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Abstract
A recently developed machine learning algorithm referred to as Extreme Learning Machine (ELM)
was used to classify machine control commands out of time series of spike trains of ensembles of
CA1 hippocampus neurons (n = 34) of a rat, which was performing a target-to-goal task on a two-
dimensional space through a brain-machine interface system. Performance of ELM was analyzed in
terms of training time and classification accuracy. The results showed that some processes such as
class code prefix, redundancy code suffix and smoothing effect of the classifiers' outputs could
improve the accuracy of classification of robot control commands for a brain-machine interface
system.

Introduction
A brain-machine interface (BMI) is a communication
channel, which transforms a subject's thought processes
into command signals to control various devices, for
example, a computer application, a wheelchair, a robot
arm, or a neural prosthesis. Many studies have been made
on the prediction of human voluntary movement inten-
tion in real-time based on invasive or noninvasive meth-
ods to help severely motor-disabled persons by offering
some abilities of motor controls and communications. A
noninvasive method records electroencephalographic
(EEG) signals and extracts intentional traits or movement-
related EEG features, such as the P300 component of an
event-related evoked potential [1], EEG mu rhythm con-
ditioning [2-4], or visually evoked potential [5]. Noninva-
sive methods have low spatial resolution since they take
readings from the entire brain rather than a specific part of

the brain [6]. On the other hand, an invasive method
delivers better signal quality at the expense of its invasive
characteristic. Its typical approaches include electrocorti-
cograms [7], single neuron recordings [8], or multi-neu-
ron population recordings [9]. Advanced researches on
invasive methods are being actively pursued with the aim
of recovering complex and precise movements by decod-
ing motor information in motor related brain areas
[10,11]. Naturally, such researches have raised the hopes
of paralyzed people. Due to the advances of science and
medical technologies, life expectancy has increased. As the
person's age increases, the development of multiple
chronic conditions increases. The number of motor-disa-
bled and solitary aged people also increases. However, the
resources needed to care for the aged is not meeting the
demands. A virtual reality linked to a general purpose BMI
could be an alternative for the shortcoming resources on
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the arrival of aging society and the need of assistive tech-
nology.

Figure 1 shows a block diagram of the BMI system devel-
oped in our previous study [12]. The BMI system was
composed of data acquisition, feature extraction, source
selection, coding, and control units. In the data acquisi-
tion unit, neuronal signals recorded from CA1 region of
the rat brain were amplified, filtered, sorted, and trans-
formed into m spike trains sj, j = 1,2, �, m in real-time,

where  and  denotes the time of

occurrence of the p'th spike emitted by the j'th neuron.
Each spike train during a time interval (0, T] was trans-

formed into time series data  in the

feature extraction unit, where  and z

= T/Δt and Δt = ti - ti-1 is the bin size of the time series data.

The neuronal response function ρj (ti) was evaluated as

sums over spikes from j'th neuron for 0 ≤ t ≤ iΔt [13]. The
correlation coefficients rjk and the partial correlation coef-

ficients rjk,l of the time series data were then calculated

using the equations given in reference [14]. The correla-
tion coefficient rjk measures the correlation between the

time series data Xj and Xk. The partial-correlation coeffi-

cient rjk measures the net correlation between the time

series data Xj and Xk after excluding the common influence

of (i.e., holding constant) the time series data Xl [13]. The

source selection unit classified the time series data Xj into

two groups, correlated, and uncorrelated groups, accord-
ing to the values of the correlation coefficients. Each
group was again subdivided into two subgroups based on

the values of the partial correlation sj1coefficients of its

elements. Two spike-trains  and  were then

selected, where the corresponding time series data 

and  were belong to the uncorrelated group but not in

the same subgroup. In result,  and  were independ-

ent each other as well as had large difference in their cor-

relations with other spike trains . The coding unit

coded a series of motor functions into the spike train 

and  by an coding function  and trans-

formed in real-time the relative difference between the

neuronal activities of the spike trains  and  into a

command signal corresponding to one of the motor func-
tions. The control unit received the command signal from
the coding unit and executed it correspondingly to control
a water disk or a robot of the BMI system.

The aim of this study was to see an efficient usability of
ensembles, simultaneously recorded many single units for
the generation of specified directional commands in a
BMI system for a rat to manipulate an external target on a
two-dimensional space to achieve rat's volition. For this
purpose, ELM was used to classify machine control com-
mands out of time series spike trains of 34 simultaneously
recorded CA1 hippocampus neurons.

