[ - - - - /J
BioMedical Engineering OnLine o

Research

Real-time intelligent pattern recognition algorithm for surface EMG
signals
Mahdi Khezri*T and Mehran Jahed

Address: Sharif University of Technology, Electrical Engineering Department, Biomedical Engineering Group, Tehran, Iran

Email: Mahdi Khezri* - mahdi_khezri_ee@yahoo.com; Mehran Jahed - jahed @sharif.edu
* Corresponding author tEqual contributors

Published: 3 December 2007 Received: 20 April 2007
BioMedical Engineering OnLine 2007, 6:45  doi:10.1186/1475-925X-6-45 Accepted: 3 December 2007
This article is available from: http://www.biomedical-engineering-online.com/content/6/1/45

© 2007 Khezri and Jahed; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Electromyography (EMG) is the study of muscle function through the inquiry of
electrical signals that the muscles emanate. EMG signals collected from the surface of the skin
(Surface Electromyogram: sEMG) can be used in different applications such as recognizing
musculoskeletal neural based patterns intercepted for hand prosthesis movements. Current
systems designed for controlling the prosthetic hands either have limited functions or can only be
used to perform simple movements or use excessive amount of electrodes in order to achieve
acceptable results. In an attempt to overcome these problems we have proposed an intelligent
system to recognize hand movements and have provided a user assessment routine to evaluate the
correctness of executed movements.

Methods: We propose to use an intelligent approach based on adaptive neuro-fuzzy inference
system (ANFIS) integrated with a real-time learning scheme to identify hand motion commands.
For this purpose and to consider the effect of user evaluation on recognizing hand movements,
vision feedback is applied to increase the capability of our system. By using this scheme the user
may assess the correctness of the performed hand movement. In this work a hybrid method for
training fuzzy system, consisting of back-propagation (BP) and least mean square (LMS) is utilized.
Also in order to optimize the number of fuzzy rules, a subtractive clustering algorithm has been
developed. To design an effective system, we consider a conventional scheme of EMG pattern
recognition system. To design this system we propose to use two different sets of EMG features,
namely time domain (TD) and time-frequency representation (TFR). Also in order to decrease the
undesirable effects of the dimension of these feature sets, principle component analysis (PCA) is
utilized.

Results: In this study, the myoelectric signals considered for classification consists of six unique
hand movements. Features chosen for EMG signal are time and time-frequency domain. In this
work we demonstrate the capability of an EMG pattern recognition system using ANFIS as classifier
with a real-time learning method. Our results reveal that the utilized real-time ANFIS approach
along with the user evaluation provides a 96.7% average accuracy. This rate is superior to the
previously reported result utilizing artificial neural networks (ANN) real-time method [I].

Conclusion: This study shows that ANFIS real-time learning method coupled with mixed time and
time-frequency features as EMG features can provide acceptable results for designing sEMG pattern
recognition system suitable for hand prosthesis control.

Page 1 of 12

(page number not for citation purposes)


http://www.biomedical-engineering-online.com/content/6/1/45
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18053184
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BioMedical Engineering OnLine 2007, 6:45

Background

The EMG signal provides us with information about the
neuromuscular activity from which it originates. This has
been fundamental to its use in clinical diagnosis, and as a
source for control of assistive devices. It has been pro-
posed that the EMG signals from upper limb musculature
can be used to identify motion commands for the control
of an externally powered prosthesis hand. Electromyo-
gram signal is a simple way for obtaining necessary infor-
mation on what the disabled user would like to do with
his/her hands. It is possible to control a prosthetic device
only with pair of surface mounted differential electrodes
placed on residual limbs. [2]

EMG is a complicated signal influenced by various factors
such as physiological and anatomical properties and char-
acteristics of instrumentation. It differs from one person
to another. In earlier studies, the recognition system
learned the characteristics of EMG signal in an offline
manner. The offline approach was incapable of adjusting
its inner states to correspond to real-time operator's varia-
tions of hand movements [3-5]. To decrease these effects
on EMG pattern recognition system and to eliminate its
dependence on individual subjects, real-time training
methods were introduced [1].

