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Abstract
Background: Experimental results are commonly fitted by determining parameter values of
suitable mathematical expressions. In case a relation exists between different data sets, the
accuracy of the parameters obtained can be increased by incorporating this relationship in the
fitting process instead of fitting the recordings separately.

Methods: An algorithm to fit multiple measured curves simultaneously was developed. The
method accounts for parameters that are shared by some curves. It can be applied to either linear
or nonlinear equations. Simulated noisy "measurement results" were created to compare the
introduced method to the "straight forward" way of fitting the curves separately.

Results: The analysis of the simulated measurements confirm, that the introduced method yields
more accurate parameters compared to the ones gained by fitting the measurements separately.
Therefore it needs more computer time. As an example, the new fitting algorithm is applied to the
measurements of the evoked compound action potentials (ECAP) of the auditory nerve: This leads
to promising ideas to reduce artefacts generated by the measuring process.

Conclusion: The introduced fitting algorithm uses the relationship between multiple
measurement results to increase the accuracy of the parameters. Its application in the field of ECAP
measurements is promising and should be further investigated.

Background
It's very common to analyse a system by making measure-
ments and trying to fit a mathematical equation (i.e. the
model of the system) to the results. That way the system is
described by the fitted parameters. If the system is com-
plex and the equation has many (M) parameters a1 to aM
(described by the vector a), receiving usable values from
only one measurement/fit is difficult. In this case, one

possibility is to make more than one (N) measurement
and alter some of the test-conditions which should appear
in one or more parameters of the fittings. If the results of
these measurements were fitted separately, the situation
would not improve much. Here an algorithm is intro-
duced that fits those N measurements simultaneously to
N equations which may be (but need not) different and
may share some of the parameters am.
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Example
We have N = 3 curves described by the equations y(x) = gi
e-kx + c (i = 1 ... 3) which are degraded by added normally
distributed noise to simulate the measurement process
(left part of figure 1(a)). The task is to retrieve the param-
eters used to create the curves by only using the degraded
values for 0 ≤ x < 100. When the three curves are fitted sep-
arately, one obtains three values of each parameter g, k
and c (figure 1(b)).

The fit method we are introducing here is able to fit these
curves simultaneously and takes into account that the

parameters k and c are shared. Therefore it returns only one
value for k and one value for c (figure 1(d)). The following
equations were used for fitting:

y3(x) = g3 e-kx + c  (1)

y2(x) = g2 e-kx + c  (2)

y1(x) = g1 e-kx + c  (3)

In this example, the vector of the fit-parameters a was
assigned as follows:

Example taskFigure 1
Example task. Three curves of the form y = gi ekx + c were created (a) with k = -0.01 and c = 50. Then the range between x = 
0 and x = 99 was taken and noise was added. The task for the fit methods was to extract the original parameters using only this 

noisy part. It was done by (b) fitting each curve separately with y =  + ci, (c) taking the introduced fit method with shared 

k (y = giekx + ci where k was determined to be -0.0137) and (d) with shared k and c (y = giekx + c where k and c resulted in -
0.0107 and 55.2 respectively).

(a) (b)

(c) (d)

g ei
k xi
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a1 = k a2 = c a3 = g1 a4 = g2 a5 = g3

Figure 1(c) shows the result when using this algorithm
with shared k only.

Principle of the algorithm
The basic idea is the following: When fitting one curve to
one equation, the goodness of the fit parameter χ2 (weighted
sum of the quadratic deviations of the values – definition
follows) is minimised. To fit N curves to N equations
simultaneously, the sum of the individual χ2 values has to
be minimised. Definitions:

• N ... Number of equations/curves. Each curve is repre-
sented by one equation.

• A(n) ... Number of the nodes belonging to the nth meas-
ured curve.

• (xni, yni, ) ... node number i of the nth curve (i = 1 ...

A(n)). σ2 is the uncertainty and can be set to 1 if it is iden-
tical for all nodes of all measurements.

• M ... Total number of parameters that should be deter-
mined with the fit.

• a = (a1, ..., aM) ... M element vector of the fit-parameters
a1 to aM.

