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Abstract
Background: Much of the experimental work in soft tissue mechanics has been focused on fitting
approximate relations for specific tissue types from aggregate data on multiple samples of the tissue. Such
relations are needed for modeling applications and have reasonable predictability – especially given the
natural variance in specimens. There is, however, much theoretical and experimental work to be done in
determining constitutive behaviors for particular specimens and tissues. In so doing, it may be possible to
exploit the natural variation in tissue ultrastructure – so to relate ultrastructure composition to tissue
behavior. Thus, this study focuses on an experimental method for determining constitutive behaviors and
illustrates the method with analysis of a porcine pulmonary artery strip. The method characterizes the
elastic part of the response (implicitly in terms of stretch) and the inelastic part in terms of short term
stretch history (i.e., stretch-rate) Ht2, longer term stretch history Ht1, and time since the start of testing T.

Methods: A uniaxial testing protocol with a random stretch and random stretch-rate was developed. The
average stress at a particular stretch was chosen as the hyperelastic stress response, and deviation from
the mean at this particular stretch is chosen as the inelastic deviation. Multivariable Linear Regression
Analysis (MLRA) was utilized to verify if Ht2, Ht1, and T are important factors for characterizing the inelastic
deviation. For acquiring Ht2 and Ht1, an integral function type of stretch history was employed with time
constants chosen from the relaxation spectrum of an identical size strip from the same tissue with the
same orientation. Finally, statistical models that characterize the inelasticity were developed at various,
nominal values of stretch, and their predictive capability was examined.

Results: Inelastic deviation from hyperelasticity was high (31%) for low stretch and declined significantly
with increasing stretch to a nadir of 3.6% for a stretch of 1.7. The inelastic deviation then increased with
increasing stretch at the same point in the stress-strain curve where stiffness began to increase strikingly.
MLRA showed that T is a major inelastic parameter at low deformation. For moderate and high
deformations, Ht2 and Ht1 were dominant.

Discussion: A randomized uniaxial testing protocol was applied to a strip of porcine pulmonary artery to
characterize the elasticity and inelasticity of a soft tissue. We were successful in determining the elastic
response and the factors that gave rise to the inelastic deviation. This investigation seeks methods to
better define, phenomenologically, the elastic and inelastic behavior of soft tissues.
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Introduction
A great challenge in biomechanics, and its related disci-
plines such as mechanobiology, is the determination of
mechanical constitutive behaviors for tissues that undergo
high strain. Even for homogeneous, single phase, rubber-
like materials with behavior that is nearly isotropic and
hyperelastic, the determination of constitutive behaviors
has been ambiguous and problematic [1]. For multi-
phase, heterogeneous tissues with behavior that is aniso-
tropic and visco-elastic, much theoretical and experimen-
tal work remains [2], and this work is a small step toward
improving experimental methods to delineate tissue
behavior.

There are, of course, approximate constitutive relations for
most tissue types that have been validated with fits to
experimental data and that have enabled modeling appli-
cations in biomechanics. Rather than integrate tests from
multiple specimens to yield a generalized relation, this
work is focused on a methodology to study individual
specimen variations. Our reason for doing so is to exploit
the natural variation in tissue structure to better under-
stand the structure-function relationship. Each specimen
has differing amounts of elastin, collagen, water, etc.; and
with experimental methods that delineate rather than
aggregate behavior, we seek to relate ultrastructure param-
eters to tissue response parameters. The ultimate goal of
this work, albeit decades away, is to determine how
ultrastructure maps to tissue behavior.

Toward this end, we developed a random stretch and ran-
dom stretch-rate protocol for a one-dimensional sample
(longitudinal strip from a porcine pulmonary artery). The
average stress at a particular stretch is defined as the elastic
or hyperelastic part of the response and the deviation
from this average is defined as the inelastic part of the
response. The inelastic response is assumed to be a func-
tion of three variables: stretch rate related, short tem
stretch history Ht2; longer term stretch history Ht1; and
time T since the start of the test protocol. At a particular
stretch value, the inelastic response is assumed to be a lin-
ear function of these variables and dependence is found
by Multivariable Linear Regression Analysis (MLRA). A
randomized testing protocol eliminates any potential cor-
relation among Ht2, Ht1, and T that conventional cyclic
testing cannot. This randomness enables the use of MLRA.

