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Abstract

Background: Poincaré plot is one of the important techniques used for visually representing the
heart rate variability. It is valuable due to its ability to display nonlinear aspects of the data sequence.
However, the problem lies in capturing temporal information of the plot quantitatively. The
standard descriptors used in quantifying the Poincaré plot (SD1, SD2) measure the gross variability
of the time series data. Determination of advanced methods for capturing temporal properties
pose a significant challenge. In this paper, we propose a novel descriptor "Complex Correlation
Measure (CCM)" to quantify the temporal aspect of the Poincaré plot. In contrast to SDI and SD2,

the CCM incorporates point-to-point variation of the signal.

Methods: First, we have derived expressions for CCM. Then the sensitivity of descriptors has been
shown by measuring all descriptors before and after surrogation of the signal. For each case study,
lag-1 Poincaré plots were constructed for three groups of subjects (Arrhythmia, Congestive Heart
Failure (CHF) and those with Normal Sinus Rhythm (NSR)), and the new measure CCM was
computed along with SDI and SD2. ANOVA analysis distribution was used to define the level of
significance of mean and variance of SDI, SD2 and CCM for different groups of subjects.

Results: CCM is defined based on the autocorrelation at different lags of the time series, hence
giving an in depth measurement of the correlation structure of the Poincaré plot. A surrogate
analysis was performed, and the sensitivity of the proposed descriptor was found to be higher as
compared to the standard descriptors. Two case studies were conducted for recognizing
arrhythmia and congestive heart failure (CHF) subjects from those with NSR, using the Physionet
database and demonstrated the usefulness of the proposed descriptors in biomedical applications.
CCM was found to be a more significant (p = 6.28E-18) parameter than SDI and SD2 in
discriminating arrhythmia from NSR subjects. In case of assessing CHF subjects also against NSR,

CCM was again found to be the most significant (p = 9.07E-14).

Conclusion: Hence, CCM can be used as an additional Poincaré plot descriptor to detect

pathology.
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Background

Poincaré plot is a geometrical representation of a time
series in a Cartesian plane. It has been shown to reveal
patterns of heart rate dynamics resulting from nonlinear
processes [1,2]. A two dimensional plot constructed by
plotting consecutive points is a representation of RR time-
series on phase space or cartesian plane [3]. Poincaré plot
is extensively used for qualitative visualization of physio-
logical signal. It is commonly applied to asses the dynam-
ics of heart rate variability (HRV) [1,4-7]. Tulppo et. al. [1]
fitted an ellipse to the shape of the Poincaré plot and
defined two standard descriptors of the plot SD1 and SD2
for quantification of the Poincaré plot geometry. These
standard descriptor represent the minor axis and the
major axis of the ellipse respectively as shown in figure 1.
The description of SD1 and SD2 in terms of linear statis-
tics, given by Brennan et. al. [2], shows that the standard
descriptors guide the visual inspection of the distribution.
In case of HRV, it reveals a useful visual pattern of the RR
interval data by representing both short and long term
variations of the signal [1,2]. The inherent assumption
behind using consecutive RR points is that the "present-
RR-interval" significantly influences the "following-RR-
interval". Various authors have shown that varying lags of
Poincaré plot give better understanding about the auto-
nomic control of the heart rate that influence the short
term and long term variability of the heart rate [8,9]. A sys-
tem can have different short and long term correlations on
different time scales. When the sampling interval is less
than the short time correlation length, then these short
time correlations can be predominantly seen [10]. So in
the context of short or long term variability any point can
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Standard Poincaré plot. A standard Poincaré plot (lag-1)
of RR intervals of a healthy person (N = 2000). SD| and SD2
represents the dispersion along minor and major axis of the
fitted ellipse.

http://www.biomedical-engineering-online.com/content/8/1/17

influence at least few successive points. Lerma et. al. [11]
reported that the current RR interval can influence up to
approximately eight subsequent RR intervals in the con-
text of the short term variability. In another study [12], the
authors examined the theoretical demand with different
lags and showed that there is a curvilinear relationship
between lag Poincaré plot indices for normal subjects,
which is lost in Congestive Heart Failure (CHF) patients.
Therefore, measurement from a series of lagged Poincaré
plots (multiple lag correlation) can potentially provide
more information about the behavior of Poincaré plot
than the conventional lag-1 plot measurements [11].

As mentioned earlier, standard descriptors SD1 and SD2
are linear statistics [2] and hence the measures do not
directly quantify the nonlinear temporal variations in the
time series contained in the Poincaré plot. Further, when
applied to the data sets that form multiple clusters in a
Poincaré plot due to complex dynamic behaviors, the
SD1/SD2 statistics yields mixed results. This is because the
technique relies on the existence of a single cluster or a
defined pattern [13,14]. Moreover, the limitations of the
SD1/SD2 analysis are important to understand when
attempting to investigate the physiological mechanisms
in a time series, or when analyzing data where the occur-
rence of nonlinear behavior may be a distinguishing fea-
ture between health and disease. Such a study will also
enable further studies in defining new descriptors for
Poincaré plot which is currently not being addressed by
researchers in this field. The necessity for such a study
arises from the fact that the visual pattern is relied upon
clinical scenarios and the application of the existing
standard descriptors in various studies has resulted in lim-
ited success.

