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Abstract
This work presents a non-invasive high-throughput system for automatically detecting
characteristic behaviours in mice over extended periods of time, useful for phenotyping
experiments. The system classifies time intervals on the order of 2 to 4 seconds as corresponding
to motions consistent with either active wake or inactivity associated with sleep. A single
Polyvinylidine Difluoride (PVDF) sensor on the cage floor generates signals from motion resulting
in pressure. This paper develops a linear classifier based on robust features extracted from
normalized power spectra and autocorrelation functions, as well as novel features from the
collapsed average (autocorrelation of complex spectrum), which characterize transient and
periodic properties of the signal envelope. Performance is analyzed through an experiment
comparing results from direct human observation and classification of the different behaviours with
an automatic classifier used in conjunction with this system. Experimental results from over 28.5
hours of data from 4 mice indicate a 94% classification rate relative to the human observations.
Examples of sequential classifications (2 second increments) over transition regions between sleep
and wake behaviour are also presented to demonstrate robust performance to signal variation and
explain performance limitations.

Background
All mammals, and perhaps all animals, sleep [1]. Adult
humans typically spend 5–10 hours a day in sleep, and
yet, the basic functions of sleep are still unclear [2]. Recent
estimates suggest that 50 to 70 million Americans experi-
ence either chronic or intermittent sleep related problems,
and each year sleep disorders add billions to the national
health care bill, and many more billions in accidents
caused by sleepiness [3,4]. The most accepted technolo-
gies currently used in sleep analyses of mammals include

Electroencephalographic (EEG) and Electromyographic
(EMG) recordings [5,6]. While these technologies accu-
rately discriminate between the sleep and wake states
through semiautomatic scoring of the signal, the required
preparations and analyses (surgery, recovery, signal scor-
ing ...) limit its application in large-scale experiments
often needed for genetic studies with rodents. In addition,
for characterizing certain behavioural trends in larger
groups, high accuracy on a small scale provided by EEG/
EMG may not be required.
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This work develops a classifier that automatically scores
general behaviours related to sleep and wake that can be
scaled up for analyzing large numbers of mice for several
weeks. The system is based on detecting motion through
a single Polyvinylidine Difluoride (PVDF) sensor on the
cage floor. The system tracks external behaviours through
pressure change on the cage floor (i.e. breathing, walking,
grooming), and is not expected to replace EEG and EMG
for detecting sleep and its stages. However, it is more sen-
sitive to subtle movements than other activity monitors
(i.e. wheel running or beam breaking) allowing the detec-
tion of many movements missed by other technologies.
The intended application of this work focuses on large-
scale phenotypying studies in genetically diverse mice in
order to identify genes and gene alleles that influence
sleep [7]. Typical studies are done over days or weeks, with
or without manipulations, such as sleep deprivation peri-
ods. Differences in the monitored sleep-wake related
behaviours between different strains can then be charac-
terized with macro statistics related to average daily sleep
and average wake activity over periods of hours. As a high-
throughput system, it can also be used to determine strain
differences for Quantitative Trait Loci (QTL) mapping or
to screen mutant mice and find those with unusual behav-
iours for further testing.

This study considers the classification of inactivity associ-
ated with sleep versus wake, and does not assess sleep rel-
ative to evaluations performed through EEG
measurements. Therefore, experimental assessment was
based on visual observation of mouse behaviour, which
cannot reliably detect sleep. While there is a high correla-
tion between sleep and observed behaviours, such as inac-
tivity with eyes closed, further studies with EEG
measurements need to be conducted to make claims of
actual sleep detection. This study focuses on collecting
large amounts of data to assess overall system perform-
ance relative to behaviours often associated with sleep
and wake. The large and varied data set provides assess-
ments useful for development of the classification algo-
rithm and signal processing methods, which are the main
contributions of this paper. Further studies to confirm
performance of this system relative to actual sleep would
require EEG measurements, and are beyond the scope of
this work.

The first work using PVDF sensors to monitor behavioural
activity of rodents was reported by Megens el al [8]. For
this application the sensors were used to detect changes in
motor activity in response to different drugs and dosages.
The primary signals of interest were from the rodent's feet
striking the partitioned sections of multiple piezoelectric
films distributed on the cage floor. The respiratory move-
ments were filtered out for this application. In contrast,
the work of Flores et al [9] used a (PVDF) sensor over the

cage floor and tested a neural network classifier for sleep
states to that of scored EEG signals. This work showed the
critical behaviour for detecting sleep was the regular
motions associated with breathing while the mouse was
in a sleep posture. Feet in motion and shifting of weight
for various activities, such as rearing, grooming, sniffing,
etc. create transient spikes and random envelope varia-
tions in the PVDF signals useful for distinguishing wake
state behaviours from a sleep-state mouse. The work of
Flores et al demonstrated strong correlations between the
mouse motions transduced by PVDF sensor to sleep and
wake states.