Current prosthesis hands, such as Otto Bock [6] commer-
cial hand are unable to provide human-like grasping func-
tionality or deliver motor sensory feedback to the users.
Moreover they require a great deal of training and adjust-
ing processes. Also during recent years, several robotic and
anthropomorphic hands have been developed such as
Utah/MIT hand [7], the Stanford/JPL hand [8], the DLR
hand [9], and the Robonaut hand [10]. All of these hands
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have a high number of degree of freedom and flexibility
with non-distinctive hand movements. Moreover they can
not truly operate as prosthesis hands due to their heavy
and bulky structure and crude gripping functionality. A
recent remedy to overcome these shortcomings has been
to reduce the degree of freedom [11,12].

Accurate feature extraction from EMG signals is the main
kernel of classification system in both real-time and
offline systems and is essential to the motion command
identification. The non-stationary nature of SEMG signal
makes it difficult to precisely extract feature parameters
with such block processing stationary models like autore-
gressive (AR) model [13]. Previous works have shown that
time-frequency features present better results in EMG pat-
tern recognition applications [5]. This is due to the effect
of combining time domain and frequency analyses which
yields a potentially more revealing picture of the temporal
localization of a signal's spectral characteristics. However
it is very difficult to utilize only one feature set to ade-
quately reflect the unique feature of the measured SEMG
signals to a motion command. Therefore in order to
increase the recognition rate of this system, we propose to
use the feature set based on combined features. Once the
feature set is constructed, it is fed to a classifier to discrim-
inate between our proposed six hand motions.

The real-time scheme of EMG pattern recognition system
used in this work is shown in Figure 1. The five major
components are, EMG pre-processing and conditioning,
feature extraction, Dimensionality-reduction, classifier
(pattern recognizer) and trainer units. The goal of pre-
processing step is to prepare and amplify the signal for the
subsequent steps and to reduce noise artifacts. This work

Vision Feedback

4
: EMG Feature Dirnensionality Pattem |
EmaG | Preprocessing Extraction Reduction Recognition A
Amputee: | Signa! TD+TFR PCA ANFIS T | Prosthesis Hand
Training
P
T *1  Trainer 0
i Unit
Teacher Signal >
Figure |

Real-Time Scheme for hand prosthesis control.
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consists of a feature extraction step followed by a dimen-
sionality reduction technique, namely PCA to simplify the
task of the classifier. The role of dimensionality reduction
is to retain information that is important for class discrim-
ination and discard irrelevant information. Next a real-
time intelligent classifier approach, namely ANFIS is
introduced. Finally a novel trainer unit is utilized to relate
actual EMG patterns with generated control commands
and furthermore to adapt to the operator's characteristics.

sEMG pattern recognition using adaptive neuro- fuzzy
inference system

Fuzzy inference system was developed in 1965 by profes-
sor lotfizadeh [14,15]. Fuzzy logic systems can emulate
human decision-making more closely than many other
classifiers, because of the possibility of introducing the
knowledge of an expert system in the fuzzy rules of the
form IF-THEN [16-19]. The non-stationary nature of
SEMG signal like other biological signal makes the task of
classification more difficult. But the characteristics of
fuzzy inference system make it a viable tool for pattern
recognition applications [20]. The fuzzy system, initially
fuzzifies inputs to values at interval [0, 1] using a set of
membership functions (MF). Next it is inferred by fuzzy
logic through rules in the form of IF-THEN. The basic part
of fuzzy system is the fuzzy inference engine that can be
used for creating fuzzy rules. The example of fuzzy rules is:

R/ :ifx; is MF/ and/or x, is MF] and/or...x; is MF} thenz' is MFo'
(1)

where Ri (i =1,2, .., 1) denotes the i" fuzzy rules, x; (j = 1,2,
.., n) is the j" input and z'is the output of j* fuzzy rule, and

Figure 2
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MF]?,MFoi are fuzzy membership function of antecedents

and consequents for it" rules.

