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Abstract

BiolVled Central

Background: Different imaging systems (e.g. electrical, magnetic, and ultrasound) rely on a wide
variety of physical properties, and the datasets obtained from such systems provide only partial
information about the unknown true state. One approach is to choose complementary imaging
systems, and to combine the information to achieve a better representation.

Methods: This paper discusses the combination of ultrasound and electrical impedance
tomography (EIT) information. Ultrasound reflection signals are good at locating sharp acoustic
density changes associated with the boundaries of objects. Some boundaries, however, may be
indeterminable due to masking from intermediate boundaries or because they are outside the
ultrasound beam. Conversely, the EIT data contains relatively low-quality information, but it
includes the whole region enclosed by the electrodes.

Results: Results are shown from a narrowband level-set method applied to 2D and 3D EIT
incorporating limited angle ultrasound time of flight data.

Conclusion: The EIT reconstruction is shown to be faster and more accurate using the additional

edge information from both one and four transducer ultrasound systems.

Background

Electrical impedance tomography (EIT) seeks to image
electrical conductivity distribution of an object by meas-
uring the impedance data between electrodes attached to
the outer surface of the body [1]. In this paper we are
developing an EIT imaging technique combined with a
priori ultrasound data. Our proposed method is looking
to a localised change in conductivity of part of the imag-
ing area. The application of EIT envisaged in this paper, as
motivation, is monitoring of cryosurgery. Cryosurgery is a
minimally invasive way of destroying the undesired tis-
sues by freezing them down to between -20 to -80 degree
C [2,3]. Feasibility of EIT for Cryosurgery monitoring has

been studied in [4,5]. In this application a probe is
inserted into cancerous tissue. An ice ball forms around
the probe destroying the surrounding tissue. It is very
important to monitor the location, size and shape of the
ice ball, especially if the area to be destroyed is delicate
and contains critical tissue. This monitoring is usually
achieved using magnetic resonance imaging (MRI) or CT
fluoroscopy [6,7]. Both EIT [5] and ultrasound imaging
[8] approaches offer cheaper systems, but individually do
not provide sufficient detail to be of practical use.

A standard single transducer ultrasound system would

typically only see one face of the ice ball. In contrast, a 3D
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EIT system would sense the whole volume but the bound-
aries of the ice ball would be difficult to accurately deter-
mine. Full medical ultrasound systems use scanning
transducers or phased arrays to produce 2D or 3D images
of the body. These systems are expensive and will still only
show one face of the ice ball. A simpler and much cheaper
system uses a few individual ultrasound transducers
placed around the object. This method can estimate the
edge position in a few places but cannot produce a full
image. This information, however, could be used to
improve the reconstruction method of an additional
modality, such as EIT. This paper looks to introduce the
fusion approach by proposing a narrowband level-set
algorithm, which focuses the EIT reconstruction using the
ultrasound data.

The level-set method was initially introduced for tracking
propagating boundaries, but can also be used to locate
static boundaries such as the interface between an inclu-
sion and background [9-11]. There are alternative
approaches for the shape reconstruction in EIT, including
monotonicty method [11,12] geometrical based shape
recovery [13-15]. Compare to geometrical modelling of
the shape recovery [13-15], the level set method has an
advantage that it handles multiple objects in an automatic
fashion. Monotonicity method is fast and nonlinear, but
provides only partial classification of the shape identifica-
tion problem.

In this paper the finite element method (FEM) has been
used to solve the forward problem of EIT. This is imple-
mented in Matlab using codes from EIDORS2D and
EIDORS3D [16,17]. A triangular mesh was used for the
FEM model of the forward problem in 2D and a tetrahe-
dral mesh was used in 3D. Using level set method allows
us to use a dense mesh for the inverse problem (by apply-
ing a narrowband level set the size of the inverse to be
solved remains small), consequently large scale forward
problem needs to be solved. In order to improve the com-
putational time of the forward solvers especially in 3D, we
modified the EIDORS3D by applying algebraic multigrid
method (AMG) [18] as a preconditioner for the conjugate
gradient as the linear solver from the FEM model. Using
AMG scheme improved the speed of the forward problem
dramatically; so many forward problems could be solved
as needed in level set method. In our modified version of
EIDROS3D we developed a nonlinear EIT reconstruction
and also minimized the computational time for calculat-
ing the Jacobian matrix, so it can be update many times.

Using an iterative method, with an update formula for the
level-set function, the interface between two materials can
be recovered. The level set is known to generate good
interface results [9,10] but the computational cost is high,
as it will need many iterations (hundreds of nonlinear
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Diagram of ultrasound probing using a single transducer (left)
and multiple transducers (right).

steps). The number of iterations is a function of the initial
guess for the shape as well as the complexity of the objects
to be reconstructed. In this article we are using a priori
ultrasound data to improve our initial guess for the object
location, by identifying some points at the boundary of
the object.

