term
variability. The smaller SD1/SD2 ratio for the CAN+ sub-
jects reflects that a lower percentage of its overall variance
is beat-to-beat variance. However, no significant differ-
ence was found between the SD1/SD2 ratio values of the
two groups.

SampEn values of IHR of CAN+ and CAN-

To explore the complexity of the heart rate variability, the
sample entropy (SampEn) of the IHR signals was calcu-
lated. Figure 2 demonstrates the change of SampEn with
m=2andr=0.1*SD to 0.9*SD of IHR data for CAN+ and
CAN- subjects. The mean values of SampEn of the CAN-
group were found to be higher than that of CAN+ at all r
values except at 0.8*SD. Statistically, CAN+ and CAN-
were found to be significantly different (p < 0.05) only at
r = 0.3*SD. SampEn values at different r values are sum-
marized in Table 3. Figure 3 shows the SampEn (m =2, r
= 0.3*SD) values of all subjects in this study. Lower values
of SampEn reflect more regular time series while higher
values are associated with less predictable (more com-
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Table 2: HRYV indices of CAN+ and CAN- groups
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CAN+ CAN- p value ROCarea
Mean HR (bpm) 69+7 65+8 0.30 0.65
SDNN (bpm) 4.55 + 1.6l 5.62+23 0.23 0.65
RMSSD (bpm) 343 = 141 457 £27 0.21 0.58
SDI (bpm) 243 = 146 3.23£226 0.50 0.61
SD2 (bpm) 5.95 % 1.50 725+2.16 0.33 0.56
SD1/SD2 0.39+0.15 042+ 0.11 0.60 0.70
LF (n.u.) 0.54 +0.14 0.61 +0.14 0.35 0.61
HF(n.u.) 0.38 +0.14 0.45+0.14 0.35 0.61
LF/HF 1.86 + 0.89 .63+ 1.70 0.07 0.68
SampEn (m = 2, r = 0.3*SD) 1.09 + 0.38* 1.48 + 0.39 0.04 0.79
Surrogated SampEn 1.73 £ 0.45# 1.96 £ 0.29 0.64 0.55

Mean % SD of HRV parameters of IHR (N = 1000 beats) of nine CAN+ and eight CAN- subjects. * significant (p < 0.05) difference between CAN+
and CAN-. # The values of d [see methods section for details] were found to be greater than 3 between SampEn and surrogated SampEn values of

the two groups.

plex) time series. The lower SampEn values for the CAN+
group indicates an increase in regularity and a decrease in
complexity in the IHR. A decrease in IHR complexity in
CAN+ group indicates the impairment of the cardiovascu-
lar control system as found in other studies [10,24]. In
order to prove if there are any physiological mechanisms
involved, the use of surrogate data analysis was employed
to remove the underlying control mechanism (time series
structure in beat to beat heart rate) and to increase the
degree of randomness. Mean values of the surrogate Sam-
pEn of IHR data in the CAN+ group (Table 3) were found
to be no more significantly (p > 0.05) different to the sur-
rogate SampEn in the CAN- group. Also the mean values
of the surrogate SampEn were found to be significantly (d
> 3) higher than that of the original SampEn values of IHR
data in both groups reflecting the effects of randomness.
Therefore, the fluctuations in beat to beat heart rate
dynamics are not randomly executed rather they are mod-
ulated by a cardiac regulation system which follows a
complex pattern in CAN- but changes with neuropathy in
CAN+ to a more regular, non-complex pattern.

Simple algorithm to identify CAN+

ROC curves were built separately for each HRV variable
(Table 2). SampEn appeared as the best variable for sepa-
rating the groups (ROC area = 0.79 shown in Figure 4A; p
= 0.04) Results of the optimal but simple tree built using

CART methodology are presented in Figure 5 (Tree A & B).
Tree A uses SampEn only and tree B uses SD1/SD2 values
in addition to SampEn. The SampEn represents the most
important variable (first node) followed by SD1/SD2. The
cut off values for SampEn and SD1/SD2 to decide 'yes' or
'no' were found to be 1.56 and 0.26 respectively. The sen-
sitivity reached was 100% for both trees but the specificity
reached 75% when the two variables were used.