In this work we applied a neuro-fuzzy scheme to recog-
nize sSEMG patterns. Neuro-fuzzy computing enables us to
build a more robust intelligent based decision making sys-
tems by combining the advantage of artificial neural net-
work with the fuzzy modeling of Imprecise and
qualitative knowledge. Figure 2 depicts the ANFIS struc-
ture with n inputs and one output. The output of this sys-
tem can be described by the following function:

m MFi(x)) (zi)-

L .
- J=1 2
y Z (o (2)
> HMF]'(xj)
| i=1| j=1

where MF is the membership function. In this work we
chose the generalized bell function as membership func-
tion. This function depends on three parameters namely
a, b, cas given by:

MF(x) = % 3)

The basic problem of fuzzy system is, adjusting member-
ship function parameters, output of each fuzzy rule and
estimating number of rules that should be minimum and
precise enough. Adaptive neuro-fuzzy inference system

(LA | 2R | 1
Z -50+51x1+...+53.x3-

AR G/ j4
27 =354 +5p X FHSTx

Network representing ANFIS structure. (MFs are bell membership functions).
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adapts the parameters of Sugeno type inference system
using the neural networks [21]. For Sugeno type systems,
output is a crisp number computed by multiplying each
input by a constant and then adding up the results. The

resultant output is in the form of z' = 5§+ s1x; +... + s}xj .
For training fuzzy system, ANFIS employs BP scheme for
the parameters associated with the input membership
functions, and LMS estimation for the parameters associ-
ated with the output membership functions.

In order to optimize the fuzzy system and increase its abil-
ity for sSEMG pattern recognition problem, subtractive
clustering was employed to optimize fuzzy rules specifica-
tion. This method partitions the data into groups called
clusters, and generates a Fuzzy Inference System (FIS)
with the minimum number of rules required to distin-
guish the fuzzy qualities associated with each of the clus-
ters. In the next section we introduce these methods and
describe their application in implementing neuro-fuzzy
system.

Hybrid method (BP and LMS)

The ANFIS structure can be used for training fuzzy infer-
ence system. One of the most useful algorithms that can
be used for this purpose is back-propagation. BP adjusts
membership function parameters. For neuro-fuzzy system
usually the bell function is applied as membership func-
tion. In this function a, b and c are considered variables
and must be adjusted. The BP algorithm may be used to
train these parameters. Suppose that we are given an
input-output pair (x, y), x = [xy, X,, ... x,], our goal is, to
minimize the cost function (where y,,, is desired output):

1 2
e=§[ydes_y] (4)
The output of each rule ziis defined by:

Zi(t+1)= zi(t)—kza—ei (5)

z
where k, is a step size. To adjust a, b, and ¢ parameters, we

start with Sugeno's system. Here, we can specify the out-
put as follows:

L
)y
n
M%IWVyE%f (6)
=1 Y
1=

Derivative of equation (4) based on equation (6) is given
by:
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de de dy oy _ w! de _

iy i L. and a*—()/des—)/)

oz Y dz' oz 3w Y

i=1
(7)

Then for output of each rule we can define the following
equations:

, . wh
2(t+1) =2 () =k () Vaes = V)
T w!
i=1

(8)

Similarly, for j* membership function of it fuzzy rule the
parameters are calculated as:

i i de

J

i i oe
bi(e+1) = b0k (10)

]

i i de

J
In order to specify the number of rules in fuzzy system we
utilize subtractive clustering approach. This method is
introduced bellow.