Therefore, we hypothesize that any descriptor that cap-
tures temporal information and is a function of multiple
lag correlation, would provide more insight into the sys-
tem rather than conventional measurements of variability
of Poincaré plot (SD1 and SD2), which is a function of a
lag-1 correlation. In this study, we propose a novel
descriptor for Poincaré plot that can be applied to meas-
ure the multiple lag correlation of the signal. Unlike SD1,
SD2 and SD1/SD2 terms, the proposed measure incorpo-
rates the temporal information of the time series. In this
paper, we aim to evaluate all three descriptors (SD1, SD2
and CCM) of the Poincaré plot of RR intervals, and com-
pare their performance in differentiating arrhythmia and
CHF from normal subjects.

Standard Poincaré Plot Analysis

This section describes the standard descriptors of Poincaré
plot and their limitations. In this paper, we have used RR
interval time series signal to plot the Poincaré plot which
is denoted by RR,. We assume that a finite number of RR
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intervals are available and a wide-stationarity of the RR
interval as suggested in literature [2].

Standard Descriptors

A standard Poincaré plot of RR interval is shown in figure
1. Two basic descriptors of the plot are SD1 and SD2 and
their mathematical derivation can be found in [2]. The
line of identity is the 45° imaginary diagonal line on the
Poincaré plot and the points falling on the imaginary line
has the property RR,, = RR,, ;. SD1 measures the dispersion
of points perpendicular to the line of identity, whereas
SD2 measures the dispersion along the line of identity.
Fundamentally, SD1 and SD2 of Poincaré plot is directly
related to the basic statistical measures, standard devia-
tion of RR interval (SDRR), and standard deviation of the
successive difference of RR interval (SDSD), which is
given by the relation shown in equation 1 and equation 2.

SD1? = %SDSDz

=7 re(0) = 7 rr(1)

(1)

SD22 = 2SDRR? — L SDSD?
2 (2)

—2
=7rr(0) +7zr(1) — 2RR
where z(0) and g (1) is the autocorrelation function for

lag-0 and lag-1 RR interval and RR is the mean of RR
intervals. From equations 1 and 2, it is clear that the meas-
ures SD1 and SD2 are actually derived from the correla-
tion and mean of the RR intervals time series with lag-0
and lag-1. The above equation sets are derived for unit
time delay Poincaré plot. Researchers have shown interest
in plots with different time delays to get a better insight in
the time-series signal. Usually the time delay is multiple of
the cycle length or the sampling time of the signal [15].
The dependency among the variables are controlled by the
choice of time delay, and the most conventional analysis
is performed with higher order linear correlation between
points. In case of plotting the 2D phase space with lag-m
the equations for SD1 and SD2 can be represented as:

SD1? = gr(0) — ¥ gr(m) 3)
= SD1 = F(y gr(0), ¥ rr(m))

and

SD2% = ¥ p(0) + 7 gg(m) - 2RR” (4)
= SD2 = F(y g(0), ¥ rr(m))

where zp (m) is the autocorrelation function for lag-m RR
interval. This implies that the standard descriptors for any
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arbitrary m lag Poincaré plot is a function of autocorrela-
tion of the signal at lag-0 and lag-m.

Limitations of Standard Descriptors

The lack of temporal information is the primary limita-
tion of the standard descriptors of the Poincaré plot. SD1
and SD2 represents the distribution of signal in 2D space
and carries only spatial (shape) information. It should be
noted that many possible RR interval series result in iden-
tical plot with exactly similar SD1 and SD2 values in spite
of different temporal structure. In figure 2, two signals
with similar SD1 and SD2 values are shown to be different
in terms of temporal structure (bottom panels).

In a study [11], authors have shown that the measurement
from multiple lag Poincaré plot provides more informa-
tion than any measure from single lag Poincaré plot.
Indeed, the Poincaré plot at any lag m is more of a gener-
alized scenario, where other levels of temporal variation
of any dynamic system are hidden.

As shown in equation sets 3 and 4, for any m, the descrip-
tors SD1 and SD2 only indicate m lag correlation informa-
tion of the plot. This essentially conveys overall behavior
of the system completely neglecting its temporal varia-
tion. Figure 3 shows the Poincaré plot of RR interval time
series for three different lags. From the figure, it is obvious
that for any time series signal different lag plots give more
insight of the signal than a single lag plot. Hence, to reflect
temporal variation, we developed a descriptor to incorpo-
rate multiple lag correlation information, which we call as
Complex Correlation Measure (CCM). The proposed
descriptor is not only related to the standard descriptors,
but it also embeds temporal information, which can be
used in quantification of the temporal dynamics of the
system.

Methods

The development of a new descriptor, Complex Correla-
tion Measure (CCM) has been presented in this section.
Firstly, the theoretical development has been given, fol-
lowed by the analysis of the new measure with respect to
the standard descriptors, SD1 and SD2. Finally, data and
methodologies regarding the two case studies have been
discussed which is followed by a brief description of sta-
tistical analysis used in this study.