Discussion

Participants in the study were identified as CAN+ by the
use of the lying to standing HRV (LS-HRV) test as sug-
gested by Ewing and others to be useful as an indicator of
autonomic dysfunction in clinical testing Ewing [5,25].
The use of one test only was based on several disadvan-
tages associated with tests of the 5-test Ewing battery. Thus
the Valsalva and sustained handgrip test depend on
patient effort and compliance. The postural fall of blood
pressure may be unreliable as in people with diabetes it
varies throughout the day, being linked to the timing of
insulin injections and patients with fluid retention may
have extensive autonomic damage but without postural
hypotension. Assessment of heart rate associated with
deep breathing requires special equipment that indicates
depth and cycle of breathing [9]. In addition it has been
recommended by diabetologists that the use of lying to
standing heart rate change is clinically acceptable [6]. The
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Poincaré plots. Top panels show IHR time series from a CAN- subject (A) and the corresponding Poincaré plot (C). Bottom
panels show IHR time series from a CAN+ (B) and the corresponding Poincaré plot (D).

group of participants analysed are representative of the
general cohort attending the clinic expect that they are not
hypertensive nor are on antihypertensive or antiarrhyth-
mic medication. This selection was necessary to identify
changes in HRV due to diabetes rather than including con-
founding variables such as antihypertensive medication
[26].

Our investigations using time and frequency, Poincaré
plot and SampEn of HRV demonstrate the use of variabil-
ity and complexity analysis in cardiac dynamics in diabe-
tes patients where the complexity of heart rate decreases in
patients with cardiac autonomic neuropathy compared to
those without. The major finding of this study shows that
as compared to conventional HRV indices and Poincaré
plot parameters, SampEn of HRV based on the complexity
information of heart rate was able to better distinguish
diabetic patients with cardiac autonomic neuropathy
from the diabetic patient without cardiac autonomic neu-
ropathy.

Although statistically not significant possibly due to small
sample size, CAN+ appears to be accompanied by a reduc-
tion in heart rate variability indices as measured by
SDNN, RMSSD, SD1, SD2 (Table 2). In another study [9],

a reduction in HRV was regarded as one of the early signs
of cardiac autonomic neuropathy. The characteristic find-
ings of that study in adult diabetic patients with cardiovas-
cular autonomic neuropathy showed resting tachycardia
and mostly reduced HRV, which was thought to be the
earliest sign of cardiac autonomic dysfunction. In our
study we did not find any significant difference in HRV
indices between diabetic patients with and without CAN,
but we found reduced time and frequency domain HRV
parameters in CAN+ patients. These findings are in agree-
ment with a previous study [24], where the non-signifi-
cant difference in resting mean heart rate was often
accompanied by significant differences in conventional
HRV parameters in diabetic patients of various ages. These
findings indicate possible dysfunction of sympathetic and
parasympathetic component of autonomic nervous sys-
tem in diabetic patients with CAN. Task force [15] pro-
posed standard HRV measures that use heart period
signals (RR intervals). In this study, we utilized the same
mythologies using heart rate signals (IHR points). It could
be argued that since the relationship between IHR and RR
intervals is nonlinear, different conclusions on the behav-
ior of HRV can be obtained from the same experiment
according to the signal selected. In this study IHR was
used because it is simple to understand heart rate rather
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Error bars. Mean and standard deviation of SampEn values of IHR signals(N = 1000 beats) of CAN- (blank circle) and CAN+
(black circle) patients over the various r (= k*SD).*means significant (p < 0.05) difference. SD = Standard deviation of IHR.

than RR intervals. Recent research results [27] show that
no appreciable difference was observed in the estimation
of LF/HF power ratio, LF (normalized) and HF (normal-
ized) power of IHR and RR intervals. This is expected
because these indexes refer only to features of the spectral
shape but do not take into account the absolute value of
the spectral components. In this study, we adopted the
normalized spectral measures rather than the absolute
values (see Table 2).