Materials and methods
The practical usability and the efficiency of the presented
BCI system were tested by experiments of a 'water drink-
ing' task using 11 rats. The subject was to control the
degree and the direction of the rotation of the wheel with
its neuronal activities of the SI cortex to access water in the
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A block diagram of the BMI system.
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WD task. The water was contained in one-quarter of a cir-
cular dish positioned on top of the wheel. The experi-
ments were carried out with approval from the Hallym
University Animal Care and Use Committee. Adult male
or female SPF Sprague-Dawley rats weighing 200-220 g
were used. Two multi-wire recording electrodes arrays
(eight channels for each array, tungsten microwire, A-M
systems, USA, 75 mm diameter, Teflon-coated) were
implanted bilaterally into the SI vibrissae area of both
right (RH) and left (LH) hemispheres of each rat. Lesions
were made to the vibrissae motor cortices in both hemi-
spheres. Infraorbital and facial nerves were bilaterally sec-
tioned to prevent a sensory input from and a motor
output to whisker pads. Four weeks after the lesions, the
rats were deprived of water for 24 h. Each rat was then
placed in front of the wheel to perform the WD task for a
trial of an experimental session. Three experimental ses-
sions were carried out over six days for each rat. The rat
was deprived of water for 24 h before each session. A ses-
sion comprised 40 s preprocessing, five 300 s trials, and a
300 s rest period between trials. In the preprocessing, the
spike trains from the SI cortex of the rat were assessed by
the correlations among them, two spike trains sj1 and sj2
were selected, and then a series of motor functions were
encoded into them. The bin size Dt used in the feature
extraction unit was 200 ms. A critical value, rc of the cor-
relation coefficient was estimated at the significance level
of 0.05 to categorise spike trains to the uncorrelated
group, e.g. rc 1/4 0.098 for the sample size n 1/4 400.
Seven motor functions were set up for the directions and
the degrees of the rotation of the wheel, which were
embodied by seven command signals Cq for q 1/4 _3, _2,
..., 3. The absolute value and the polarity of the subscript
q of the command signal described the direction and the
number of the step of the wheel rotation, respectively. If it
was positive, the resulting direction was clockwise (CW),
and if negative, in a counter-clockwise (CCW) rotation on
the rat side. One-step (C_1) rotation turned the wheel
exactly 14.5_, two-step (C_2), 21.5_, and three-step
(C_3), 28.5_. In case of zero-step (C0) rotation the wheel
was not to turn. During the trials, the relative difference
between the neuronal activities of the spike trains sj1 and
sj2 were evaluated and categorised into one of the motor
functions by the encoding function f (sj1, sj2) and then
one of the seven command signals Cq was generated every
200 ms. Then, an Intel i80196 microprocessor in the con-
trol unit received the command signal, Cq, and executed
it correspondingly. The implanted electrodes to a pream-
plifier whose outputs were sent to a data acquisition sys-
tem (Plexon Inc., Dallas, TX, USA) for online multi-
channel spike sorting and unit recording.

ELM is a novel learning algorithm for Single hidden Layer
Feed-forward Neural networks (SLFNs) which is a kind of
artificial neural network. That has the advantage of very

fast learning speed and high accuracy [15]. Preceding
researches reported ELM can learn thousands of times
faster than conventional popular learning algorithms for
feed forward neural networks like back propagation neu-
ral network (BPNN) without accuracy loss. Because of
these advantages, ELM has many possibilities to be
adapted to many applications. ELM overcoming defects of
BPNN is a novel learning algorithm for SLFN. BPNN is a
generally used learning algorithm for artificial neural net-
work among gradient-based algorithm. Gradient-based
algorithm adjusts weights between neurons from output
layer to input layer. Because of this process, there exists
dependency between input weights and output weights.
Some researches have shown that SLFNs having including
N hidden neurons with randomly chosen input weights
can learn N distinct patterns with randomly small error
[6]. ELM is based on this result and has learning process
using random chosen input weights and biases of hidden
neurons [5]. For approximation of SLFNs, when we have
N random distinct samples (xi, ti), we can model SLFNs as
eq. (1),

Where xj = [xj1, xj2, �, xjn]T, tj = [tj1, tj2, �, tjm]T represents j
th input vector and output vector, bi is bias of i th hidden
neuron, wi = [wi1,wi2, �,win]T input weight vector connect-
ing ith hidden neuron to input layer, βi = [βi1, βi2, �, βim]
output weight vector connecting ith hidden neuron to
output layer, and SLFNs have Nh hidden neurons and acti-
vation function g(·). The eq. (1) is represented by matrix
equation as:

Each component of H represent output of hidden layer.
When input weights wi and biases bi of hidden neuron are

invariable, H is determined with input vector xj. In that

case, SLFNs are linear system. So, In case of H has inverse

matrix, we can get β through H-1·T. But generally number
of samples is greater than number of hidden neurons, H
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is a nonsquare matrix and there may not exist H-1. The

optimal output weights  guarantee minimum difference

between Hβ and T as:

Using Moor-Penrose generalized inverse H† we can get
minimum norm least-squares solution of (3).