Complex Correlation Measure

In contrast to the SD1 and SD2, CCM evaluates point-to-
point variation of the signal rather than gross description
of the signal. Moreover, as will be seen later, CCM is a
function of multiple lag correlation of the signal. The pro-
posed descriptor CCM is computed in a windowed man-
ner which embeds the temporal information of the signal.
A moving window of three consecutive points from the
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Underlying temporal dynamics of a Poincaré plot. Poincaré plots with similar SD| and SD2 values with different tempo-
ral structure are shown. Top panel (A and B) shows the Poincaré plots (lag-m = 2) of two different RR intervals series of length
N (N = 1000) with SD1 (0.0424 and 0.0425) and SD2 (0.1185 and 0.1 185) values. The underlying temporal dynamics of first 20
points of the same RR intervals are shown in the bottom panel (C and D), which shows the visible difference among them.

Poincaré plot are considered and the area of the triangle
formed by these three points are computed. This area
measures the temporal variation of the points in the win-
dow. If three points are aligned on a line then the area is
zero, which represents the linear alignment of the points.
Moreover, since the individual measure involves three
points of the two dimensional plot, it is comprised of at
least four different points of the time series for lag m = 1
and at most six points in case of lag m > 3. Hence the
measure conveys information about four different lag cor-

relation of the signal. Now, suppose the i window is
comprised of points a(x1, y1), b(x2, y2) and ¢(x3, y3) then
the area of the triangle (A) for i" window can be com-
puted using the following determinant:

x1 oyl 1
A) = % x2 y2 1 (5)
x3 y3 1

where A is defined on the real line R and
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Forming triangles in calculating CCM. Poincaré plot of RR interval time series for three different lags (m = {l, 2, 3}) are
shown. It is obvious that for RR intervals with different lag plots give more insight of the signal than a single lag. Figure also
shows formation of triangles by dotted lines connecting three consecutive points at different lags (m = {l, 2, 3}) for 20 RR
intervals for calculating CCM. Sequence of points (RR,, RR,,,,) are plotted, where RR = {u|, uy, ......, up}.
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A(i)

0, if points a, b and c are on a straight line
> 0, counter clock-wise orientation the points a, b and ¢
< 0, clock-wise orientation of the points a, b and ¢

(6)

If Poincaré plot is composed of N points then the tempo-
ral variation of the plot, termed as CCM, is composed of
all overlapping three point windows and can be calcu-
lated as:

N-2
1 .
ceMm) = o~ ;IIA(I) I ()

where m represents lag of Poincaré plot and C,, is the nor-
malizing constant which is defined as, C,= 7 * SD1 * SD2,
represents the area of the fitted ellipse over Poincaré plot.
The length of major and minor axis of the ellipse are
2*SD1, 2*SD2, where SD1, SD2 are the dispersion per-
pendicular to the line of identity (minor axis) and along
the line of identity (major axis) respectively.

Let the RR time series be composed of N RR interval values
and defined as RR = uy, u,, .., uy. As shown in figure 3, the
lag-1 Poincaré plot consists of N - 1 numbers of 2-D set of
points PP € {R, R} can be represented by: PP = {(u,, u,),
(uy, u3), ... (un.1, Uy)} and similarly for lag of m, N - m
numbers of 2-D points are expressed as:

PP ={(uy, uy +m),(uy, iy +m),...,(Un_pm UN)}

Hence for lag-m Poincaré plot, the 1st window will be
composed of points {(uy, t1,,,), (Ua Up,p): (Us Us,,,)} and
from equation 5, the area A can be calculated as:

1
AQ) = E[“1”2+m = Ugllgyy  Usllypy = Upllypy + Ugllzy — Uzl

(8)

Similarly the 2"dand (N - m - 2)* window is composed of

points {(uy Up,p) (Uss Usym)r (Mg Ugyy) } and {(Unpar Uy
2)s (Uname1r Uno1)s (Une Uy)} Tespectively. Hence the area,
A, for 2nd and (N - m - 2)" window can be calculated as:

1
A(2) = 5[“2“3+m —UpUyy T ULUYy — Ul (9)

HUslyy — Uglisgpy]

1
AN-m=2)= E[uN—m—ZuN—l TUN-m-2UN T UN_mUN-2

—“UN_paUN-2 T UN_pUN ~ UN—mliN-1]
(10)
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Using equations 7, 8, 9 and 10, CCM(m) is calculated as
follows:

N-m

) _
CCM(m) = 2C(N-2) [t N+ Ul = Ul — Uyl + Uilli_p4m
n(N-2) £
N-m N-1-m N-2-m
-2 E Ul i + 2 Uillisym — E Uilliym)
i=2 i=1 i=

Since RR intervals are discrete signal, the autocorrelation
at lag m = j can be calculated as:

N
¥ re(J) :zRRnRRrHj (12)
n=1
Using equations 3, 4, 11 and 12, CCM(m) can now be
expressed as a function of autocorrelation at different lags.

Hence,

CCM(m) = Fy gr(0), ¥ gr(m — 2), ¥ e (m — 1), ¥ gp(m + 1), y gr(m + 2)]

In the above equation CCM(m) represents the point-to-
point variation of the Poincaré plot with lag m as a func-
tion of autocorrelation of lags 0, m -2, m -1, m + 1 and m
+ 2. This supports our hypothesis that CCM is measured
using multiple lag correlation of the signal rather than sin-
gle lag. For the conventional lag-1 Poincaré plot CCM(1)
can be represented as:

CCM(1) = Fly gr(=1), 7 ke (0), 7rr(2), 7 e(3)]  (13)

Analysis of Complex Correlation Measure(CCM)

In the previous section, we have given the mathematical
definition of CCM and have clearly shown that CCM con-
tains multiple lag correlation information of the signal. In
this section, we explore the different properties of CCM
with synthetic RR interval data. In our study, we used
4000 RR intervals of a synthetic RR interval (r702) time
series data from open access Physionet database [16] and
the signal was divided into 20 windows with 200 RR inter-
vals in each window.