• yn(x, a) ... nth equation. It can use all fit parameters a, but
there are three possibilities the nth equation could use
every single parameter am:

1. The equation is independent of am. Then the (in the fol-
lowing needed) partial derivation of the equation accord-
ing to this parameter am is zero.

2. am is a "normal" fit-parameter, that should be opti-
mised.

3. The equation depends on am, but should not partake in
the optimisation. This is done by setting the partial deri-
vation for this parameter to zero.

The total sum of the goodness of the fit parameter χ2 is

defined as sum of the goodness of the fit parameters 

of each curve. The bigger χ2, the worse the fit:

Method for linear functions
If all equations yn(x, a) are linear in the parameters a, we
can use the least square fit method [1] to minimise the
total χ2. In this case, the equations yn(x, a) have to be of
the following form:

fnm(x) are arbitrary functions. Note that a polynomial
function is a special case of this where fnm(x) has e.g. the
form fnm(x) = xm. To get the values for a, the value of χ2 is
minimised by setting the derivations according to each
parameter ak to zero:

In this way one gets M linear equations (k = 1 ... M) to
determine the M entries of a. Equation 10 may look com-
plicated, but all values except am are explicitly known. The
equation can be solved by the method of determinants.

The advantages of the least square method over all non-
linear methods are very fast processing, final results in one
step and no need to specify starting parameters.

Method for nonlinear functions
If the equations yn(x, a) depend on some of the parame-
ters a in a non-linear way, the requirement to use the least
square fit method is not met. In this case, one of the fastest
methods to minimise χ2 is the Marquardt-Method [2], an
iterative numerical process. Here it is adapted to fit N
curves simultaneously. We use the Marquardt method
here, because some of the ideas that are described later
require non-linear fitting. The following description can
be considered a recipe. For the mathematical background
of the Marquardt-Fit-Method, see [1,2].
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1. Calculate χ2 with suitable starting parameters a with
equations (4) and (5).

2. Set λ to 10-3.λ is a constant factor that controls whether
the Marquardt-Fit-Method should behave more as a gradi-
ent search fit method (λ <<> 1) or an expansion fit
method (λ Ŭ 1).

3. Calculate the vector δa, which has the same size as a
(namely M elements) and describes the suggested correc-
tion to a as follows:

(a) The M element vector β represents the first partial der-
ivations of χ2 to the fit parameters described by a:

(b) The M × M Matrix  describes the second partial der-
ivations to the fit parameters ak and am (k and m vary from

1 to M respectively):

(c) Calculate the matrix α by multiplying each diagonal

element from  by (1 + λ).

(d) Determine the inverse matrix ε of α.

(e) Calculate δa as follows:

4. Derive new trial-fit-parameters a' from the "old" ones a:

a' = a + δa  (14)

5. Determine χ'2 with the trial-fit-parameters a' using
equations (4) and (5 and (5)).

6. If χ'2 ≥ χ2 (i.e. there is no improvement with the trial-fit-
parameters): Substitute λ with 10·λ, keep a unchanged,
and continue with step 3.

7. If χ'2 <χ2 (i.e. the new parameters are better): Substitute
λ with λ/10, and a with a' and continue with step 3.

This iterative calculation may be stopped when one of the
three following conditions is met:
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Results of the example taskFigure 2
Results of the example task. Results of the example task shown in figure 1: The task was done 1000 times with other noise 
signals. The distribution of the obtained parameters is shown here as box and whisker plots. The dashed lines show the tem-
plate values. (a) distribution of g1. (b) distribution of g2. (c) distribution of g3. (d) distribution of k. (e) distribution of c.

(a) (b)
(c)

(d) (e)
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• χ2 falls below a certain predefined threshold.

• The difference between χ2 and χ'2 decreases to less than
a specified value.

• The count of the calculation loops exceeds a maximum
number.

Note: Using this method, one has to treat "constant"
parameters (parameters that do not participate in the fit-
ting process) in a special way (and not within a having
derivations of zero), because otherwise their value may be
biassed to minimise χ2. This could be done by an extra
parameter for yn(x, a) (e.g. called b) or by incorporating
the constant parameters within the functions yn(x, a).