A more extensive study between mouse breathing and
sleep was performed by Friedman, et al [10], where EEG,
EMG, and ECG recording were made simultaneously with
a full body plethysmograph. The EEG and EMG were sig-
nals were correlated to the following behaviours of active
wake, quite wake, NREM sleep, and REM sleep. A consist-
ent periodic breathing pattern was shown for both sleep
states, as well as for the quiet wake. The identified breath-
ing patterns were incorporated directly in this work to
develop robust classifiers to capture the behaviours asso-
ciated with sleep.

A different approach to non-invasive monitoring of mice
behaviour for sleep related research was described by Pack
et al [11]. This system used digital video analysis and posi-
tion information from infrared beam breaking to assess
sleep and wake behaviours in mice. The method applied
an assumption that inactivity greater than 40 seconds was
sleep. This method achieved an average accuracy of 92%
in classifying sleep and wake, suggesting a strong correla-
tion between inactivity (sleep posture) and actual sleep.

The PVDF sensor system described by Flores et al over-
came the limitations of having to connect special sensors
to the animal for assessing general trends in sleep behav-
iour. On the limited data tested, the classifier achieved up
to 95% classification rate relative to results from scored
EEG measurement; however, the system had several limi-
tations for high-throughput applications. The major con-
tributions of this work include engineering developments
to make the system useful for high-throughput systems.
This includes designing a classifier that can be computed
in a reasonable amount of time, and developing a robust
feature set to maintain consistent performance over
expected variations of the senor sensitivity and mice.

The first limitation of the system by Flores et al [9] was
that several of the 9 features used were computationally
expensive. In particular, a similarity measure was intro-
duced requiring extensive comparisons of segments taken
at 40 different lengths with 1260 segments taken from
other time locations within an 8 second window. The
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processing of data from a single mouse for one day could
take as long as 10 hours of computational time on a desk-
top PC. A second limitation of the system was that some
of classifier features were dependent on the signal ampli-
tude. While signal amplitude is well-correlated with
mouse sleep and wake behaviours, amplitude is also affect
by variations in mouse weight and contact with the cage
floor (posture). The use of signal amplitude in the auto-
matic classification statistics also requires strict settings
and tedious calibrations for all amplifiers used for each
sensor. The system also used a "signal predictability" fea-
ture, which was computed from forward and backward
prediction error, which varied with the overall signal
amplitude. To overcome this limitation, all features for
the classifier of this paper were extracted from signals nor-
malized over the analysis window. Therefore, the features
of the classifier introduced in this paper are amplitude
scale invariant and directly related to the waveform shape.

Finally, the previous classifier of Flores et al [9] used a
neural network. While neural networks have the capabili-
ties to learn complex patterns in the feature vectors (i.e.
creating nonlinear decision boundaries), they require the
estimation of a large number of weight values for the neu-
ron connections computed iteratively on a training
sequence. The set of classifier weights relate to all the
interconnected neurons and give little insight on the
impact of each feature. In addition, the training set did
not include mice exhibiting the breathing variations
described in [10]. Therefore, the classifier performance
may change significantly requiring a retraining of the net-
work. The work in this paper develops a simpler 5-weight
linear classifier, where the features are selected to include
the broader variations in breathing patterns. Each feature
is related to general signal properties, such as envelope
variation, frequency, and periodicity that can be directly
modify or computed through other means. The presenta-
tion of these underlying signal dynamics provides infor-
mation and understanding to enable easier adaptation for
other applications or account for new behaviours.

The Methods Section of this paper describes the sensor
system and the transforms used in the signal characteriza-
tion and feature selection. The Results Section describes
the experiment used to assess performance and presents
classification rates for various parameter settings in the
classifier. The Discussion Section explains the impact of
classifier details and shows examples of sequential classi-
fications near transitions and ambiguous regions relative
to human observation to explain performance. Lastly, the
Conclusion Section summarizes results and limitations of
the system.

Methods
Instrumentation and Data Collection
A four-cage unit housed each mouse under test in individ-
ual compartments with sensors to capture pressure
changes from anywhere on the cage floor. Figure 1 shows
the top and side views of the cages with the sensing sys-
tem. The cage was constructed from Lexan (polycar-
bonate). Four separate walled compartments with
attached food/water structures with open bottoms were
designed such that they can be inserted on the base and
hold the sensor pad in place. Each PVDF sensing trans-
ducer covered the cage floor and extended 1.27 cm
beyond the cage walls so the mice did not have access to
the edges as shown in Fig. 1. The PVDF sensor was 17.78
cm by 17.78 cm square and consisted of a 110 µm thick
dielectric, made by Measurement Specialties, Inc (Hamp-
ton, VA). Silver ink is sputtered on each side of the PVDF
creating a conductive link from any position where pres-
sure is applied. A protective plastic sheet (50.8 µm thick)
was placed over the sensors to protect it from moisture
and allow for easy cleaning. Additional bedding was
placed on top of the plastic sheet for the animal's comfort.
A 1.6 mm thick rubber pad made of Shore A 70 durometer
silicon was placed between the sensor and the base to
attenuate crosstalk from the pressure signals to other sen-
sor pads. The side view in Fig. 1b shows the sensor place-
ment with adjacent layers between the base and the cage
walls. The chamber below the cage floors was 10 cm in
height, and housed the instrumentation amplifiers for the
sensors.