Hoffman and Grigg have introduced the advantage of
application of random stress stimuli to the soft tissue [3].
The difference here is that stretch herein, rather than stress
therein, is the independent variable that is randomized.
Moreover, we seek to define and determine the elastic and
inelastic parts of the response at particular chosen values
of strain rather than fit behavior for the range tested.
Though, there are many time-dependent theories that can

capture or fit inelastic behaviors, such as, linear/nonlinear
viscoelastic [4-10], poroviscoelastic [11,12], and biphasic
[13-16]., this study is focused on experimental methodol-
ogy for hyperelastic constitutive behaviors.

Remark on Hyperelasticity
We often mix the terms elastic and hyperelastic when
referring to material behavior and certain aspects of the
stress response. Conceptually, one can think about elastic-
ity (i.e., stress as a function of stretch or strain) as different
than hyperelasticity (i.e., strain energy as a function of
stretch or strain); yet in fact, elastic behavior must be
hyperelastic – or else it violates the first law of thermody-
namics. This is easily shown by considering a closed,
cyclic process involving an elastic material. An elastic
material does not have viscous losses, and the work of the
reverse path (or cycle) is the opposite of the forward path
(or cycle). This is a direct result of the stress-power law. If
the work done is zero for all closed paths, then there exists
a state function (strain energy) that represents the storage,
in a conservative manner, of work done on the material.
This is hyperelasticity wherewith the constitutive law can
be defined by its strain energy function and the stress is
given by the derivative of the strain energy with respect to
the strain. If the work done is not zero for all closed paths
(i.e., non-hyperelastic), then choose one such path and go
around the cycle in the direction that produces work, and
then build a perpetual motion machine of the first kind.
It is quite easy (in two and three dimensions) to fit an
elastic model that violates the first law [17]; and yet it is
impossible for a hyperelastic model to violate the first law.
To be explicit: 1) if an elastic model satisfies the first law
then it can be expressed in a hyperelastic form, and 2) if
an elastic model cannot be expressed in a hyperelastic
form, then it violates the first law. When we refer to elastic
behavior as hyperelastic, we are only excluding behavior
that violates the first law of thermodynamics.

Methods
A uniaxial testing protocol wherein the stretch and stretch
rate were randomized was developed to better delineate
the average stress vs. stretch response of soft tissue. The
randomized testing protocol was achieved by defining 71
time points or nodes and then randomly choosing (at the
nodes) nominal stretch values of λ = 1.1, 1.3, 1.5, 1.7, or
1.9 and stretch-rate values in the range of [-5.26 s-1, 5.33
s-1]. With 71 time nodes there are 70 intervals, and in each
interval we defined 50 points. The stretch value at points
between nodes was obtained from the nodal stretches and
stretch-rates by use of cubic Hermite interpolation in
time, so to achieve C1 continuity across intervals [18]. Fig-
ure 1 displays the stretch versus time of the stretching pro-
tocol. Upon inputting the reference length of the sample,
the stretch versus time protocol was converted to displace-
ment versus time and fed to opposing linear actuators
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(both ends of the sample were moved in opposite direc-
tions, so to double the stretch-rate range).

This stretching protocol was accomplished with custom
LabVIEW (National Instruments, Inc) codes. The stretch
values were chosen to cover the linear and non-linear por-
tions of the stress-stretch response of the tissue, without
damaging the tissue. The stretch-rate range was deter-
mined by the upper and lower bound for the speed of the
actuators (CMA 25CCCL DC servo motor, max speed =
0.4 mm/s, Newport, Inc). The actuators were controlled
by the Universal Motion Controller/Driver (ESP7000,
Newport, Inc). The total testing time was 5600 seconds.

Fourier spectral analysis was performed on both rand-
omized stretch and randomized stretch rate profiles to
validate their randomness (Figure 2). The power spectrum
is not ideally uniform across the spectrum, but it has
power distributed across the spectrum with noise domi-
nating any systematic trends.