Subtractive clustering

Subtractive clustering is based on a measure of the density
of data points in the feature space. The idea behind this
approach is to find regions in the feature space with high
densities of data points. The point with the highest
number of neighbours is selected as the center for a clus-
ter. The data points within a prespecified fuzzy radius are
then removed (subtracted), and the algorithm looks for a
new point with the highest number of neighbours. This
continues until all data points are examined. Consider a
collection of K data points specified by m-dimensional
vectors u;, k=1, 2..., K. Since each data point is a candi-
date for a cluster center, a density measure at data point u,
is defined as:

% L0

j=1 (Ta/ 2)?

where r, is a positive constant. Hence, a data point will
have a high density value if it has many neighbouring data

(12)
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points. Only the fuzzy neighborhood within the radius of
1, contributes to the density measure. After calculating the
density measure for each data point, the point with the
highest density is selected as the first cluster center. Let u 4
be the point selected and D, its density measure. Next, the
density measure for each data point u,, is revised by the for-
mula:

ey |
(/2)*

where 13, is a positive constant. Therefore, the data points
near the first cluster center u, will have significantly
reduced density measures, thereby making the points
unlikely to be selected as the next cluster center. The con-
stant r, defines a neighborhood to be reduced in density
measure and it is normally larger than r, to prevent closely
spaced cluster centers, where typically r, = 1.5 x r,. After
the density measure for each point is revised, the next
cluster center u,, is selected and all the density measures
are revised again. The process is repeated until a sufficient
number of cluster centers are generated. When applying
subtractive clustering to a set of input-output data, each of
the cluster centers represents a rule. To generate rules, the
cluster centers are used as the centers for the premise sets
in a singleton type of rule base (or the radial basis func-
tions in a radial basis function neural network).

Dk:Dk_DcleXp (13)

Methods

EMG acquisition and pre-processing

The EMG signal is the electrical manifestation of the neu-
romuscular activation associated with a contracting mus-
cle. A good acquisition of the SEMG signal is a prerequisite
for good signal processing. Since hand motions result
from contraction of the muscles in the forearm section, we
used surface electrodes for measuring sEMG signal from
the extensor digitorum, the extensor carpi radialis, the pal-
maris longus and the flexor carpi ulnaris. In this work we
use two channels of differential surface electrodes for col-
lecting SEMG signal.

This Signal is easily affected by undesired signal that come
from different sources such as 50/60 Hz electromagnetic
interference from power lines. In addition, for surface
electrode instrumentation, complicating issues may arise
due to its coupling with skin. Concerns such as impedance
of the skin, its superficial oil content and the density of its
dead cell layer are to name a few. We placed differential
electrodes on the forearm under the elbow and placed ref-
erence electrode on the wrist. After the acquisition, SEMG
signal was filtered using a band-pass filter consisting of a
high-pass filter with 500 Hz cut off frequency to reduce
motion artifacts and a low pass filter of 20 Hz cut-off fre-
quency to reduce noise. The signal was next amplified
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with a high common mode rejection ratio (CMRR) ampli-
fier [22]. Also we exerted a notch filter at 50 Hz to elimi-
nate power line noise. Finally the signal was sampled at 1
KHz and transferred to an IBM based personal computer
(PC) for further analysis.

A roster of four healthy subjects participated for collecting
SsEMG signals. Six hand movements were considered and
SEMG signal for each was extracted. These movements
depicted in Figure 3, were Hand opening and closing,
pinch, thumb flexion, wrist flexion and extension. For
each class of movement, 100 signals were collected. We
divided the acquired signals into two categories. First cat-
egory was utilized as a training set data and the second
was employed as a test set, in the manner that each of
them included 50 signals. To increase the ability of our
system to recognize hand movements, we utilized several
signals in each class of movement as a validation set and
therefore the test set actually incorporated both the test
and validation sets. In this work training and test data sets
were formed by 300 samples, or 50 samples for each class.
Table 1 presents the class distribution of the samples in
the training and validation data sets.