The capacitance of the PVDF sensor sheet is approximately
30 nF, and when coupled to the input differential ampli-
fier, followed by a low-pass filter, effectively band-pass fil-
tered the pressure signals with 3dB down points at 1.35
Hz and 20 Hz. The differential amplifier provides a high-
pass effect and generates a linear gain of about 22. This
stage was important for filtering out DC and low fre-
quency noise/interference that could potentially push the
amplifier into saturation for extended periods of time.
Studies in sleep and breathing by Friedman et al [10] indi-
cate rates as low as 2 Hz for NREM sleep in some genetic
strains, and as high as 3.6 Hz for REM sleep in other
strains. Therefore, the pass-band of the instrumentation
amplifier filter was designed to cover this frequency range
as well as significant harmonics. The amplified signals
were then fed into a multi-channel data acquisition board
(PCI 6224) and controlled with LabVIEW 7.1 software
from National Instruments (Austin, TX). Data was sam-
pled at 128 samples per second and quantized with 16
bits. For the performance analyses the signal classifica-
tions were implemented off-line with MATLAB 7.0 from
the MathWorks, Inc (Natick, MA).
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Signal Transform and Critical Properties
Illustrative examples of sensor signals for different mouse
behaviours are shown in Figs. 2 and 3. Figure 2 shows
sleep behaviour signals for 2 recordings over separate sen-
sors and amplifiers. The most obvious similarity is the

quasi-periodic breathing signal (with periods between 0.3
and 0.4 seconds). The differences include amplitude/scale
(due to a combination of the mouse size, sleep position,
and amplifier gain) and shape of the periodic waveform.
Examples of signals corresponding to wake behaviour are

Quad cage and sensor system (a) top view showing cage walls on top of sensors on base (b) side view showing sensor layers on cage floor and connection to sensor amplifierFigure 1
Quad cage and sensor system (a) top view showing cage walls on top of sensors on base (b) side view showing 
sensor layers on cage floor and connection to sensor amplifier.

Example of piezoelectric signals corresponding to sleep from 2 different mice showing quasi-periodicity with (a) High-amplitude and (b) Low-amplitudeFigure 2
Example of piezoelectric signals corresponding to sleep from 2 different mice showing quasi-periodicity with 
(a) High-amplitude and (b) Low-amplitude.
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shown in Fig. 3. Figure 3a corresponds to a still mouse
(quite wake) with eyes open. In this case the signal ampli-
tudes are on the order of those of the sleep signal. This
behaviour often precedes sleep, but typically differs in
that the breathing pattern is not as regular as in the case of
typical sleep signals with greater envelope variations. The
frequency for quite rest often overlaps the breathing from
sleep making it difficult to separate sleep from wake
behaviours based on the pressure signals alone. However,
other studies as well as our own observations indicate that
mice are in this state only about 5% of the time [10]. Fig-
ure 3b corresponds to an active mouse moving across the
cage (large amplitude spikes correspond to the feet strik-
ing the PVDF sensor). Signal characteristics corresponding
to the typical wake behaviours can be described as ran-
dom with strong transients (short-time, high amplitude).
This is in contrast to the typical sleep behaviour patterns
with consistent amplitudes and periodic variations.

Periodic behaviour can be characterized by the peaks in
signal transforms, such as the autocorrelation (AC) func-
tion, and its frequency domain equivalent the power spec-
trum (PS) [12,13]. Transient and random signals can also
be characterized by more involved analyses of these trans-
forms. This work uses a variant of the PS, referred to as the
collapsed average (CA), to more efficiently characterize
transient behaviour as well as some forms of periodicity
[14-16]. The CA is directly related to properties of the sig-
nal envelope and is computed by taking the AC of the pos-
itive frequencies of the spectrum.

Examples of the PS for the sleep signals are shown in Fig.
4a and for wake signals in Fig. 4b. The most obvious dif-
ferences for the 2 states are the higher peaks in the spectral

region from 2 Hz to 4 Hz for the sleep signal. However,
active and resting states also exhibit high peak values in or
near this range, creating ambiguity and a need for addi-
tional features. Examples of the AC are shown in Fig. 4c
for sleep and Fig. 4d for wake. Note the strong peak at a
lag corresponding to the sleep period (in the neighbour-
hood of 0.3 and 0.4 seconds) in Fig. 4c that distinguishes
it from the wake AC. The maximum peaks for wake also
can occur in this region; however their magnitudes are
typically smaller due to their lack of regularity over the
analysis window.