The pulmonary artery from an adult swine was obtained
from a local slaughter house immediately after slaughter.
Two identical strips (25.4 mm × 2.5 mm × 2 mm) were cut
from the porcine pulmonary artery (one was used for the
stretch protocol and one for the relaxation analysis), pre-
served in chilled phosphate buffered saline (PBS) and
tested at room temperature (approximately 23°C). We
mounted a specimen by using custom-built alligator type
grips and no slip was detected during the test. The stretch
ratios were calculated based on a gauge length which is a
grip-to-grip displacement. (In general, grip-to-grip strain

is greater than average strain measured by optical strain
measurement because of edge effects and local deforma-
tion at the tip of the grip. Since the length of our specimen
is relatively long relative to its width, 10:1; and since this
work is focused on archiving and discussing the method-
ology as opposed to archiving the behavior of a particular,
now decomposed, sample, we neglected edge effects.) The
average force at a particular stretch was defined as the
hyperelastic response because it would be the best guess
for the response if the stretch rate and stretch history were
unknown or neglected – as per the assumption of elastic-
ity. Inelastic deviation was defined and measured as the
deviation from the average force at each nominal stretch
ratio.

To characterize the inelastic deviation D at a particular
stretch value, we assumed that it is a function of the fol-
lowing form.

To quantify inelastic behavior, we assumed the functional
form shown in equation (2) where FM and FW are meas-
ured and average force, respectively at a particular stretch.

FM = FW ± D(Ht2, Ht1, T)

To explicitly represent the limits of experimental method-
ologies, we included an unknown factor De that represents
additional inelastic deviation (or random error) beyond
that which is represented by DHt2, DHt1, and DT or devia-
tion due to Ht2, Ht1, and T, respectively. Hence,

D D T H Ht t= ( , , )
2 1

Stretch-controlled protocol showing the stretch and velocity of one of the actuators versus timeFigure 1
Stretch-controlled protocol showing the stretch and velocity of one of the actuators versus time.
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D = DHt2 + DHt1 + DT + De

To determine relative uncertainty, we normalized D (i.e.,
standard deviation of measured forces at each stretch
ratio) with respect to the average force at a particular
stretch and defined the fractional uncertainty FU.

Stretch history
Stretch history is, generally, the deformation versus time
for the entire life of the sample up to the current configu-
ration. Such a concept is too all-inclusive to be practical,
and yet the mechanical properties of tissues are highly
sensitive to prior deformation – i.e., resting, precondition-
ing, or over-stretching of a sample will significantly per-
turb the stress-strain response. There are many ways to
quantify a stretch history function. The function that we
used for stretch history is shown in equation (5). It repre-
sents the average stretch for preceding time interval th,
where λ(t) is stretch as a function of time, tN is a current
time, and th is a preceding time interval.

Note that as th gets smaller, H(t) approaches λ(tN) and
gives the near term history or instantaneous stretch ratio if
th ≅ 0. On the contrary, if th gets larger, H(t) approaches the
average stretch ratio (which is λ = 1.5 in this study because

we set λ = 1.0 and λ = 2.0 as bounds on a random distri-
bution). Figure 3 displays our stretch history concept.
Although stretch functions λ(t)1, λ(t)2, and λ(t)3 give the
same stretch and stretch rate at tN, the histories are differ-
ent.

Figures 4 and 5 show the stretch history obtained by using
th = 10, 400, 1000, and 2000. Note that the stretch history
obtained by th = 1000 and th = 2000 approaches the aver-
age of λ = 1.5. Thus, finding a reasonable th is important
for stretch history to characterize the inelasticity due to

FU
D

FW
=

H t
t dtt N th

t N

th
t h( )

( )
,= −∫

>
l

0 Illustration of various stretch histories with the same stretch and stretch rate at time tNFigure 3
Illustration of various stretch histories with the same stretch 
and stretch rate at time tN. Although the stretch ratio func-
tions λ(t)1, λ(t)2 and λ(t)3 give the same stretch and stretch 
rate at time tN, the average stretch ratios for the time dura-
tion th for each are distinctly different.

Power spectra for stretch (left) and stretch rate (right)Figure 2
Power spectra for stretch (left) and stretch rate (right). Although not uniform and flat, there is broad spectral distribution with 
noise dominating any systematic trends.
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history. Upon analyzing the relaxation spectrum for a
sample held at a particular stretch (λ = 2, max stretch in a
random distribution), it is evident that there is short term
(fast) relaxation and longer term (slow) relaxation. We fit
exponential decays to the stress relaxation curve, and it
was fit well by the summation of four exponential func-
tions. The stress relaxation curve is shown in Figure 6, and

F(t) is the force to maintain a step increase in stretch and
fit by the multi-exponential decay as follows:

F(t) = 6.1 + 1.5e-t/400 + 0.5e-t/30 + 1.3e-t/10 + 0.5e-t

We consider the two fastest as fast relaxation spectrums (th
= 1, th = 10) and the two slowest as slow relaxation spec-

Continuation of Figure 4Figure 5
Continuation of Figure 4.