Sensitivity to changes in temporal structure

Literally, the sensitivity is defined as the rate of change of
the value due to the change in temporal structure of the
signal. The change in temporal structure of the signal in a
window is achieved by surrogating the signal (i.e, data
points) in that window. In order to validate our assump-
tion we calculated SD1, SD2 and CCM of a RR interval sig-
nal by randomly surrogating points of each window at a
time.

Now the sensitivity of descriptors ASD1;, ASD2; and
ACCM; were calculated using equations 14-16:
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SD1;-SD1
AsD1, = 212770 (14)
J SD1g
SD2 ;-SD2
ASD2, = 212770 (15)
J SD2g
CCM ;—CCM
ACCM; = S TEY0 (16)
CCMg

where SD1, (= 0.36), SD2,, (= 0.08) and CCM, (= 0.16)
were the parameters measured for the original data set
without surrogation and j represents the window number
whose data was surrogated. Moreover, SD1; SD2; and
CCM,; represents the SD1, SD2 and CCM values respec-
tively after surrogation of j"» window. Since we divided the
entire signal in 20 windows, it resulted in 20 values of
SD1, SD2 and CCM.

Sensitivity to various lags of Poincaré plot

To verify the sensitivity of SD1, SD2 and CCM with vari-
ous lags of Poincaré plot, values of all descriptors were cal-
culated for different time delays or lags (m was varied
from 1 to 100). At each step, lag-m Poincaré plot was con-
structed for the synthetic RR interval series and then SD1,
SD2 and CCM values were calculated for the plot. As m
was varied from 1 to 100, it resulted in 100 values of SD1,
SD2 and CCM.

Case Studies

In order to validate the proposed measure - CCM, two
case studies were conducted on RR interval data. The data
from MIT-BIH Physionet database are [17] used in the
experiments. Medical fraternity has utilized Poincaré plot,
using both qualitative and quantitative approaches, for
detecting and monitoring arrhythmia. Compared to
arrhythmia, fewer attempts are made to utilize Poincaré
plot to evaluate CHF. In this study, we have analyzed the
performance of CCM and compared it with that of SD1
and SD2 for recognizing both arrhythmia and congestive
heart failure using HRV signal.

HRYV study of Arrhythmia and Normal Sinus Rhythm

In this study, we have used 54 long-term ECG recordings
of subjects in normal sinus rthythm (30 men, aged 28.5 to
76, and 24 women, aged 58 to 73) from Physionet Nor-
mal Sinus Rhythm database [17].

Furthermore, we have also used NHLBI sponsored Car-
diac Arrhythmia Suppression Trial (CAST) RR-Interval
Sub-study database for the arrhythmia data set from Phy-
sionet. Subjects of CAST database had an acute myocar-
dial infarction (MI) within the preceding 2 years and 6 or
more ventricular premature complexes (PVCs) per hour

http://www.biomedical-engineering-online.com/content/8/1/17

during a pre-treatment (qualifying) long-term ECG (Hol-
ter) recording. Those subjects enrolled within 90 days of
the index MI were required to have left ventricular ejection
fractions less than or equal to 55%, while those enrolled
after this 90 day window were required to have an ejection
fraction less than or equal to 40%.

The database is divided into three different study groups
among which we have used the Encainide (e) group data
sets for our study. From that group we have chosen 272
subjects belong to subgroup baseline (no medication).
The original long term ECG recordings were digitized at
128 Hz, and the beat annotations were obtained by auto-
mated analysis with manual review and correction [17].
lag-1 Poincaré plots were constructed for both normal and
arrhythmia subjects and the new measure CCM was com-
puted along with SD1 and SD2. The SD1 and SD2 were
calculated to characterize the distribution of the plots
whereas CCM were used for characterizing the temporal
structure of the plots.

HRYV study of Congestive Heart Failure(CHF) and Normal Sinus
Rhythm

For this case study, we have used 29 long-term ECG
recordings of subjects (aged 34 to 79) with CHF (NYHA
classes I, I and I1I) from Physionet Congestive Heart Fail-
ure database along with 54 ECG recordings of subjects
with normal sinus rhythm as discussed earlier [17]. Same
ECG acquisition with beat annotations were used as dis-
cussed in previous case study. Similar to previous case
study, lag-1 Poincaré plots were constructed for both nor-
mal and CHF subjects and the new descriptor CCM was
computed as per traditional descriptors.

Statistical Analysis

In this study we have used ANOVA analysis assuming
unknown and different variance for testing the hypothesis
regarding mean i.e., the mean of NSR and Arrhythmia
groups are equal. It suits our case studies as the sample
size is small. The same test has been used to test the
hypothesis for NSR and CHF group.