The major aim of our study was to identify if complexity
information of HRV is able to distinguish cardiac dynamic
changes of diabetic patients with CAN from those without
CAN. The complexity of HRV patterns as measured by
SampEn, was found to be significantly lower in CAN+
subjects [Table 2]. This important association between
variability and complexity organization of heart beat fluc-
tuations may be specific for the process of CAN and sug-
gests that there are alterations in the cardiac control
mechanism associated with CAN. More specifically, the
reduced SampEn of heart rate complexity with CAN sug-
gests a reduced responsiveness of the cardiac control
mechanism to external and internal stimuli and thus a
reduced strength of feedback interactions.

A complex system is characterized by inherent limitations
in the ability to predict the long-term or emergent behav-
ior of the system. Complexity only increases if the non-
linear interactions between structural components actu-
ally increase [28]. A defining feature of healthy physiolog-
ical function is adaptability and the capacity to respond to
unpredictable stimuli and stresses. Goldberger et al [29]
reported that the absence of a characteristic component in
pathology inhibits the emergence of highly periodic
behaviors (modelocking), which would greatly narrow
functional responsiveness as seen in our results for the
CAN+ group. Transitions to strongly periodic dynamics
are observed in many other pathologies apart from CAN,
including Parkinson's disease (tremor), obstructive sleep
apnea, sudden cardiac death, epilepsy, and fetal distress
syndrome, to name but a few [30]. The appearance of
highly ordered dynamics with pathologic states exempli-
fies the concept of complexity loss in disease.

In contrast to Goldberger's hypothesis, Vaillancourt and
Newell [30] noted increased complexity and increased
approximate entropy in several disease states, including
acromegaly and Cushing's disease, and hypothesized that
disease may manifest with increased or decreased com-
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Table 3: Sample entropy values of CAN+ and CAN- groups

CAN+ CAN- p values
SampEn (m=2,r=0.I1SD) 144+042 148+039 0501107
SampEn (m=2,r=02SD) 1.24+053 1.48+0.39 0.437903
SampEn (m=2,r=0.3SD) 1.09+£0.38 1.48+0.39% 0.04543I
SampEn (m=2,r=04SD) 0.99+040 1.0l £046 0.885458
SampEn (m=2,r=0.5SD) 0.69+0.36 0.89+0.37 0.136328
SampEn (m=2,r=0.6SD) 0.68+0.37 0.66+0.16 0.259022
SampEn (m=2,r=0.7SD) 0.56 £0.36 0.56 £0.23  0.485993
SampEn (m=2,r=0.8SD) 0.5l £0.36 043 +0.21 0.647036
SampEn (m=2,r=0.9SD) 0.30%0.14 043021 0.319756

Mean * SD of SampEn (m = 2, N = 1000) values of CAN+ and CAN-
groups with r values (0.1~0.9SD). * significant (p < 0.05) difference
between CAN+ and CAN-.

plexity, depending on the underlying dimension of the
intrinsic dynamic (e.g. oscillating versus fixed point). A
rebuttal to the rebuttal (all published concurrently) [31]
noted that others accept the fundamental premise that
increased and decreased variability occur in disease.

Pincus provided a mechanistic interpretation of lowered
approximate entropy values clinically linked to compro-
mised physiology, based on mathematical analysis, yet
linked to physiology [32]. Javorka [24,33] observed
reduced entropy values of HRV signals in diabetic patients
in compared to control group but did not separate CAN+
and CAN- participants. Flynn et al. indicated a lower
detrended fluctuation in patients with CAN+ compared to
CAN- [34]. The present observations demonstrate that
SampEn decreases in CAN+ patients relative to CAN- dia-
betic subjects. Statistical results show that the choice of r
= 0.3 is the optimal choice to use for categorization as
parameter tuning in entropy methods is crucial for their
performance. By selecting an appropriate value r in the
SampEn algorithm, higher discrimination between CAN-
and CAN+ can be achieved. We speculate that it allows an
optimal tolerance limit for pattern matching maximizing
the difference in SampEn values of the two groups. Opti-
mal selection of m and r has been unexplored area. Pincus
interpreted the Approximate Entropy (ApEn) of HRV in
infants that r values smaller than 0.1SD causes poor con-
ditional probability (C;(r)) estimates whereas for r values
larger than 0.25 SD, too much detailed system informa-
tion is lost [35]. Lewis et al [36] suggested for estimating
SampEn, which was designed to reduce the bias of ApEn