Features selection

Time domain features extracts time structures in the EMG
signal. The EMG signal has a number of irregular struc-
tures in the temporal waveform due to its deterministic
components but it also exhibits a great deal of intraclass
variability due to existence of random component. In our
analysis various features of the signal were considered.
Sampled waveform for sEMG pattern classification will
result in the undesirable loss of temporal structure of the
signal. Moreover, in this case, due to high variability of
features and high dimension of feature space, a further
poor classification performance will occur.

To overcome the loss of temporal information of the sig-
nal and poor classification performance, we segmented
SEMG signal and extracted desirable features from each
segment. In this work, we used a time domain window of
500 (ms) for collecting sEMG signal. For classification
problem, appropriate length of sEMG signal should be
considered. Hudgins experimented with different seg-
ment lengths in an attempt to reduce classification error.
He decided on a scheme of five 40 (ms) segment plus an
extra segment [3].

In this work, 200 (ms) segmented signal was found to be
most appropriate for the classification problem. We
decided on four 50 ms sub-segment for better accuracy.
Figure 4 shows the selected wavelength signal and seg-
ment length for the task of SEMG pattern recognition.
EMG features must be calculated over all four segments. In
this study we used, mean absolute value (MAV), slope
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Hand Openung
and Closing

Figure 3
The six classes of movements used in this work.

sign changes (SSC) and AR model coefficients as time fea-
tures of the signal.

As noted earlier, in order to increase the recognition rate
of the system, we incorporated the time-frequency fea-
tures. The major incentive for using these representations
as a feature for the application of SEMG pattern recogni-
tion is the need for more signal information to better dis-
criminate amongst various hand movements. Discrete
wavelet transform (DWT) is a well-known type of time-
frequency representation. Wavelet coefficients can be very
effective however there is a fundamental drawback
namely, lack of shift invariance. If the signal to be ana-
lyzed is shifted, the coefficients of wavelet transform vary
in a complex manner. This matter presents a significant
problem in the task of pattern recognition. To overcome

Table I: Class distribution of the sample in training and test set
data

Pinch and Thamb
flexion

Class Training set Test set Total

(Motion's type)
|-Opening 50 50 100
2-Closing 50 50 100
3-Wrist flexion 50 50 100
4-Wrist extension 50 50 100
5-Pinch 50 50 100
6-Thumb flexion 50 50 100
Total 300 300 600

Wnst Flexion
and Extension

this problem, we can use shift invariant features of DWT
such as zero crossing (ZC) and local maxima [23].

For constructing feature set with DWT, we needed to
determine the parameters that most effectively influenced
it. For this reason we considered candidate parameters
and compared their accuracy in the SEMG pattern recogni-
tion system. For DWT two parameters were considered,
namely choice of mother wavelet and depth of decompo-
sition. The best mother wavelet for SEMG pattern recogni-
tion was determined empirically. Basically, the selection
of mother wavelet must be based on best correlation with
the EMG signal.

The DWT decomposition can be terminated prior to a full
decomposition. If the signal has a length of N samples,

then the maximum depth of decomposition is J = logfz\] .

The sEMG signals in this work had 512 samples thus the
maximum depth of decomposition was chosen to be
nine. For choosing the best mother wavelet, different
mother wavelet types such as Haar, Daubechies, Symlet,
Coiflet and Biorthogonal were applied and their perform-
ance was accordingly evaluated. These results were
obtained by initially selecting the mother wavelet type
and using 9 level of decomposition for sSEMG signal. Eng-
lehart et al [5] showed that high level of decomposition
provided best performance of EMG pattern recognition
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Selection of SEMG waveform length and segment number to
construct time domain feature set.

system. This was followed by selecting the best depth of
SEMG decomposition based on the selected wavelets from
the pervious step. In this stage in accordance with Engle-
hart's work, at high level of decomposition, the best accu-
racy of the system was obtained.

The results indicate that biorthogonal3.5 as a mother
wavelet with 9 level of decomposition, presents the best
performance to recognize SEMG patterns. Figure 5 depicts
the process of DWT parameters selection.