Results

Sensitivity to changes in temporal structure

From the mathematical definition of CCM, we anticipated
that CCM would be more sensitive to changes in temporal
structure within the signal than the standard descriptors.
In this study, the sensitivity is defined as the rate of change
of the value due to the change in temporal structure of the
signal. As shown in figure 4, value of ACCM is much
higher than ASD1 and ASD2 which indicates that CCM is
much more sensitive than SD1 and SD2 to changes in
underlying temporal structure of the data. This supports
the mathematical definition of CCM as a sensitive meas-
ure of temporal variation of the signal.
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Sensitivity to various lags of Poincaré plot

In figure 5, the relationship of CCM, SD1 and SD2 with
different time delays or lags (m was varied from 1 to 100)
are shown. Usually unit lag is used to create the Poincaré
plot which confirms the maximum linear correlation
among data points. Moreover, this lag selection may have
obscured the low level nonlinearities of the signal and as
a result CCM may be unable to show better performance
over standard poincaré descriptors. In contrast, at higher
lags, the standard descriptors are unable to capture the
system dynamics. It is also established in the literature
that studying behavior of descriptors as a function of lags
is more informative [12]. In our study, we have found that
over different lags, CCM shows more variability than SD1
and SD2. Among the three descriptors the change in val-
ues for CCM was higher than both SD1 and SD2 which
again supports our claim of sensitivity of CCM with signal
dynamics. Hence, we conclude that the change in under-
lying temporal structure due to lag of the Poincaré plot
has better impact on CCM than the traditional descrip-
tors.

HRYV studies of Arrhythmia and Normal Sinus Rhythm

Figure 6 shows the box-whiskers (BW) plot of all descrip-
tors for normal and arrhythmia subjects. For plotting pur-
pose, log value of all descriptors are used for BW plot.
Figure 6a, represents BW plot for log(SD1) and it is obvi-
ous that boxes (interquartile range) of normal and
arrhythmia subjects are non-overlapping. But the whisk-

T e e e
1.4t *
12t
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[&]
= —o— ASD1
2 osf 480
gﬁ +ASDZi
(Q— 0.6 —*—ACCMi
& o04f
<
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_ool ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
2 4 6 8 10 12 14 16 18 20
Window j
Figure 4

Sensitivity of descriptors with changed temporal
structure. Sensitivity of all descriptors with change in tem-
poral structure is shown. ASD1, ASD2 and ACCM are calcu-
lated using equations [4—16. Value of ACCM is much higher
than ASD| and ASD2 which indicates that CCM is much more
sensitive than SD| and SD2 to the changes in underlying tem-
poral structure of the data.
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Relationship of descriptors with different lag. Relation-

ship of descriptors with different time delays or lags (m = |

to 100) are shown. Values of SDI, SD2 and CCM were calcu-

lated for different lag-m of Poincaré plot with same number

of data points (N = 4000). It is found that over different lags,

CCM shows more variability than SD | and SD2.

ers (upper quartile) of normal subjects completely over-
laps with the whiskers (lower quartile) of the arrhythmia
subjects. In figure 6b, the BW plot of log(SD2) is shown
and it is apparent that the BW of normal subjects com-
pletely overlapped with the whiskers (lower quartile) of
the arrhythmia subjects. But the box of arrhythmia sub-
jects is still non-overlapping with the whiskers (upper
quartile) of the normal subjects. In figure 6¢, the BW plot
of log(CCM) is shown and it is obvious that both of them
are non-overlapping and distinct.

The p value obtained from ANOVA analysis between two
groups for SD1, SD2 and CCM are given in table 1. Using
ANOVA, for CCM, p = 6.28 x 10-18is obtained whereas for
SD1 and SD2, itis 7.6 x 103 and 8.5 x 10-3 respectively. In
case of p < 0.001 to be considered as significant, only CCM
would show the significant difference between two groups
which indicates that CCM is a better descriptor of HRV sig-
nal than SD1 and SD2 when comparing arrhythmia with
normal sinus rhythm subjects.

HRYV studies of Congestive Heart Failure(CHF) and Normal
Sinus Rhythm

The box-whiskers plot of all descriptors for normal and
CHEF subjects are shown in Figure 7. Figure 7a, represents
BW plot for log(SD1) and it is apparent that boxes (inter-
quartile range) of normal and CHF subjects are overlap-
ping. The BW of normal subjects is completely overlapped
with the box and whisker (lower quartile) of the CHF sub-
jects. In figure 7b, the box-whiskers plot of log(SD2) is
shown and boxes are apparently non-overlapped. But the
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Figure 6

Distribution of descriptor values for NSR and
Arrhythmia subjects. The distribution of descriptors are
shown using Box-whiskers (BW) plot (without outliers) of
(2) log(SD1), (b) log(SD2) and (c) log(CCM) for Normal Sinus
Rhythm (NSR, n = 54) and Arrhythmia (n = 272) subjects.
From panel g, it is obvious that boxes (interquartile range) of
normal and arrhythmia subjects are non-overlapping. But the
whiskers (upper quartile) of normal subjects completely
overlaps with the whiskers (lower quartile) of the arrhythmia
subjects. From panel b, it is apparent that the BW of normal
subjects completely overlapped with the whiskers (lower
quartile) of the arrhythmia subjects. But the box of arrhyth-
mia subjects is still non-overlapping with the whiskers (upper
quartile) of the normal subjects. From panel ¢, it is obvious
that both of them are non-overlapping and distinct.