http://www.biomedical-engineering-online.com/content/8/1/3

that there were some differences in the optimal m and r
combinations for different physiological states. In
another study on SampEn of HRV, Lake proposed to cal-
culate SampEn for a range of r and select the value that
optimizes an efficiency matrix [37]. As 1 increases, the
practical concern is that the probability of matches or the
conditional probability tends toward 1 and SampEn tends
to 0 for all, thereby reducing the ability to distinguish any
salient feature in the dataset [37]. In this study, as SampEn
at r = 0.3SD can better distinguish the CAN+ from CAN-,
we speculate that due to higher variability in IHRs of
CAN+/- subjects, an r value at 0.3SD can still retain the
detailed information in extracting complexity/regularity
information of HRV structures in diabetic subjects.

Our results using SampEn and the Poincaré plot also
showed three false positive cases. The three cases may be
in the early stage of autonomic neuropathy which is under
the sensitivity limit of the lying to standing heart rate test
employed to classify into CAN+ and CAN- in our investi-
gation. The combination of the two nonlinear measures
of HRV, i.e., SD1/SD2 ratio and SampEn show better accu-
racy in identifying cardiac autonomic neuropathy. SD1/
SD2 describes a relationship between microscopic and
macroscopic variability. On the other hand, SampEn
extracts the complexity information, a nonlinear behav-
iour. A combination of complexity structure and scale
invariant structure of heart rate could be a useful measure
of dynamical stability of autonomic nervous system func-
tion underlining the possible benefit in cardiac dysregula-
tion diagnosis. This corroborates previous discussion in
the literature that nonlinear measures are more sensitive
compared to the Ewing battery or individual tests form the
Ewing battery.

The range of the SampEn measure needs to be evaluated
in non-diabetic control subjects to elucidate the effect of
diabetes on heart rate complexity and a deviation from
normal, where either an increase or a decrease, should be
observed in CAN+/- diabetic subject. Future research will
show whether a change in the unpredictability or ran-
domness of beat to beat heart rate dynamics is associated
with cardiovascular autonomic neuropathy in diabetes or
with diabetes only.

Conclusion

In conclusion, the results of the investigation indicate dys-
function of the autonomic control of heart rate in DM
patients with CAN+. HRV complexity analysis using short
term ECG traces could be effective in detecting CAN. Fur-
ther research on a large sample size is required to further
elucidate the findings of this study and effectiveness of
HRV complexity analyses for differentiation between mild
and severe CAN+ in diabetic patients.
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Figure 4

ROC curves. ROC (receiver operating characteristics) curves showing true positive (sensitivity) and false positive rate (I-spe-
cificity) for various thresholds using sample entropy (SampEn) (Panel A) and SD1/SD2 (Panel B) across 9 CAN+ subjects and 8
CAN- subjects. Areas under ROC curves are 0.79 and 0.70 for SampEn and SD1/SD2 respectively.
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Tree B

Tree A

; SampEn<l.56
SampEn<].56 iy

P oAl SD1/SD2<0.26 CAN
FN=0

FP=3 FN=0 TN=5
TP=9 TN=5

CAN- CAN+

FN=0 FP=2

TN=1 TP=9

Figure 5

Tree classifications. Classification tree illustrating the
combination of threshold values of SampEn and SD1/SD2,
characterizing CAN+/- in the study. Tree (A) shows accuracy
= 82.35%, sensitivity = 100% and specificity = 62.5%. Tree (B)
shows accuracy = 88.24%, sensitivity = 100% and specificity =
75.0%. All individual numerical values are indicative of the
number of subjects in each terminal node of the tree. TP:
true positive, FP: false positive, TN: true negative; FN: false
negative.
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