Method

In EIT, the differences in the electrical properties, i.e. con-
ductivity distribution inside the object; is used to generate
a tomographic image. EIT is used in both medical and
industrial applications. The advantage of such a technique
over other imaging modalities is such that, it provides a
non-invasive ("non-destructive” in an industrial termi-
nology) method and requires no ionizing radiation. Fur-
thermore, EIT is a relative low cost and simple functional
technique. Moreover, a portable measurement system
could also be designed for it. The most important draw-
back of EIT is its poor image resolution, which is often
restricted by the number of electrodes used for data acqui-
sition. Data acquisition is typically made by applying an
electrical current to the object using a set of electrodes,
and measuring the developed voltage between other elec-
trodes.

EIT is suggested to be a good technique for the cryosurgery
monitoring. In this article we are reformulating the EIT
image reconstruction problem to an interface reconstruc-
tion problem between frozen and normal tissue. That
would allow us to extract the information we need in
more efficient way. Fortunately, this is an application of
EIT that the conductivity contrast of the region to be
imaged is high and a localised problem as the cryogen
probe can tell us where the approximate location of the
frozen area is. Here we are attempting to use some addi-
tional information about the interface by using ultra-
sound data.

Ultrasound transducers
The ultrasound method is a single pulse-echo measure-
ment [19]. The travel time from excitation of the trans-
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Figure 2
Diagram showing the moving boundary (left) and narrow-
band (right) around the interface in the level-set approach.

ducer to receiving the reflected signal is recorded. The
velocity of the ultrasound wave within the fluid is depend-
ent on its compressibility and density. The distance trav-
elled is calculated from the time of flight (TOF) of the
ultrasound wave from transducer to the object and back
again, and the known velocity of sound in the liquid.
Ultrasound technique is based on measuring the TOF of
ultrasonic waves arriving at the boundary of the region of
interest, which here is the ice ball. Ultrasonic transducers
are evenly spaced around the circumference of a body.

We assume the transducer beam is not diverging (near
field, here we assume the probes are at the surface of the
body) such that only a known narrow strip in front of the
transducer is investigated (see Figure 1). The ultrasound
signal therefore provides the position of the ice front
within this narrow strip. This information is used in the
electrical resistance reconstruction. More transducers
could be incorporated to estimate the whole ice boundary
from at other positions.

In normal medical ultrasound the tissue temperature is
approximately constant throughout the body and the
velocity is close to that of pure water. However in the cry-
ogenic freezing application there will be noticeable tem-
perature gradient. Since the velocity dependence of water
is approximately 3 m/s per degree C, this variation in tem-
perature will have a noticeable effect. It would be possible
to model this temperature gradient and variation to calcu-
late the velocity profile and then estimate the ice ball posi-
tion. However to model the temperature distribution the
ice ball position must be known, which leads to an itera-
tive calculation. Another method would be to perform
ultrasound measurements across the tissue from known
positions on the skin surface. This would aid in the esti-
mation of the velocity and temperature gradients.

http://www.biomedical-engineering-online.com/content/5/1/8

Level set method

The level-set technique is chosen to describe changing
shapes since this method is able to easily model topolog-
ical changes of the boundaries. In the shape reconstruc-
tion approach, it is assumed that the approximate values
of background parameters and parameters inside the
inclusions are known, but that the number, topology and
shapes of the inclusions are unknown and have to be
recovered from the data. Compared to the more typical
pixel/voxel-based reconstruction schemes, the shape
reconstruction approach has the advantage that the prior
information about the high contrast of the inclusions is
incorporated explicitly in the modelling of the problem.
In a pixel/ voxel-based reconstruction scheme the approx-
imate locations of the unknown inclusions are found dur-
ing the early iterations, but it typically takes a large
number of additional iterations to achieve accurate infor-
mation concerning the precise shapes of these objects.

Figure 2 schematically shows a moving boundary and a
narrowband at the interface. Here, the equation describ-
ing the moving fronts is

oD
—+F|V®|=0 1
 +Fvol (1)

where F is the speed function and ® is the boundary at
time t.

We do not use equation (1) to describe the front propaga-
tion. Instead we have implemented a narrowband level set
method [10]. In narrowband level set method we use an
iterative optimisation technique and in each iteration the
inverse problem has been solved on the interface between
two-phase materials [10].