Additional performance can be obtained by including fea-
tures from the CA. Just as the AC detects periodic correla-
tions in the time domain, the CA detects spectral
redundancies due to dynamics of the envelope signal. Iso-
lated transients are highly time-localized and result in lin-
ear phase spectral patterns. The CA for this pattern
exhibits high amplitudes over broad frequency lag ranges.
For any stationary random process, on the other hand, the
expected value of the CA is zero for non-zero frequency
lags [14-16]. Therefore, an increase in energy over a broad
range of frequency lag values denotes the presence of non-
stationarities result from motion activity (transients) over
short intervals. Periodic behaviour with harmonic con-
tent, on the other hand, results in peaked CA values. The
CA is therefore a good transform for separating the critical
behaviours of this classifier.

An example of the CA is shown in Fig. 4e for sleep and Fig.
4f for wake. The key difference between sleep and wake is
the distribution of energy over the frequency lags. The lags
corresponding to the region from 2 Hz to 4 Hz show a rel-
ative increase over other lag regions for the sleep signals

Examples of piezoelectric signals corresponding to wake from the same mouse showing random transient-like signals corre-sponding to (a) quite rest, and (b) motion across the cage floorFigure 3
Examples of piezoelectric signals corresponding to wake from the same mouse showing random transient-like 
signals corresponding to (a) quite rest, and (b) motion across the cage floor.
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(expected frequency of breathing). For the wake state the
response of the CA differs for active and quiet wake; how-
ever, in both cases low energy in the 2 Hz to 4 Hz region
shows a reduction in the harmonic-rich periodicity char-
acteristic of more regular signals. In the case of active

wake, a relative increase in energy is observed for the
lower lag values distributed over .5 to 2 Hz. This is typical
of the CA response to isolated spikes. In the case of quiet
wake, there is low energy everywhere except for frequen-
cies below 0.4 Hz (the spectral region below 0.4 Hz was

Examples of (a) PS for sleep signals of Fig. 1,(b) PS for wake signals of Fig. 2,(c) AC for sleep signals of Fig. 1,(d) AC for wake sig-nals of Fig. 2,(e) CA for sleep signals of Fig. 1,(f) CA for wake signals of Fig. 2Figure 4
Examples of (a) PS for sleep signals of Fig. 1,(b) PS for wake signals of Fig. 2,(c) AC for sleep signals of Fig. 1,(d) 
AC for wake signals of Fig. 2,(e) CA for sleep signals of Fig. 1,(f) CA for wake signals of Fig. 2.
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close to the effective resolution of the analysis window
used to compute the CA and was not included in the anal-
ysis).

Data Processing and Feature Extraction
Initial processing was performed to reduce noise and arte-
facts. Since the critical features for characterizing mouse
motion were primarily in the spectral range of 0.5 Hz to
18 Hz, a band-pass FIR filter (Hamming windowed
impulse response [12]) with order 511 was applied
directly to the raw data. The filter removed low frequency
noise.

Performance for the classifiers was examined for features
computed with and without a logarithmic compression
applied to the amplitudes. This limited the impact of large
dynamic range variations on the feature estimation. The
compressed signal segment was computed by:

where v[n] is the envelope of measured sensor signal x[n],
TM is the compression threshold, and ρ is the compression
factor. For the results of this paper, the envelope was com-
puted from the processing window by taking the Hilbert
transform magnitude of x[n], TM was taken as the median
value of the envelope sample, and performance results
were computed for ρ equal to 0.1 and also 1 (no compres-
sion).

For the PS computation  is windowed by a Kaiser

window [12]wβ[n] with tapering parameter β. The Discrete

Fourier Transform (DFT) of the windowed segment is
taken to obtain:

where m is the signal index for the sliding window over
the data portion of interest, and NFFT is number of grid
points for the spectrum evaluation (result of zero pad-
ding).

In order to make the features robust to changes in ampli-
tude from factors not related to the sleep and wake behav-
iours, the normalized power spectrum used give by:

Examples of the power spectrum on the data were shown
in Fig. 4a and 4b. For the spectrum computation, NFFT was
taken as twice the segment length and rounded up to a
power of 2, and the tapering parameter β was set to 6. The
taper reduced the effective length of the segment to 34%
of the extracted segment length. The effective length corre-
sponds to intervals where window values exceeding 70%
of the maximum window value (half-power points). For
the examples presented in Figs. 4a and 4b, N was 512 (4
second intervals).

For the AC computation the data segment is processed as:

where λ is the sample lag, and sm is a normalization factor
to the zero lag AC value equal to 1. Examples of the auto-
correlation for sleep and wake signals are shown in Figs.
4c and 4d, computed over a 4 second interval for lags
ranging from 0 to 1 second (128 samples).

The CA can be computed by:

where superscript * denotes the complex conjugate, and
Sm is a normalization factor to force the CA magnitude at
0 Hz to 1. The summation uses only half the spectrum
(corresponding to the positive frequencies). For the CA to
have the desired properties, only one-sided spectra are
used. Care must be taken when interpreting the CA over
the frequency lag axis. Artefacts are generated from the
windowing and zero padding, which exist near the zero
lag [14-16]. These areas in the CA are excluded from the
analysis. Examples showing these properties are shown in
Fig. 4e and 4f.