BW plot of normal subjects mostly overlaps with the
whisker (upper quartile) of the CHF subjects. In figure 7c,
the BW plot of log(CCM) is shown to be non-overlapping
and only the upper quartile (box) and whisker of normal

http://www.biomedical-engineering-online.com/content/8/1/17

Table I: Mean % Standard deviation of all descriptors with p
values for NSR and Arrhythmia subjects

SDI SD2 M
NSR 0.03 +0.02 0.19 £ 0.04 0.05 +0.03
Arrhythmia 1.92£5.18 2.30 +5.86 0.26 + 0.08
p value (ANOVA) 7.60E-3 8.50E-3 6.28E-18

Mean + Standard deviation of SD1, SD2 and CCM for normal sinus
rhythm (NSR) and arrhythmia subjects. p value from ANOVA analysis
is given in the last row. Using ANOVA, for CCM, p = 6.28 x 10-18js
obtained whereas for SD| and SD2, it is 7.6 X 10-3and 8.5 x [0-3
respectively. In case of p < 0.001 to be considered as significant, only
CCM would show the significant difference between two groups
which indicates that CCM is a better descriptor of HRV signal than
SD1 and SD2 when comparing arrhythmia with normal sinus rhythm
subjects.

subjects are overlapped with the whisker (lower quartile)
of the CHF subjects.

The values of the mean and the standard deviation for
both types of subjects are shown in table 2. Last row rep-
resents the p value obtained from ANOVA analysis
between the two groups for SD1, SD2 and CCM. Though
SD2 and CCM show similar difference between the mean
of two subject groups, the standard deviation of CCM is
lower which concentrates with the distribution of CCM
values around mean comparing with that of SD2. The p
value, obtained from ANOVA analysis for CCM (p = 9.07
x 10-14) shows more significant than SD1 and SD2.

Discussion

The main motivation for using Poincaré plot is to visual-
ize the variability of any time series signal. In addition to
this qualitative approach, we propose a novel quantitative
measure, CCM, to extract underlying temporal dynamics
in a Poincaré plot. Surrogate analysis showed that the
standard quantitative descriptors SD1 and SD2 were not
as significantly altered as did CCM, this is shown in figure
4. Both SD1 and SD2 are second order statistical measures
[2], which are used to quantify the dispersion of the signal
perpendicular and along the line of identity respectively.
Moreover, SD1 and SD2 are functions of lag - m correla-
tion of the signal for any m lag Poincaré plot. In contrast,
CCM is a function of multiple lag (m -2, m - 1, m, m + 1,
m + 2) correlations and hence, this measure was found to
be sensitive to changes in temporal structure of the signal
as shown in figure 4.

From the theoretical definition of CCM it is obvious that
the correlation information measured in SD1 and SD2 is
already present in CCM. But this does not mean that,
CCM is a derived measure from existing descriptors SD1
and SD2. Rather, CCM can be considered as an additional
measure incorporating information obtained in SD1 and
SD2 (as the lag m correlation is also included in CCM
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Figure 7

Distribution of descriptor values for NSR and CHF
subjects. The distribution of descriptors are shown using
Box-whiskers (BW) plot (without outliers) of (a) log(SD1I),
(b) log(SD2) and (c) log(CCM) for Normal Sinus Rhythm
(NSR, n = 54) and Congestive Heart Failure (CHF, n = 29)
subjects. From panel g, it is apparent that boxes (interquar-
tile range) of normal and CHF subjects are overlapping. The
BW of normal subjects is completely overlapped with the
box and whisker (lower quartile) of the CHF subjects. In
panel b, boxes are apparently non-overlapped. But the BW
plot of normal subjects mostly overlaps with the whisker
(upper quartile) of the CHF subjects. In panel ¢, the BW plot
of log(CCM) is shown to be non-overlapping and only the
upper quartile (box) and whisker of normal subjects are
overlapped with the whisker (lower quartile) of the CHF
subjects.
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Table 2: Mean % Standard deviation of all descriptors with p
values for NSR and CHF subjects.

DI sD2 M
NSR 003+002 0.9+004 005+ 003
CHF 004+002 0.11£006 0.14+006
p value (ANOVA) 5.65E-4 5.04E-12 9.07E-14

Mean + Standard deviation of SD1, SD2 and CCM for normal sinus
rhythm (NSR) and congestive heart failure (CHF) subjects. p value
from ANOVA is given in the last row. Though SD2 and CCM shows
similar difference among the mean of two subject groups, the standard
deviation of CCM is lower which concentrates the distribution of CCM
values around mean comparing with that of SD2. The p value obtained
using ANOVA analysis for CCM (p = 9.07 x 10-'4) found more
significant than SD| and SD2.

measure). In a Poincaré plot, it is expected that lag
response is stronger at lower values of m and it attenuates
with increasing values of m. This is due to the dependence
of Poincaré descriptors on autocorrelation functions. The
autocorrelation function monotonically decreases with
increasing lags and in case of RR interval time series, usu-
ally the current beat influences only about six to eight suc-
cessive beats [12]. In our study, we also found that all
measured descriptors SD1, SD2 and CCM changed rapidly
at lower lags and the values are stabilized with higher lag
values (figure 5). Since, CCM is also a function of signals
autocorrelations, it shows a similar lag response to that
shown by SD1 and SD2. Therefore, CCM may be used to
study the lag response behavior of any pathological con-
dition in comparison with normal subjects, or controls.