Stretch history obtained by th = 10, th = 400, th = 1000, and th = 2000 (for 0–3000 sec)Figure 4
Stretch history obtained by th = 10, th = 400, th = 1000, and th = 2000 (for 0–3000 sec). When th is small, the stretch history is 
nearly the same as the instantaneous stretch, and as th increases, stretch history reaches a plateau of λ = 1.5, the average 
stretch ratio of a random distribution in the range [1,2].
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trums (th = 30, th = 400), and note that the weights of the

exponential functions corresponding to th = 10 and th =

400 are greater than the others. Hence, we judiciously
chose th = 10 and th = 400 for short-term history (Ht2) and

long-term history (Ht1), respectively. Our system could

not capture fast deformation histories within 1 second
because our lead screw actuators are too slow to deliver a
step function in stretch, ideally needed to analyze stress
relaxation. Note that the stretch history obtained by th =

10 is of relatively short duration compared to our acceler-
ation, and it depends, thus, on the direction of approach
or stretch rate (see Figure 7) and is roughly the current

stretch minus half of the stretch rate times 10 sec. Equa-
tion (7) shows the relationship between short term stretch

history Ht2 and stretch rate  when the history is brief

relative to the change in history (i.e., stretch acceleration).

Multiple linear regression analysis
To characterize inelastic behavior in terms of Ht2, Ht1, and
T, multivariable linear regression analysis, goodness-of-fit
test and t-test were used [19]. Basically, we did a separate
statistical analysis for each nominal stretch value. Because
each nominal stretch value was retested many times (71
nodes and only 5 possible stretch values), there is a set of
force measurements at the same stretch – but each with a
different history. T, Ht2, and Ht1 are calculated from the
stretching protocol, and FM is measured by the force trans-
ducer and captured in synchrony with the stretching pro-
tocol. T, FM, Ht2, and Ht1 were grouped together for each
stretch ratio. The grouped data for λ = 1.1, for example,
can be expressed in matrix form as in equation (8) where
n is the number of data corresponding to stretch ratio λ =
1.1.
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Relationship between short-term stretch history and stretch rateFigure 7
Relationship between short-term stretch history and stretch rate. (a) When the stretch rate is positive, the stretch 
history for th = 10 sec is less than the current stretch ratio. (b) When the stretch rate is negative, the stretch history for th = 10 
sec is greater than the current stretch ratio.

Stress relaxation curve for the tissue and the multi-exponen-tial fitFigure 6
Stress relaxation curve for the tissue and the multi-exponen-
tial fit.
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For use in MLRA, the model for inelastic deviation from
the mean or elastic part is:

The partial regression coefficients , j = 1, 2 and 3

describe how the independent variables Ti, (Ht2)i, and

(Ht1)i affect the dependent variable Di. We minimized ei,

the errors in fitting, by using a least squares method (LSM)

and so obtained  and . To avoid scale-dependency in

the partial regression coefficients, we normalized each

data set by their magnitudes. Upon fitting the , we

checked , the adjusted coefficient of determination to
observe how well the derived sample regression line
describes the observed variable Di and then examined the

significance of each  using t-test. Successive iterations

of t-test were performed whenever there was/were insignif-
icant variable(s) for a particular stretch. Since we tested a

single specimen, we set the level of significance α as 0.1
which represents the 90% probability that the partial

regression coefficient  is likely to be contained within

the interval. In general, a level of significance α is prefera-
bly set as 5%.

Predictive capability

The predictive capability was examined by comparing the
predicted inelastic deviations calculated by the derived
regression model to the measured inelastic deviations
from unused stretch ratios. Only the 71 nodal time points
were used to regress the coefficients; yet there were many
more times, within the interval between nodes, that the
stretch protocol prescribed one of our nominal stretch val-

ues of interest (i.e., λ = 1.1, 1.3, 1.5, 1.7, or 1.9). Equation

(10) was used for the interval prediction where  is crit-

ical forecasting interval for the  with a 100(1-α) confi-

dence,  is the predicted value of a certain point, tc(α/2;n-

k-1) is a critical t value with a degree of freedom n-k-1 where

n and k are the number of samples and the number of

independent variables, respectively, sf is the standard devi-

ation which consists of variance of ei and variance of .