The conductivity at each point r can be described in terms
of the level-set function depending on the position of the
point r with respect to the boundary D of the inclusion
D as

Oj r:®(r)<0
G(T) — nt { ( ) } (2)

Coy {r:@(r)>0}
and
oD = {r®(r) =0}. (3)
Here o;,,and o,,, are the conductivity of the inclusion and
the background respectively. The describing level-set func-
tion is a function form R3 — R for three-dimensional case,
and its value is zero on the boundary, it has a negative sign
inside and a positive sign outside of the boundary.
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Figure 3
The reconstruction of a high resolution EIT image suitable
for cryosurgery monitoring using simulated data.

The inverse boundary value problem is to find the bound-
ary 0D (which in turn describes a conductivity distribu-
tion) that minimizes the mismatch between the measured
and fitted voltage data. The mismatch function, ¥(0D), is
defined as

¥(@D) = [|V,,- V(@D(a))]| + G(3D(o))  (4)

where V,, are the measured voltages, and V(0D(c)) are the
voltages calculated from the conductivity distribution, o,
derived from the corresponding boundary 6D and G. is a
regularisation term applied to the interface. In this paper
the regularisation matrix is the identity matrix. The deriv-
ative of the voltage to a change in interface was derive [9]
and [10,11] and has been used in this study. Regularised

Figure 4
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Gauss-Newton update formula [11] has been used to
reconstruct the interface. Small values of the mismatch
between measured and simulated voltage indicates good
locations for the boundary where as large values indicate
poor estimation of the boundary. In particular, the
boundary which makes this as small as possible is used,
along with the inclusion and background resistivities, to
give the level-set reconstruction. In practice this minimum
cannot be found in a closed form and so a numerical pro-
cedure is required. To perform the minimization the fol-
lowing algorithm [10] is used

1. Start with an initial guess for the shape of the inclusion,
which is an initial level-set function, in our case a circle
located in the centre.

2. Define the interface and narrow band; the narrow band
is an area that includes pixels sharing points with the
interface.

3. Solve the forward problem and calculate the Jacobian
with respect to the boundary.

4. Update the level-set function and calculate a new inter-
face boundary and narrow band.

5. Check the misfit in the data and if the error is small
enough then stop.

6. If the misfit is not small go to Step 2

Results

In general for EIT to be used in cryosurgery monitoring a
higher resolution EIT image is needed. Figure 3 shows the
simulation of EIT reconstruction for cryosurgery using 64
electrodes (this image has been provided by John Edd

A 2D example with the truth with three inclusions (left), a standard reconstruction (centre) and a level-set reconstruction

(right).
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A 3D example with two-plane electrode arrangement (left), truth with two inclusions (centre) and level-set reconstruction

(right).

[20] from university of California Brekely). It is a recon-
struction of the change in conductivity upon thawing of a
dual cryoprobe cryosurgical treatment. There are two cir-
cular regions of ablated tissue (each having a conductivity
approximately 2.43 times that of normal tissue), while the
surrounding tissue is healthy (step transition). The image
contains 41 x 41 square pixels and uses 64 electrodes
(1952 measurements). To improve the EIT image resolu-
tion one can increase number of electrodes but there will
be limited number of electrodes depending on the accu-
racy of the measurement system. As it has been shown in
our proposed method, the narrowband level set represen-
tation of the inverse EIT problem can improve the accu-
racy of the interface recovery.

Figure 4 shows a comparison between pixel-based image
reconstruction [16,17] and the level-set method. On the
left hand side is true conductivity distribution used to rep-
resent the measurement. The figure at the centre shows the
pixel-based image reconstruction and on the right is the
level-set reconstruction. It is clear from this experimental
test example that the level-set method outperforms the
standard image based method. Cylindrical 3D objects
were used for gathering the data experimentally, and data
was collected from the experimental EIT (16 electrodes

EIT) system was designed and built at the Univesity of
Kaipio in Finland [16].

Figure 5 shows an example for 3D reconstruction with a
simulated 3D tank. There are 16 electrodes in two rings of
electrodes. This model has been chosen to demonstrate
the simulation study. In any particular application one
needs to tack into account the geometry of the object
accordingly. The inverse mesh includes 9423 elements
and solving the full inverse problem of the pixel-based
method is very time consuming. Using the level-set
method we have solved several smaller sized inverse prob-
lems resulting in an overall faster algorithm. Size of the
inverse problem to be solved in iterations of the narrow-
band level set method was an average number of 1023.
Reduction of the size of the inverse problem reduces the
memory required to solve the inverse problem and also
computational time required to solve the inverse prob-
lem. The number of iterations in level set method is nor-
mally higher compared to the number of iterations used
in traditional pixeled based image reconstruction [11].
There can be two reasons for that. First if the inclusions are
far from the initial guess it may take iterations to find the
location of an inclusion by an interface search method.
Secondly if the shape of the inclusions is complicated, it
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True position of the inclusion and reconstruction using level set method.

will take much iteration to reconstruct the shape of the
object. In this study we don't have a solution to reduce the
number of level set iterations if the shape is complicated.
By using a priori ultrasound knowledge about the bound-
ary of the object we can speed up the level set algorithm
to converge in less iteration.