The classifier in this paper uses 5 features extracted from
the functions computed in Eqs. (3)-(5). A more extensive
analysis of over 30 features was performed in [17], which
helped to identify the features analyzed here. The per-
formance analysis in this work uses a more diverse and
larger data set than that used in [17].

For both the AC and PS transforms the magnitudes and
positions of all peaks were extracted. Specific ranges were
determined for interpreting the peak location with respect
to distinguishing sleep and wake behaviours. Since sleep
typically results in breath motion signals between 2 Hz
and 3.6 Hz [10], the spectral region from 1.5 to 4.5 Hz was
designated as the sleep range for the PS. Strong peaks in
this range suggest a high likelihood of sleep. Many of the
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features based on the PS typically did not result in good
performance. This is due to impact of noise over the spec-
tral range of interest (AC and CA significantly reduce the
impact of stationary noise in the critical regions [16]).
Only one feature of the set examined in [17] appeared to
improve classifier performance by a few percentage
points. This feature involved the maximum magnitude
peak in the sleep range and global range (from 0.5 to 18
Hz), denoted by:

where  denotes the peak magnitudes over the PS of Eq.

(3), and the magnitude maximum is taken over the n indi-
ces corresponding to the sleep and global frequency
ranges. If the dominate peak is in the sleep range, then F1

becomes 0. Greater negative values for F1 indicate a greater

likelihood of wake behaviour. In the case when no peak is
present in the sleep range, the value is set to the smallest
value in the PS; however this condition rarely occurred.

The AC features were found to be the most powerful indi-
vidual features when discriminating between sleep and
wake states. When AC features are used independently,
classifications agreement rates as high as 80% are
achieved. Feature 2 is the AC peak magnitude in the sleep
range given by:

where  denotes the peak magnitudes over the AC of Eq.

(4). If no peaks exist in the sleep range, F2 is set to zero.

Feature F2 includes the harmonic energy of a periodic

waveform, unlike feature F1. Feature F1, however, includes

the behaviour of other signal dynamics by including the
global peak magnitude, thereby giving unique aspects of
the signal characteristic. The second AC feature used is the
distance of the maximum peak in the sleep range from the
midpoint of the range (.34 seconds). This is denoted by:

where  is the location of the AC peak in the sleep range

(in seconds). If no peak is found in the sleep range, F3 is

set to 0.34 (the largest possible value). This feature added
minor improvement; however for some of the transitional
and wake behaviours, such as those shown in Fig. 4d this

peaks tends to shift away from the centre range (as well as
reduce in amplitude).

Finally, the CA features provided additional information,
especially for non-periodic signals, that enhanced per-
formance when used with the AC features. The computa-
tion of the CA features involved summing up amplitudes
over 2 critical frequency lag ranges as observed in Figs. 4e
and 4f. The first range characterizes the transient signals
typical of irregular motion given by:

where the transient range includes frequency lags between
0.4 Hz and 2 Hz, and ∆T is a scaling factor corresponding
to the summation range (1.6 Hz in this case). The last fea-
ture is computed by summing the CA over the range cor-
responding to sleep harmonics and is denoted by:

where the sleep range includes frequency lag indices cor-
responding to frequency values between 2 Hz and 4 Hz,
and ∆S is the summation range (2 Hz in this case).

Results
Experiment Description
The classifier performance was tested against human
observation of sleep and wake behaviour. Sleep studies
typically require EEG signal scoring to correctly identify
sleep [9]; however, this requires greater effort and more
invasive apparatus, which limit the amount of data col-
lected as well as limiting behaviours because of the inva-
sive surgery. Human observation is sufficient to identify
wake states when the mouse is doing some physical
motion, but when the mouse is still with eyes open or
closed, ambiguity can exist as to what the actual state is.
Therefore, it can be expected that error will exist for the
identification of sleep state by human observation. Most
of which, however, will be in the form of missed arousals
from sleep periods where eyes are closed.

An efficient interface was developed so the observer could
simultaneously record a labelling voltage level with the
sensor signals. This was implemented through a menu
interface to a DC voltage generator with LabVIEW 7.1 soft-
ware from National Instruments (Austin, TX). The
observer selected a menu button on the computer termi-
nal corresponding to the behaviour that sends a labelling
voltage level to a channel on the data acquisition card col-
lecting the motion signals. This resulted in a scored data-
base, where signal segments corresponding to either sleep
or wake behaviour could be automatically extracted for
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training or testing. The procedure circumvented the prob-
lem of hand scoring the signals, as done in [9], thereby
enabling greater amounts of data with a greater variety of
behaviours to be taken for training and testing.

The experiment involved four C57BL/6J mice, 2 males
and 2 females, approximately six months of age. All exper-
iments were performed in accordance with the protocols
approved by the University of Kentucky Institutional Ani-
mal Care and Use Committee (IACUC). The four C57BL/
6J mice used in these studies were obtained from The Jack-
son Laboratory (Bar Harbor, ME). The mice were six
months of age at the time of study with the two males
weighing 32–33 grams and the two females 24–25 grams.
Both prior to and during the experiments, mice were on
an approximately 12:12 Light:Dark cycle and were given
food and water ad libitum.