Role of trainer unit in real-time pattern recognition

For implementation of a real-time learning scheme in pat-
tern recognition applications, operator's evaluation of sys-
tem performance is required. In the case of offline
methods previously mentioned, there is no need for con-
sidering the time as a cost function.

The real-time method must be able to evaluate the accu-
racy of system in recognizing hand movement that is per-
formed by operator. The trainer unit constructs the
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Selection of DWT parameters to construct sSEMG feature
set.

training data which contains a teacher reference signal
from the operator and reduced features from dimension-
ality reduction unit. Next, this training data is fed to the
pattern recognition unit. When the trainer unit receives
the teacher reference signal from the operator, it creates
the teaching vector as,

1, ifi=T
t=(t1,t5,0tp), ti={ (14)

0, otherwise

where T is a desired hand movement and {T'=1, 2, ..., n}
for n total hand motions. The trainer unit creates the
reduced feature set (p) with teaching data (t) in the form
of T'(p,t) and sends this teaching vector to pattern recogni-
tion unit. The trainer unit updates the state of pattern rec-
ognition unit in the interval that demanded control
command from EMG signal is generated. This process is
continued until the root mean square (RMS) comparison
is within the acceptable range and in this case, the thresh-
old was set at 0.1.
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n 2

RMS:lz(t—o)so1
n
i=1

(15)

Designing the neuro-fuzzy system structure

As noted before, five features of sSEMG signal for the appli-
cation of pattern recognition in this study, namely MAYV,
SSC, and AR model are applied as time domain features
and number of ZC and local maxima of wavelet coeffi-
cients are employed as time-frequency features. Therefore
our proposed system has five inputs.

In this work a subtractive clustering method is employed
to determine the number of fuzzy system rules, while BP
and LMS algorithm are utilized for membership function
parameters and rule outputs, respectively. For the recogni-
tion system that is designed with compound features, six
fuzzy rules are employed. As shown before this system is
of Sugeno-type of order five and the output for each rule
is determined by LMS method. Consider Z; in the form of:

Z;= a;(inl) + a,(in2) + a(in3) + a4 (in4) + o5 (in5) +
U6 (16)

where inl represents the first input and so on. Figure 6
depicts the structure of this fuzzy system. Our proposed
system has five inputs, one output and six fuzzy rules. The
characteristic of this system is summarized in Table 2. To
design this system, we use "prod" as an AND method,
"probor" as an OR method, and "weigh average" as a def-
fuzification operator.

In our study to determine the fuzzy rules, membership
functions are represented by linguistic expressions. For

Input MFs

%
\\ s
S
Input_3 (e Ll&)

Figure 6
Structure of fuzzy system with five inputs and one output.
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Table 2: Characteristic of designed neuro-fuzzy system

Number Number Number Number of Number of
of inputs of outputs of Fuzzy input output
Rules parameters parameters
(MF
parameters)
5 | 6 90 36

this purpose we introduce these expressions from lower to
upper range of inputs, as low, middle-low, average-low,
average-high, middle-high and high, respectively. The
output of each rule is represented as Z;, (fori=1, 2, 3, 4,
5, 6) and each output is obtained by combining all inputs.

Results

Experimental results

To implement the real-time EMG recognition system, we
used a PC with a Pentium4 processor. The proposed feed-
back system was implemented by MATLAB software.
Firstly a key on the keyboard was pressed to initiate the
teacher signal to the trainer unit. A computer graphic
(C.G) algorithm simulated the working of a prosthesis
hand. The subject watched the monitor and sent the
motion command by pressing the corresponding keys.
Next, he sent new motion command when he judged that
the controller has learned the previous command motion
completely. Therefore he watched the monitor and also
re-sent a teacher signal for the past motion if it was not
performed correctly. Figure 7 shows the scheme of this
process. After training the system for different trials of
each movement, the accuracy of ANFIS based system was
evaluated.