HRV measure is considered to be a better marker for
increased risk of arrhythmic events than any other nonin-
vasive measure [18,19]. An earlier study has shown that
Poincaré plots exposed completely different 2D patterns
in the case of arrhythmia subjects [20]. These abnormal
medical conditions have complex patterns due to reduced
autocorrelation of the RR intervals. Consequently due to
the changes in autocorrelation, we have found that the
variability measure using Poincaré (SD1, SD2) was higher
than normal subjects (shown in table 1). Moreover, the
fluctuations of these variability measures were also very
high in the case of arrhythmias. This may be due to differ-
ent types of arrhythmia along with subjective variation of
HRV. In arrhythmia subjects, CCM was found to be higher
compared to NSR subjects, but the deviation due to sub-
jective variation is much smaller than SD1 and SD2. As a
result, CCM linearly separates these two groups of subjects
which means that the effect of different types of arrhyth-
mia and subjective variation are reduced while using CCM
than other variability measures. Therefore, we may con-
clude that CCM is a better marker for recognizing arrhyth-
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mia than the traditional variability measures of Poincaré
plot.

In another case study, we have shown as to how Poincaré
plot can be used to characterize CHF subjects from normal
subjects using RR interval time series. Compared to SD2,
SD1 and CCM values were found to be higher in CHF sub-
jects. This findings might indicate that the short term var-
iation in HRV is higher in CHF subjects, however, the long
term variation is reduced. Since CCM captures the signal
dynamics at short level (i.e, 3 points of the plot), it
appears to be affected by short term variation of the signal
in CHF subjects. In the case of recognition of CHF sub-
jects, although SD2 showed good result CCM was found
to be more significant as shown in table 2.

Above discussion indicates that CCM is an additional
descriptor of Poincaré plot with SD1 and SD2. This also
implies that CCM is a more consistent descriptor com-
pared to SD1 and SD2. Considering the presented case
studies, it is clear that neither SD1 nor SD2 alone can
independently distinguish between normal and pathol-
ogy. However, in the same scenario, CCM has the ability
to perform the classification task independently. This jus-
tifies the usefulness of the proposed descriptors as a fea-
ture in a pattern recognition scenario. Our primary
motivation for detecting pathology with a novel descrip-
tor like CCM rather than by observing visual pattern is
achieved as shown by the case studies described. In this
study, we have not looked at the physiological interpreta-
tion of CCM which remain to be studied in future. How-
ever, a few remarks on this would be appropriate. The
Poincaré plot reflects the autocorrelation structure
through the visual pattern of the plot. The standard
descriptors SD1 and SD2 summarizes these correlation
structure of RR interval data as shown by Brennan et. al.
[2]. CCM is based on the autocorrelation at different lags
of the time series hence giving an in-depth measurement
of the correlation structure of the plot. Therefore, the
value of CCM decreases with increased autocorrelation of
the plot. In arrhythmia, the pattern of the Poincaré plots
becomes more complex [20] and thus reducing the corre-
lation of the signal (RR;, RR;,,). In case of healthy subjects
the value of CCM is lower than that of arrhythmic sub-
jects. In future, it might be worth looking at the perform-
ance of CCM for other pathologies.

Conclusion

The proposed Complex Correlation Measure is based on
the limitation of standard descriptors SD1 and SD2. The
analysis carried out confirms the hypothesis that CCM
measures the temporal variation of the Poincaré plot. In
contrast to the standard descriptors, CCM evaluates point-
to-point variation of the signal rather than gross variabil-
ity of the signal. We have shown that CCM is more sensi-

http://www.biomedical-engineering-online.com/content/8/1/17

tive to changes in temporal variation of the signal. We
have further demonstrated that CCM varies with different
lags of Poincaré plot. Besides the mathematical definition
of CCM and analyzing properties of the measure, we have
also evaluated the performance of CCM using real world
case studies. CCM was found to be effective in the assess-
ment of both arrhythmia and CHF against normal sinus
rhythm. In future, CCM may be used as an efficient feature
for pathology detection.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

CKK conceived, derived and implemented the new
descriptor, collected the data and wrote the manuscript
with supervision of AHK and MP. AHK, JG and MP con-
tributed to the development of the new descriptor and
participated in the discussion and interpretation of the
results. In addition, AHK contributed to revision of the
manuscript. All authors read and approved the final man-
uscript.

Acknowledgements
Dr. Mak Adam Daulatzai read the manuscript and made improvement.

References

. Tulppo MP, Makikallio TH, Takala TES, Seppanen T, V HH: Quanti-
tative beat-to-beat analysis of heart rate dynamics during
exercise. Am | Physiol 1996, 27 1:H244-H252.

2. Brennan M, Palaniswami M, Kamen P: Do existing measures of
poincare plot geometry reflect nonlinear features of heart
rate variability. IEEE Trans on Biomed Engg 2001, 48:1342-1347.

3. Liebovitch LS, Scheurle D: Two lessons from fractals and chaos.
Complexity 2000, 5:34-43.

4. Acharya UR, Joseph KP, Kannathal N, Lim CM, Suri JS: Heart rate
variability: a review. Medical and Biological Engineering and Comput-
ing 2006, 44(12):1031-1051.