The four C57BL/6J mice were placed in separate PVDF-
sensor cages and 4 observer stations consisting of a laptop
to control the function generator sending DC voltages lev-
els to the PCI 6224 multi-channel data card. A total of 8
channels were used, 4 for the sensor signals and 4 for the
labelling voltage levels coming from the observer stations.
Three choices were available for the observer from a menu
on the laptop screen, either "sleep," "wake," and "not cer-
tain." The sleep behaviour was identified as the mouse
having closed eyes or head tucked under its body (eyes not
observable), and remained still with possible intermittent
stirring. If these conditions were not met, the wake behav-
iour was indicated. The mice were not observed continu-
ously over the 3 day period, so in cases when no
observations were made the "not certain" state was
selected.

A total of 6 observers were used to result in 28.5 hours of
observed sleep (10.5 hours) and wake (18 hours) behav-
iour over the 4 mice. It was noted that observers had a 2
to 4 second lag between the observed mouse state and the
indication of the changed state. Therefore, data was only
taken within labelled windows of constant behaviour
greater than 10 seconds, and the 5 seconds before and
after a transition were not used to account for reaction
time in identifying the behaviour change. The result after
censoring in this manner was 28.5 hours of labelled data.

From each segment in the training set a feature vector f
was formed from features F1 through F5 (Eqs.(6) through
(10)). The linear discriminate was computed from the
training set using:

v = Σ-1(ms + mw)

where ms and mw are the mean feature vectors computed
over the sleep and wake segments respectively, and Σ is

the mean of the covariance matrices computed from each
class. The resulting weight vector v was applied to features
vectors computed using the following decision rule:

where superscript T denotes the transpose operation.

Data were parsed into segments for feature extraction and
a bootstrap method randomly selected segments from
each class to train and test the linear discriminate classi-
fier. The bootstrap randomly selected 600 segments from
each class to train, and 300 segments from each class to
test (excluding those already chosen for the training). This
was repeated 100 times for each classifier to compute the
error percentages, from which the mean and standard
deviation were computed. The standard deviations were
converted to 95% confidence limits using the t-statistic
and reported in the tables below along with the mean
classification rate.

Classification rates were estimated for various signal
processing parameter settings including the segment size
and level of compression. The experiment was performed
for different segment lengths (either 4s or 8s) and com-
pression (either no compression or compression with ρ =
0.1). The amount of tapering from the Kaiser window was
also considered; however, a significant difference did not
result from changes over typical ranges (30% to 80%
effective length reduction) so a tapering parameter corre-
sponding to an effective segment length reduction of 34%
was used and resulted in effective window lengths of 1.4s
and 2.8s corresponding to the 4s and 8s windows, respec-
tively. The use of short time intervals of scoring can be
important for detecting brief changes in behaviour during
sleep that may be an important for characterizing the
activities of mammals [6], and are especially for mice [18].

Classification Performance Results
Table 1 shows the classification percentages for agreement
with human observation. The best rate being achieved was
for the 8s segment using amplitude compression (94.3%).
Comparisons between table entries show small but signif-
icant increases (greater than the 95% confidence limit
range) for the larger window size and use of compression.
Classification performance increases on the order of 0.6%
to 2% for increased segment length, while a 2% to 3%
increase results from the use of compression. The
increased segment length results in greater spectral resolu-
tion, which improves the information contained in the
spectral ranges. Preliminary investigations consider seg-
ment lengths near 1s for computing the PS and CA param-
eters. In these cases, however, the parameters made no
effective contribution to classification performance,

if Decide Sleep

if Decide Wake

T

T

0

0

≤

>

f v

f v

,

,
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which dropped to about 70% as a result of using 1s seg-
ments. Therefore, for achieving performance in the 90%
range, it is critical to have segment lengths at least 4s or
greater.

Tables 2 and 3 show the agreement between human
observation and the classifier for the separate cases of
sleep and wake behaviour. Note the 2% to 6% better
agreement rate for the wake segments over that for the
sleep-only segment. The use of compression helps most
dramatically with the sleep-only segments (resulting in
3% to 6% improvements), while for wake-only segments,
the improvement is only about 1%.

In addition to the classification performance, the speed of
the classifier was examined for applications to long peri-
ods with multi-channel recordings. In contrast to the pre-
vious neural network classifier [9], which required 10
hours of computation time per mouse per day, the
processing for the features used for this classifier was per-
formed in less than 6 minutes per mouse per day. For the
system tested in this work, a 24-hour period of data for a
single mouse requires less than 6 minutes of processing
time, allowing for over 100 sensor channels to be proc-
essed and classified in real time (within 2 second intervals
on a standard PC).

Discussion
The results in the previous section show discrepancies
between the automatic classifier and human observation
on the order of 5 to 10%. To better understand the classi-

fier performance and to examine the limitations of
human observation, this section explains details of the
classifier response to a variety of motion signals. The
nature of the PVDF signals in regions where ambiguous
and transitions states are also examined in light of the sig-
nal properties identified in earlier experiments [9].