Table 3 depicts the results of implemented EMG pattern
recognition system using six hand movements previously

7

Display (C.G)

s, EMG Signal _["prosthesis Hand

Controller

i Electrode
Subject

Figure 7
An experimental setup for a real-time EMG pattern recogni-
tion system.
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Table 3: Statistical overview of rate of success of the real-time neuro-fuzzy system for sEMG pattern discrimination system

Movements
Participated subjects Opening Closing Wrist flexion  Wrist extension  Pinch  Thumb flexion Average Results
for 6 movements
Subject_I 98% 100% 94% 94% 96% 92% 95.67%
Subject_2 98% 100% 100% 96% 98% 94% 97.67%
Subject_3 96% 100% 88% 98% 98% 92% 95.33%
Subject_4 100% 100% 94% 96% 100% 98% 98%
Average results 98% 100% 94% 96% 98% 94% 96.67%
Standard deviation 1.41% 0% 4.2% 4.2% 1.41% 2.45% 1.18%

(STD) for each
movements

noted. It presents the acquired results for each subject and
the average accuracy of the system for different hand
movements. The training process for this system utilized
different time durations (response delays) for each indi-
vidual movement. It varied from three minutes for the
hand closing to eleven minutes for the thumb move-
ments.

The results indicated that the ANFIS system exhibits a
superior performance as compared to ANN noted in pre-
vious studies [1]. Also the real-time scheme for learning
SsEMG pattern recognition system with the user evaluation
inclusion provided better results. Hence by using the
ANFIS real-time learning method, we were able to success-
fully discriminate among six descriptive and distinct hand
movements. To compare the proposed ANFIS method
and the simple feed forward ANN approach, the acquired
results are presented in Tables 3 and 4, respectively. Based
on these results, the average recognition rate for ANFIS
and ANN are 96.7% (STD 1.2) and 87.3% (STD 2.6),
respectively. These results depict a marked improvement
in recognition rate associated to the proposed ANFIS algo-
rithm.

Confusion matrix, recognized as one of the most useful
methods in the study of pattern recognition applications,
was utilized for discriminating among various hand
movements for all subjects. One benefit of a confusion
matrix is that it is easy to verify if the system is confusing
two classes (i.e. commonly mislabelling one as another).
Table 5 depicts our results for this study. Each column of
the matrix represents the instances in an actual class, while
each row represents the instances in a predicted class.
Results show a minimum class based recognition rate of
94% while a maximum error rate of 5% depicting class
confusion was recorded.

Table 6 depicts two offline and one online based studies
for comparison with our findings. As number of hand
movements differs in these studies, we defined a criterion
which is based on the error percentage per number of
movements. Based on the results presented in this table,
the best per movement error percentage belongs to our
proposed ANFIS algorithm as referenced to our accumu-
lated results in Table 3.

Furthermore to evaluate the performance of the proposed
ANFIS algorithm, we determined the specificity and sensi-
tivity of each class by using the results depicted in the con-

Table 4: Statistical overview of rate of success of the real-time ANN system for sEMG pattern discrimination system

Movements
Participated subjects Opening Closing  Wrist flexion Wrist extension Pinch  Thumb flexion  Average Results
for 6 movements
Subject_I 92% 98% 90% 92% 88% 82% 90.33%
Subject_2 86% 90% 84% 86% 82% 84% 85.33%
Subject_3 90% 94% 88% 86% 80% 78% 86%
Subject_4 94% 94% 86% 88% 82% 80% 87.33%
Average results 90.5% 94.5% 87% 88% 83% 81% 87.33%
Standard deviation 2.96% 2.83% 2.24% 2.45% 3.00% 2.24% 2.62%
(STD) for each
movements
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Table 5: Confusion matrix for identified hand movements for all subject by using ANFIS

Identified movements Opening Closing Wrist flexion  Wrist extension Pinch Thumb flexion
Real movements
Opening 98% 2% - - - -
Closing - 100% - - - -
Wrist flexion - 2% 94% 4% - -
Wrist extension - - 4% 96% - -
Pinch - 2% - - 98% -
Thumb flexion - 2% - - 4% 94%

fusion matrix (Table 5), where the sensitivity and
specificity may be defined as number of correct classifica-
tion of multi-labeled movements per total number of con-
fused cross-class movements, and number of correct
classification per number of total hand movements,
respectively [24]. Table 7 presents the results for both
parameters.