5. Tulppo MP, Makikallio TH, Seppanen T, Airaksinen JKE, V HH: Heart
rate dynamics during accentuated sympathovagal interac-
tion. Am | Physiol 1998, 247:H810-H816.

6.  Toichi M, Sugiura T, Murai T, Sengoku A: A new method of assess-
ing cardiac autonomic function and its comparison with
spectral analysis and coefficient of variation of R-R interval.
J Auton Nerv Syst 1997, 62:79-84.

7. Hayano ], Takahashi H, Toriyama T, Mukai S, Okada A, Sakata S,
Yamada A, Ohte N, Kawahara H: Prognostic value of heart rate
variability during long-term follow-up in chronic haemodial-
ysis patiens with end-stage renal disease. Nephrol Dial Trans-
plant 1999, 14:1480-1488.

8. Casolo G, Bali E, Taddei T, Amuhasi J, Gori C: Decreased sponta-
neous heart rate variability in congestive heart failure. Am |
Cardiol 1989, 64(18):1162-1167.

9.  Woo MA, Stevenson WG, Moser DK, Trelease RB, Harper RM: Pat-
terns of beat-to-beat heart rate variability in advanced heart
failure. Am Heart | 1992, 123(3):704-710.

10.  Thuraisingham RA: Enhancing Poincare plot information via
sampling rates. Applied Mathematics and Computation 2007,
186:1374-1378.

Il. Lerma C, Infante O, Perez-Grovas H, Jose MV: Poincare plot
indexes of heart rate variability capture dynamic adapta-
tions after haemodialysis in chronic renal failure patients.
Clin Physiol Funct Imaging 2003, 23(2):72-80.

12.  Thakre TP, Smith ML: Loss of lag-response curvilinearity of indi-
ces of heart rate variability in congestive heart failure. BMC
Cardiovascular Disorders 2006, 6(27):.

Page 11 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8760181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8760181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8760181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17111118
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17111118
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9021653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9021653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10383012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10383012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10383012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2816768
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2816768
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1539521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1539521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1539521
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12641600
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12641600
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16768800
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16768800

BioMedical Engineering OnLine 2009, 8:17

20.

Negro CAD, Wilson CG, Butera RJ, Rigatto H, Smith JC: Periodic-
ity, Mixed-Mode Oscillations, and Quasiperiodicityin a
Rhythm-Generating Neural Network. Biophysical Journal 2002,
82:206-214.

Schechtman VL, Lee MY, Wilson A}, Harper RM: Dynamics of res-
piratory patterning in normal infants and infants who subse-
quently died of the sudden infant death syndrome. Pediatric
Research 1996, 40:571-577.

Brennan M, Palaniswami M, Kamen P: Poicare plot interpretation
using a physiological model of HRV based on a network of
oscillators. Am J Physiol Heart Circ Physiol 2002, 283:1873-1886.
Website TP: Computers in Cardiology Challenge 2002 (CinC
2002): RR Interval Time Series Modelling. 2002 [http:/
www.physionet.org/challenge/2002/].

Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark
RG, Mietus JE, Moody GB, Peng CK, Stanley HE: PhysioBank, Phys-
ioToolkit, and PhysioNet: Components of a New Research
Resource for Complex Physiologic Signals. Circulation 2000,
101(23):e215-e220.

Eisenberg MJ: Risk stratification for arrhythmic events: are the
bangs worth the bucks? | Am Coll Cardiol 2001, 38(71912-1915
[http://content.onlinejacc.org].

Hartikainen JE, Malik M, Staunton A, Poloniecki ], Camm AJ: Distinc-
tion between arrhythmic and nonarrhythmic death after
acute myocardial infarction based on hear rate variability,
signal-averaged electrocardiogram, ventricular arrhythmias
and left ventricular ejection fraction. | Am Coll Cariol 1996,
28(2):296-304.

Rydberg A, Karlsson M, Hornsten R, Wiklund U: Can Analysis of
Heart Rate Variability Predict Arrhythmia in Children with
Fontan Circulation? Pediatr Cardiol 2008, 29:50-55.

http://www.biomedical-engineering-online.com/content/8/1/17

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 12 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751309
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751309
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751309
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8888285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8888285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8888285
http://www.physionet.org/challenge/2002/
http://www.physionet.org/challenge/2002/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10851218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10851218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10851218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11738293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11738293
http://content.onlinejacc.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17891514
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17891514
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17891514
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Standard Poincaré Plot Analysis
	Standard Descriptors
	Limitations of Standard Descriptors


	Methods
	Complex Correlation Measure
	Analysis of Complex Correlation Measure(CCM)
	Sensitivity to changes in temporal structure
	Sensitivity to various lags of Poincaré plot

	Case Studies
	HRV study of Arrhythmia and Normal Sinus Rhythm
	HRV study of Congestive Heart Failure(CHF) and Normal Sinus Rhythm

	Statistical Analysis

	Results
	Sensitivity to changes in temporal structure
	Sensitivity to various lags of Poincaré plot
	HRV studies of Arrhythmia and Normal Sinus Rhythm
	HRV studies of Congestive Heart Failure(CHF) and Normal Sinus Rhythm

	Discussion
	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