All examples shown in this section used a segment length
of 4s with a tapering window yielding an effective length
of 2s, and this window was slid along the sensor signal in
2s increments. The classifier vector v was computed
through bootstrapping experiments in the previous sec-
tion where v from each randomly selected training set was
averaged together (over the 100 trials). This resulted in the
representative classification vector for feature weighting:

v = [0.0707, 2.9334, -3.0362, -1.2426, 0.8308]T

Each element of v corresponds to the weight for features
F1 through F5. The negative signed-weights of Eq. (13)
imply that large feature values for F3 and F4 imply a greater
likelihood of wake. Feature F3 is the distance of the sleep
peak from midpoint of the sleep range and F4 character-
izes the dominance of transient spikes. In both these
cases, larger values indicate greater likelihood of random
motion or wake behaviour (especially F4). On the other
hand, larger values for F1, F2, and F5 imply a greater likeli-
hood of sleep, since these all relate to the dominance of
the spectral energy and harmonic energy in the breath fre-
quency range for sleep. So the general direction of the clas-
sifier weights computed from the training set is consistent
with the observations of breathing and motion signals
characteristic of sleep and wake behaviour observed in the
experiments of [9,10].

Figure 5 shows an 8 minute segment of the sensor signal
and the corresponding sleep-wake statistics of Eq. (12).
For this particular plot the x-axis denotes the hours into
the experiment. Note the high concentration of large
amplitude transient signal spiking before hour 20.21, as
well as the burst between hours 20.22 and 20.24. This sig-
nal is characteristic of wake behaviour [9], and the classi-
fier decision statistics respond properly with strong
negative value in this range indicating wake.

Table 1: Percent classification agreement for combined 
behaviours

Compression Factor
Segment Length ρ = 1 (no compression) ρ = 0.1

4s 90.6 ± 0.5% 92.3 ± 0.4%
8s 91.2 ± 0.5% 94.3 ± 0.4%

Mean classification percentage for agreement between automatic and 
human observation classification for equal number of sleep and wake 
intervals with ± 95% confidence limits computed from bootstrap 
experiment. Results for variation in window length with and without 
amplitude compression.

Table 2: Percent classification agreement for sleep behaviour

Compression Factor
Segment Length ρ = 1 (no compression) ρ = 0.1

4s 87.8 ± 0.5% 90.1 ± 0.5%
8s 87.9 ± 0.5% 93.4 ± 0.5%

Mean classification percentage for agreement between automatic and 
human observation classification for only sleep intervals with ± 95% 
confidence limits computed from bootstrap experiment. Results for 
variation in window length with and without amplitude compression.

Table 3: Percent classification agreement for wake behaviour

Compression Factor
Segment Length ρ = 1 (no compression) ρ = 0.1

4s 93.5 ± 0.4% 94.4 ± 0.4%
8s 94.3 ± 0.4% 95.2 ± 0.4%

Mean classification percentage for agreement between automatic and 
human observation classification for only wake intervals with ± 95% 
confidence limits computed from bootstrap experiment. Results for 
variation in window length with and without amplitude compression.
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The sensor signal in the period immediately after hour
20.21 shows smaller amplitudes compared to those after
hour 20.24. The x-axis resolution is not sufficient to
observe the signal periodicity in these intervals, but it is
indeed present and similar to those in Fig. 2 and the ones
described in [9,10]. Note from this plot that even for the
same mouse, the signal amplitude changes for sleep. For
the smaller amplitudes, however, the positive decision
statistics is not as strongly positive as for the time range
with the larger amplitudes. In this case the breathing sig-
nal is closer to the noise floor and features suffer more cor-
ruption of the random noise. Therefore, a potential source
of error occurs if the breathing signal becomes too small
relative to the noise floor. This can result from too much
bedding between the mouse and the sensor floor, or set-
ting the amplifier gain too low. Typically one would want
to ensure that the sleep signal is not close to the noise
floor before starting an experiment. The amplitude differ-
ences in the sleep signals in Fig. 5 resulted from the mouse
repositioning itself after a short wake period. The larger
amplitude range resulted from the mouse lying flat on the
floor, and the smaller range resulted from the mouse tuck-
ing its head under its chest, and making less contact with
the cage floor. However, in spite of these amplitude differ-
ences the computed features robustly classified the sleep
and wake signals.

Figure 6 shows similar signals and statistics as those
shown in Fig. 5 except over a shorter interval. The transi-
tion from rest (awake with no significant motion) to sleep
occurs at about hour 42.506. There is a slight decrease in
amplitude for the sleep state, but the main difference over
the transition is the regularity (consistent amplitude and
stronger periodicity) of the signal. As the breathing starts
to become more regular in the quite active (or rest) state
and subtle motion and body shifting decrease, the sleep-
wake statistics become less negative and even positive for
some epochs. This may be another source of discrepancy
between the human observation and the classifier, as the
observer would indicate the still mouse with eyes open as
awake.