That case has the optimum value of [5].

The process of ELM for SLFMs learning algorithm is
expressed below:

Choose random values for input weights wi and biases bi
of hidden neurons.

Calculate hidden layer output matrix H.

Obtain the optimal  using  = H†T.

Because learning process of ELM randomly choose the
input weights and analytically determine the output
weights of SLFNs, there are no iteration processes and that
means extremely smaller learning time of ELM than
BPNN.

The universal approximation capability of ELM is also crit-
ical to show that ELM theoretically can be applied in such
applications. ELM has some versions such as I-ELM [16],
C-ELM [17] and EI-ELM [18]. I-ELM [16] means incre-
mental ELM. According to conventional neural network
theories, single-hidden-layer feed forward net-
works(SLFNs) with additive or radial basis function (RBF)
hidden nodes are universal approximators when all the
parameters of the networks are allowed adjustable. How-
ever, as observed in most neural network implementa-
tions, tuning all the parameters of the networks may cause
learning complicated and inefficient, and it may be diffi-
cult to train networks with no differential activation func-
tions such as threshold networks. Unlike conventional
neural network theories, I-ELM proves in an incremental
constructive method that in order to let SLFNs work as
universal approximators, one may simply randomly
choose hidden nodes and then only need to adjust the
output weights linking the hidden layer and the output
layer. C-ELM [17] means Complex ELM. C-ELM extends
the ELM algorithm from the real domain to the complex
domain, and then applies the fully complex extreme
learning machine (C-ELM) for nonlinear channel equali-
zation applications. The simulation results show that the
ELM equalizer significantly outperforms other neural net-
work equalizers such as the complex minimal resource
allocation network (CMRAN), complex radial basis func-
tion (CRBF) network and complex back propagation
(CBP) equalizers. C-ELM achieves much lower symbol
error rate (SER) and has faster learning speed. EI-ELM [18]
means enhanced method for I-ELM. An incremental algo-
rithm referred to as incremental extreme learning
machine (I-ELM) was proposed by Huang et al. [16].
which randomly generates hidden nodes and then analyt-
ically determines the output weights. Huang et al. [16]
have proved in theory that although additive or RBF hid-
den nodes are generated randomly the network con-
structed by I-ELM can work as a universal approximator.

β̂β

H T HH T T H Yˆ minββ ββ
ββ

− = − = −† (3)

β̂β

β̂β β̂β

Rat's neural signalFigure 2
Rat's neural signal.

Performance evaluation processFigure 3
Performance evaluation process.
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During recent study, it is found that some of the hidden
nodes in such networks may play a very minor role in the
network output and thus may eventually increase the net-
work complexity. In order to avoid this issue and to
obtain a more compact network architecture, this paper
proposes an enhanced method for I-ELM (referred to as
EI-ELM). At each learning step, several hidden nodes are
randomly generated and among them the hidden node
leading to the largest residual error decreasing will be
added to the existing network and the output weight of
the network will be calculated in a same simple way as in
the original I-ELM. Generally speaking, the proposed
enhanced I-ELM works for the widespread type of piece-
wise continuous hidden nodes.

Results
Figure 2 shows firing rates of CA1 single units used in this
study. The data means sorted cells' firing rate at 200 ms
sampling rate. Spike trains of simultaneously recorded 34

single units for 10 min were used for ELM training (Figure
3) and those for another 10 min were used for testing pur-
pose (Figure 4). When we executed classification for raw
data, 3000 samples by 34- sorted cells, using ELM classi-
fier, the accuracy of validation was just below 30% (Figure
5). Therefore, we made several processes for enhancing
the classifier performance (Figure 6). First, we allocated
class code 0 ~ 5 by 5 event bits such as Event1 ~ Event5 in
table 1. Actually, each event bit meant the robot control
commands from rat's neural signals such as directions
(forward, backward, right, left) and steps. We put the class
code column as prefix of the raw data (Figure 7). As the
effect of class code prefix, the accuracy level was doubled
and became almost 50% as shown in figures 8 and 9.
However, when we increased the number of hidden neu-
rons, the training accuracy increased continuously, but
the testing accuracy decreased as illustrated in figure 10.
Thus, we made some redundancy code as suffix of event
bits to raw data. We already allocated class code by event
bits, but we left the event bits for enhancing classifier's
performance. In this way, the final data format became
3000 samples by 1 class code column, 34 sorted cells and
5 redundancy event bits as depicted in figure 4. As the
effect of redundancy code, when the number of hidden
neurons is increasing, the accuracy level increased almost
linearly as shown in figures 8, 9 and 10. Lastly, we tried to
enhance the classifier performance by post-processing
such as smoothing the classification algorithm's raw out-
puts. Figure 5 shows the smoothed data using moving
average filter. In figure 8, by smoothing effect, the training
accuracy became almost 100%. However, as illustrated in
figure 9, testing accuracy appeared to be very unstable and
reached only 60% when number of hidden neurons was
increased.