Lastly, to assess the goodness of fit and search for further
systematic behavior, we calculated the deviation of the pred-

ication, Di - , which is the difference between observed

deviation of a data point Di and point forecasting value

 obtained by the statistical model for the particular,

nominal stretch value. If the deviation of the predication
has systematic variation, then it can reasonably be said
that there must be other factors (or perhaps higher orders
of Ht2, Ht1, and T) that induce inelastic deviations from

hyperelasticity.

Results
The randomized stretch-controlled protocol and corre-
sponding force output is plotted in Figures 8 and 9. Figure
10 shows the stress versus stretch. The square dots in Fig-
ure 10 represent the hyperelastic stress responses. The frac-
tional uncertainty FU that represents the inelastic
response for the stretch ratios λ = 1.1, 1.3, 1.5, 1.7, and 1.9
were 30.6%, 6.7%, 4.4%, 3.6%, and 8.1%, respectively.
Although inelastic deviation from hyperelasticity
increased to about 8.1% at maximum deformation (λ =
1.9), the inelastic deviation has a significant decreasing
trend with increasing stretch ratio in the range of 1.1–1.7.
Note that the amount of inelasticity was highest at the
lowest deformation of interest (λ = 1.1). The fractional
uncertainties corresponding to each stretch ratio are sum-
marized in Table 1.

Based on the results of MLRA, Ht2, Ht1, and T were deter-
minant factors for the inelastic deviation for most of the
deformation ranges. They were, however, not equally
effective for all deformation ranges. The parameter T was
an effective factor for all deformations. Inelastic behavior

at λ = 1.1 and 1.3 was solely determined by T. The effect
of a stretch rate represented by short-term stretch history

Ht2 was more significant than other factors at λ = 1.5, 1.7,
and 1.9. Moreover, its significance was greater at larger
deformation. The long-term stretch history Ht1 was mod-

erately effective at λ = 1.5 and 1.9. The statistical models

for λ = 1.1, 1.3, 1.5, and 1.9 showed high  values

(above 85%). The  value of the statistical model for λ

= 1.7 (  = 71%) was lower than other cases but so was
the fractional uncertainty itself. The statistical models
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obtained by MLRA for the various deformations of the tis-
sue are summarized in table 2.

We found that the deviation of the predication was not sys-
tematic relative to our independent variables because the
trends of the observed deviation were captured by the pre-
dicted deviation. For example, consider λ = 1.3 wherewith
the observed inelastic deviation and the predicted inelas-
tic deviation are plotted in Figure 11 and the deviation of
the prediction is plotted in Figure 12. Inelastic deviation

only depends on T for this stretch and both the observed
deviation and the predicted deviation display this trend.
The deviation of the prediction appears random with
respect to T. Deviation of the predication for the other
nominal stretch values with dependence on Ht2 and Ht1
were checked likewise and they also appeared as random
or unsystematic with respect to our dependent variables.

The randomized stretch-controlled protocol and corresponding force output profile for the tissue specimen (3000–5600 sec)Figure 9
The randomized stretch-controlled protocol and corresponding force output profile for the tissue specimen (3000–5600 sec).

The randomized stretch-controlled protocol and corresponding force output profile for the tissue specimen (0–3000 sec)Figure 8
The randomized stretch-controlled protocol and corresponding force output profile for the tissue specimen (0–3000 sec).
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Discussion
This study characterizes the elastic (or mean) response
and the inelastic (or deviation from the mean) response of
a porcine pulmonary artery strip that underwent high
strain with random stretch and stretch-rate prescribed.
The inelastic behavior was most prominent for small
deformations and primarily dependent on T, the time
since the start of testing. The inelasticity at λ = 1.1 was
almost 850% greater than that of λ = 1.7, and 400%
greater than that of λ = 1.9. This finding can provide one
reason for much ambiguity in the hyperelastic modeling
for soft tissues at small deformations. The most important
configuration for elasticity (i.e., the stress free reference
configuration) is in the deformation region wherein ine-
lasticity predominates. How the sample was prepared and
any significant stretch history during dissection are likely
to affect greatly the reference configuration and any sub-
sequent constitutive relation that depends on the refer-
ence configuration. At the highest deformation λ = 1.9,
inelastic deviation was increased again, and it is signifi-
cant that in this specimen, this stretch is at the point
where the stiffness starts to increase greatly. We suspect
that this break in trend is due to complex microstructural
coupling of fibers in radial and circumferential directions
and some reorganizing of the fibers with the high defor-