Figure 7 shows a case where an epoch of sleep was inter-
rupted by a subtle motion during sleep as indicated by
transient behaviour near the hour 36.979. In this case, the
mouse shifted to change its sleep position, with the latter
position resulting in better contact with the cage floor. In
these cases the mouse typically keeps its eyes closed and
the observer will not indicate this as a wake state, resulting
in another source of discrepancy. However, as described
in [6,18], mice exhibit many of short periods of wake dur-
ing sleep resulting in a power-law distribution for contig-
uous sleep periods with a reported mean sleep bout of 5.9

Sensor signal with corresponding sleep-wake decision statistic computed every 2 secondsFigure 5
Sensor signal with corresponding sleep-wake decision statistic computed every 2 seconds. Long time-range to 
observe large scale signals behaviour over sleep and active periods with corresponding decision statistics
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minutes, while another study [18] with different criteria
found a mean of 0.9 minutes in multiple different inbred
strains of mice. Therefore, while this is a discrepancy
between human observation and the classifier, it does not
imply necessarily the classifier is incorrect. Further study
and different methods will be needed to resolve how this
transient should be classified.

Tables 2 and 3 show the agreement between human
observation and the classifier is on the order of 2 to 5%
better for the wake classifications than for the sleep. This
is partly due to the fact that the wake states were typically
less ambiguous in the observation (i.e. a moving mouse),
and the non-detected transients via human observation
cited in the last paragraph. As mentioned in the previous
section the amplitude compression was used to mitigate
the impact of the transient signals in the classifier. Which
it did to some degree, but strong transients, as those
shown in Figs 5 through 7, still resulted in wake decisions
(with compression). Tables 2 shows that compression has
a significant impact on the classification rates for sleep
(where these isolated transients exist), while it had little
impact on the agreement rate for classifying wake seg-
ments as shown in Table 3. Therefore, the weaker motion
transients and other envelope irregularities of the breath

signal during sleep result in a significant degradation of
the extracted feature without compression.

The question of whether these transients actually corre-
spond to sleeping or aroused will need to be answered
with experiments that compare the PVDF sensor signals to
scored EEG/EMG signals, since the signals identified in [9]
did not include these cases. EEG/EMG studies are also
necessary to determine if REM vs. non-REM sleep can be
distinguished through the pressure signal measured in
this system. While respiration becomes more variable dur-
ing REM sleep [10,19], the respiratory frequency and gen-
eral pattern are similar [10]. The system described here
has the potential to detect these differences; however, the
degree to which it can discriminate these patterns to any
useful level is not clear.

The simplifications and the emphasis on a robust feature
set (amplitude independent) allow this system to be used
in phenotyping studies requiring high-throughput of ani-
mal behaviour characterizations. Even with the level of
accuracy relative to human observation shown here, the
system is valuable for a variety of sleep studies. Especially
for macro behaviour characteristics such as average daily
sleep, or changes in average sleep percentages over inter-

Sensor signal with corresponding sleep-wake decision statistic computed every 2 secondsFigure 6
Sensor signal with corresponding sleep-wake decision statistic computed every 2 seconds. Long time-range to 
observe gross signal behaviour over sleep and active periods with corresponding decision statistics.
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vals of several hours [7]. The averaging over one hour peri-
ods can include 1800 sleep-wake behaviour decisions.
Thus, statistics characterizing the macro behaviour will
typically result in more reliable numbers because of the
cancelling out of errors on the small interval (sleep-for-
wake and wake-for-sleep errors).

Conclusion
This paper presented a sensor and classification system
that can be used for high-throughput systems to identify
rodent behaviours associated with sleep and wake states.
The agreement with human observation was evaluated
over a large data set with a variety of behaviours and
resulted in classification rates of 90% and higher. These
classification rates are similar to more complicated classi-
fiers [9] and those that used multiple modes for character-
izing motion [11]. The technology presented in this paper
is especially suited for generating statistics that character-
ize sleep behaviours for large numbers of mice over long
periods of time. Adaptations of the system can also be
applied to classifying other behaviours that result in char-
acteristic changes in pressure patterns on the cage floor,
which may be useful for the development and testing
drugs [7].

The classification performance between eyes-closed inac-
tivity and wake behaviours achieved a classification per-
centage as high as 95%. Such classification performance
(even with the ambiguities introduce by the human obser-
vation) is sufficient to identify mice with outlying behav-
iours useful for phenotyping studies. With further testing
this system could be of considerable value for the identi-
fication of sleep related genes that typically require large
numbers of mice for genetic mapping and statistical anal-
yses [7]. The system, however, should not be considered
as a replacement of more traditional assessments of sleep
and wake, such as EEG and EMG, especially where
changes in sleep and wake over short intervals need to be
assessed. This system directly measured changes in pres-
sure on the cage floor (i.e. walking, grooming, breathing
...), and its success for any application is limited to the
degree to which these measurements and related features
consistently correlate with the behaviours of interest.
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