It seems strange to add class code prefix and redundancy
code suffix into the raw data for constructing input vectors
of the ELM algorithm or other learning algorithms. But
the code prefix or the redundancy code suffix is feature

Modified data formatFigure 4
Modified data format.

Smoothing effectFigure 5
Smoothing effect.
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vector for effective pattern classification not the target
label or target vector which the algorithm is supposed to
learn/predict. ELM algorithm extracts the feature vector
from input vectors and in the testing phase, it evaluates
the classification performance for output vectors using
feature vector.

In Figure 11, 12, we make some example that shows the
classification procedure using Extreme Learning Machine.
In Figure 11, the input vector is Rat's Neural Signal Raw
Data. ELM uses this input vector in training phase. More-
over, in testing phase, ELM evaluates the classification per-
formance for output vectors using two Feature Vectors
(Class Code Prefix, Redundancy Code Suffix). Figure 12

Training TimeFigure 6
Training Time.

Testing TimeFigure 7
Testing Time.
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shows real raw data that consists of Class Code Prefix,
Rat's Neural Signal Raw Data and Redundancy Code Suf-
fix). Output vector is treated as internal process in ELM.
Therefore, we can obtain final classification performance
from ELM.

Discussion
In this study, a recently developed machine learning algo-
rithm [19] referred to as Extreme Learning Machine (ELM)
was used to classify machine control commands, such as
directions (forward, backward, right, left) and steps, out
of time series spike trains of 34 simultaneously recorded
CA1 hippocampus neurons. Performance of ELM was

Training AccuracyFigure 8
Training Accuracy.

Testing AccuracyFigure 9
Testing Accuracy.
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analyzed in terms of training time and classification accu-
racy. The study showed that some processes such as class
code prefix, redundancy code suffix and smoothing effect
of the classifiers' outputs can obviously improve the clas-
sification accuracies of the commands used for the BMI
system [20].

In this study, at first, using the ELM classifier, the accuracy
of validation was just below 30%. This was quite natural
since commands of our BMI were encoded in every 200
ms by two neurons, such that one was for direction and
the other for distance. The rest of 32 neurons were not
directly used for BMI machine control. The 30% of valida-
tion accuracy may suggest that about 1/3 of simultaneous
recorded CA1 neurons in the vicinity of the two neurons

directly encoding commands were synchronously active
in every 200 ms [21].

Our results showed that adding class code column as pre-
fix of the raw data doubled the training accuracy up to
50% with incremental accuracy validation, but reduced
validation of testing accuracy as increasing the number of

Class code and redundancyFigure 10
Class code and redundancy.

Table 1: Class code allocation for 5 Events.

Event1 Event2 Event3 Event4 Event5 Class

0 0 0 0 0 0

1 0 0 0 0 1

0 1 0 0 0 2

0 0 1 0 0 3

0 0 0 1 0 4

0 0 0 0 1 5

The classification procedure using Extreme Learning MachineFigure 11
The classification procedure using Extreme Learning 
Machine.
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hidden neurons. This class code insertion appeared to
increase the tendency of other 32 neurons to behave in
synchronous to the two neurons, which were directly
responsible for command generation. However, their het-
erogeneous characteristics shaped by continuous interac-
tions with other modulation inputs [22], i.e., hidden
neurons of ELM, in the CA1 circuits might act against the
increase of testing accuracy for command generation.

The results of the current study demonstrated that adding
redundancy event bits in addition to the class code prefix
dramatically increased the classification accuracy espe-
cially when increasing the number of hidden neurons.
This feature of ELM could be used as a new BMI command
generation algorithm to either supplement or replace the
current threshold algorithm, where neural firing rates dur-
ing every 200 ms were classified by manually as one of
four activity ranges. This may increase the efficiency of the
BMI system, which may reduce the time for rat to utilize
the system for its own volition [23].

However, there are many things to be done in future stud-
ies. First, we need to obtain testing accuracy for each event
such as directions (forward, backward, right, left) and
steps. Second, it is necessary to make a comparison table
for each event that shows the correlation between actual
activities and estimated activities. Third, additional per-
formance evaluation parameters such as the sensitivity
and specificity should be calculated. Lastly, it is necessary
to compare the results of ELM methods to other classifiers
such as BPNN [24], support vector machine [25] and evo-
lutionary ELM [26].
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