mation. Except for low deformation, the inelastic devia-
tions for the other cases are less than 10%. Thus, an elastic
model is mostly, say 90%, accurate for this strip of pulmo-
nary artery.

Table 2: Multivariable linear regression models for the tissue (tc 

is for two-tailed test).

λ Ind.var se t-value tc(α/2;n-k-1), α = 0.1

1.1 0.34 0.03 10.44 1.75 0.92

T -1.70 0.13 -13.09

1.3 0.64 0.09 6.79 1.83 0.87

T -2.29 0.30 -7.72

1.5 5.85 1.65 3.55 1.77 0.85

T -1.00 0.20 -5.02

-17.48 8.15 -2.15

-5.75 2.63 -2.18

1.7 10.42 2.96 3.52 1.81 0.71

T -0.97 0.35 -2.77

-36.77 10.76 -3.42

1.9 13.56 1.91 7.10 1.83 0.98

T -1.58 0.09 -16.72

-44.76 6.46 -6.93

-2.77 0.94 -2.96

b̂ R2

â

ˆ . ..D T1 1 0 34 1 70= −

â

ˆ . ..D T1 3 0 64 2 29= −

â

Ht2

Ht1

ˆ . . ..D T H Ht t1 5 5 85 17 48 5 75
2 1

= − − −

â

Ht2

ˆ . . ..D T Ht1 7 10 42 0 97 36 77
2

= − −

â

Ht2

Ht1

ˆ . . . ..D T H Ht t1 9 13 56 1 58 44 76 2 77
2 1

= − − −

Table 1: Absolute and fractional uncertainties for each stretch 
ratio.

1.1 1.3 1.5 1.7 1.9

FW [mN] 0.927 4.120 8.820 16.510 80.210
D [mN] 0.281 0.275 0.385 0.593 6.520
FU [%] 30.64 6.67 4.37 3.59 8.13

Stress versus stretch curve as obtained from measurements at the time nodesFigure 10
Stress versus stretch curve as obtained from measurements 
at the time nodes. The average at each nominal value of 
stretch is defined herein as the elastic part of the response. 
The deviation from the average is defined as the inelastic part 
or inelastic deviation.
Page 9 of 11
(page number not for citation purposes)



BioMedical Engineering OnLine 2008, 7:4 http://www.biomedical-engineering-online.com/content/7/1/4
MLRA clearly indicates that Ht2, Ht1, and T are determi-
nant factors that induce inelastic behavior, but they are
not equally influential throughout the stretch domain.
Inelasticity of the tissue was dominated by different fac-
tors at different stretches, and it was systematic rather than
random. T was an influential factor for all deformations,
but particularly for low deformations. As the deformation
increases, however, stretch rate is the most influential for
the inelastic response. Given that our protocol rand-
omized the stretch, it is not very significant that the devi-
ation of the predication appears random or unsystematic
after we correct for deviations due to Ht2, Ht1, and T.

In summary, we found that the stretch rate, stretch history,
and time are important factors that give rise to the inelas-
tic mechanical response of a strip of pulmonary artery as
evident in a randomized uniaxial stretch-controlled
stretch test. Their contributions were not the same for all
stretches. This study was limited to one soft tissue speci-
men at room temperature; however, it is the opinion of
the authors that one must be able to define the phenom-
enological behavior of one specimen before it is possible
to define relations that represent the aggregate or typical
behavior of a tissue. For example, if one could not meas-
ure the elastic modulus of a single sample of steel wire,
one could not measure the average elastic modulus of
steel. Albeit generalized, constitutive relations for particu-
lar tissues are mostly accurate and in use already; there is
much ambiguity in their definitions. The focus of this
work is determining the behavior of one sample, and in so
doing, we hope to eventually define quantitatively how
specimens are similar, and more importantly for exploit-
ing natural variations in ultrastructure, how they differ.
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