For enhanced EIT reconstruction using single ultrasound
transducer measurements we assume that the bottom
edge position of the ice ball is known. For the multiple
transducer-enhanced reconstructions we include four
edge positions as shown on the right in Figure 6.

The number of iterations in the level-set method is a func-
tion of the initial guess. If the initial guess is far from the
real object it will take more iteration to recover the shape.
The real object (see Figure 7) is a spherical object centred
at (0.4, 0, 0.4) m with the diameter of 0.1 m.

To assess and compare the procedures the mismatch error,
Y, is calculated at each iteration. The convergence plot in
Figure 8 shows that, for a level-set reconstruction when
the initial guess was a sphere with diameter 0.07 m cen-
tred at (0.1, 0, 0.1) m, the number of iterations was high.
This is because during the evolution of the level-set func-
tion the object moves within a low sensitivity region -
that is between the two planes of electrodes in the hori-
zontal direction.

Using a single ultrasound transducer a point, (0.3, 0, 0.4)
m, on the boundary of the inclusion is identified and used
to help start the level-set algorithm. The initial guess is of
a spherical object with diameter 0.07 m centred at (0.3, 0,
0.33) m. The convergence improves (see Figure 8 left) and

in a few iterations a very good estimate of the true object
can be reconstructed.

Further improvement, both in terms of the speed of the
convergence and the accuracy of the reconstructed shapes,
is expected with multiple ultrasound transducers. To
investigate this, ultrasound probes help to provide the
positions of four points in object boundary. A spherical
object passing through these four points is implemented
as the initial guess. The convergence of the level-set
method is faster as expected (Figure 8 right), however the
shape reconstruction accuracy does not improve signifi-
cantly over the single transducer results. This is likely to be

Mismatch error
e

. i
10 15 20 25 e s 40 45

Iteration

[=]
(o)

Figure 7
The reduction in the mismatch error for non-enhanced
reconstruction.
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The reduction in the mismatch error employing ultrasound edge

(right).
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information from one transducer (left) and four transducers

due to the coarseness of the level-set mesh. The smallest
size of the ice ball that can be reconstructed depends on
the accuracy of the measurement system and computa-
tional model. In [18] for brain cryosurgery, we have
shown that the voltage differences between frozen and
normal tissues in mv are proportional to the volume of ice
ball in cm3. On the other hand the choice of mesh density
and size of narrowband has an impact in accuracy of the
interface.

Conclusion

Shape identification is an inverse boundary value prob-
lem; therefore it is not efficient to use the common image
reconstruction methods. Shape reconstruction in 3D EIT
is presented in this paper. The main advantage of the
level-set formulation is that at each iteration the inverse
problem needs to be solved in the interface between two
materials rather than in the whole region of interest. In
terms of including prior information, the level-set method
incorporates important regularization, namely knowledge
of the two-phase material. Additional information was
included from the ultrasound data, and an improvement
in the speed of convergence and accuracy of the results by
this data fusion has been discussed. Finally, the 3D EIT
level-set inversion can be improved both in speed and
accuracy by incorporating ultrasound time of flight data.
It worth noticing that the technique developed in this
paper is a localised EIT reconstruction, concentrating in a
small region, any change or uncertainty on conductivity of
the rest of the imaging area will have an effect on the esti-
mation of the interface, we acknowledge that. This is still
an open debate in EIT community how trustable is local-
ised information gathered by an EIT system without a

whole EIT image. The question to be answered is in EIT we
have limited resources in terms of measured data, if we
want to include many information to be identified by EIT
data, we can calculate them lesser accurate, but if we
assume some of the information, we might be simply
wrong in some of those assumptions. In our continued
study we will further investigate the validity of the local-
ised information especially when a second modality is
also involved. We suggest following steps as the best strat-
egy to be used in a practical application

1. Generate a pixel based EIT image (using a linear image
reconstruction).

2. Evaluate an approximated speed profile for the ultra-
sound based on conductivity profile (approximate it to
temperature gradient) generated using linear EIT image
and consider the speed with different organs based on EIT
image.

3. Calculate some points at the boundary of the inclusion
(here is frozen tissue) using ultrasound data.

4. Applying narrowband level set method as a more accu-
rate interface reconstruction technique using EIT data and
a priori ultrasound data.

With above strategy, we have an EIT image but with less
accurate interface information and a localised conductiv-
ity interface reconstruction with more detailed informa-
tion about the interface between frozen and normal
tissues. Combination of full ultrasound tomography with
consideration of different speed of ultrasound in different
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organs and different temperature is our main aim for
future study.
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