Discussions

SEMG signals provide an extremely useful non-invasive
measure of ongoing muscle activity. They are potentially
suitable as reference signals for prosthetic hands. Most
commercially available hand prostheses have limited
range of hand motions. The most natural way to control
prosthesis hand would be through a neural based control
scheme mediated by the nerves intended for the ampu-
tated hand or arm. In this work, we proposed a novel real-
time method suitable for hand prosthesis control.

In this non-invasive system, two channel surface mounted
electrodes were utilized. The system presented in this
work was based on a new intelligent approach, namely a
neuro-fuzzy classifier. To train this system, a hybrid
method approach consisting of BP and LMS was intro-
duced. Furthermore we employed a subtractive clustering
scheme to specify fuzzy system rules.

Also in order to increase recognition rate of this system,
two types of features which were time domain and time-
frequency representations were used. In time domain we
used three major features of SEMG signal namely, MAV,
SSC and AR model coefficients and in time-frequency
domain, ZC and local maxima of wavelet transform were

employed. Once a feature set was constructed, they were
fed to a classifier for discriminating amongst six motion
commands of selected hand motions. In this study by
using a real time learning method, we considered the
effect of user evaluation. The training process of the sys-
tem was continued until its recognition accuracy based on
the RMS criterion was satisfied.

After implementing the SEMG pattern recognition system,
we acquired classification rate of the proposed system.
Our results demonstrated that the utilized real-time based
ANFIS approach was superior to the previously intro-
duced ANN scheme as it allowed for a versatile multi
motion recognition machine.

Conclusion

In this work, we introduced a new approach for recogniz-
ing sSEMG pattern based on real-time neuro-fuzzy system
with high degree of correctness. Two types of sEMG fea-
tures were used, namely time and time-frequency features.
Also in order to consider the effect of real-time learning on
recognizing six distinct hand movements, an operator
based vision feedback approach was utilized. This study
demonstrated that ANFIS real-time based learning
method is a viable contender in the sEMG pattern recog-
nition system in extending the acceptable range of hand
motions intended for hand prosthesis systems.

Abbreviations
EMG Electromyogram Signal

SEMG Surface Electromyogram Signal

Table 6: Comparing the acquired results in this work with previous offline and online EMG pattern recognition system

Selected Study Number of Hand

Percentage of Error

System type Percentage of Error per

Movements Used Range Movement

B. Hudgins 4 2-30% Off-line 0.5-75%
K. Englehart 4 6-13% Off-line 1.5-3.25%
Nishikawa 10 5.6-9.3% On-line 0.56 — 0.93%
This work 6 2-4.67% On-line 0.33-0.78%
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Table 7: The statistical characteristics of designed neuro-fuzzy system for recognizing hand movements

Classifier Specificity Sensitivity
ANFIS 96.67% 97.14%
ANN 87.33% 87.07%

ANFIS Adaptive Neuro-Fuzzy Inference System

BP Back Propagation

LMS Least Mean Square

ANN Artificial Neural Network

AR Autoregressive

MAV Mean Absolute Value

SSC Slope Sign Changes

ZC Zero Crossing

PCA Principle Component Analysis

CMRR Common Mode Rejection Ratio

MF Membership Function

TD Time Domain (features)

TFR Time-Frequency Representations

FIS Fuzzy Inference System

DWT Discrete Wavelet Transform

RMS Root Mean Square

PC Personal Computer

C.G Computer Graphics
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