Comparsion to single fits
The benefit of parameter-sharing is that all retrieved val-
ues (not only the shared ones) are more precise compared
to fitting them separately. To verify this, 1000 fits of the
simulated "measurement" from the example above had
been made with the following three methods: single fits,
simultaneous fits with shared k and simultaneous fits with
shared k and c. For every fit, a "new" noise was used. The
distributions of the parameters obtained with the three
different methods are shown in figure 2: The smallest
deviation from the real parameters were obtained by the
fits, where k and c were shared.

Use with cochlear implant ECAP measurements
Cochlear implants are medical devices that enable deaf
people to perceive hearing impressions by electrically
stimulating the auditory nerve [3]. The stimulations occur
through a multichannel electrode that is placed directly
into the cochlea and has contacts on different positions.
This way, up to 100% speech recognition can be achieved
[4].

Modern cochlear implants can record the evoked com-
pound action potential (ECAP) of the auditory nerve. This
is done by measuring the voltage at one of the contacts of
the multichannel electrode after a stimulation pulse that
evokes the action potentials. The recordings obtained
show the sum of the ECAP and exponential decays result-
ing from residual charges (arising from capacitive compo-
nents on the implant itself or from the electrode-
electrolyte transition). There are several well established
recording methods to eliminate or reduce this so called
artefact to obtain the pure ECAP: Alternating stimulation
[5], masker probe methods [6,7], triphasic stimulation [8]
and scaled template methods [9]. However, each method
has its limitations: Some of them rely on the linearity of
the system (alternating stimulation), others need up to
between nine to sixteen times more measurements for one
result (masker probe methods).

Another issue is the influence of the used measurement
system itself, which may be seen on the measured curves
as offsets, drifts, additional exponential decays, ... (called
system effects here).

The introduced method can be used as a tool to help sep-
arate the ECAP signal from these undesired components.
One way to do so is to fit just the artefact (without the
ECAP) along with the system effects and subtract this fit
from the measurements. This can be done with sub-
threshold measurements, recovery measurements, or in
regions, without an ECAP. Another possibility is to com-
bine this method with an artefact cancellation method
mentioned above, for example to eliminate system effects.

The algorithm needs sequences with different conditions
to gain advantage over single-curve-fits. In practical use
this is no disadvantage, because usually two special
sequences are measured: The amplitude growth sequence
and the recovery sequence. The amplitude growth sequence
raises the stimulation pulse amplitude from zero to the
maximum comfortable loudness (MCL) level. The recov-
ery sequence sends two MCL level pulses before the meas-
urement – if the second pulse lies within the auditory
nerve recovery time of the first pulse (about < 1 ms), the
ECAP vanishes.

Amplitude growth measurement resultFigure 3
Amplitude growth measurement result. Data from an 
Amplitude Growth measurement with the MedEl 
PULSARCI100 cochlear implant. For each curve, 50 cathodic/
anodic pulses were averaged. The pulses had an amplitude 
between 0 and 800 cu (1 cu ≈ 1 μA). Their begin is the time 
origin.

800 cu
711 cu

Ampl.

622 cu
533 cu
444 cu
355 cu

266 cu
177 cu

88 cu
0 cu
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Example ECAP measurement
Figure 3 shows the results of an ECAP measurement using
the amplitude growth sequence with ten amplitudes
between 0 and 800 cu (current units, 1 cu corresponds
nominally to 1 μA). It was recorded with the MedEl
PULSARCI100 cochlear implant and the software ArtRe-
search. Biphasic pulses beginning with the cathodic phase

were used. For each of the ten curves, 50 recordings were
taken and averaged. We intentionally chose an ECAP
measurement with a large artefact and with different offset
voltages for each curve to demonstrate the power of the
algorithm.

The following equation was used as "model" of the arte-
fact plus offset for each curve. We assumed that the arte-
fact can be described by two exponentially decreasing
terms and one offset parameter.

y(t) = fe-t/τ + ge-t/T + c  (15)

The final offset c and the amplitudes f and g are different
for each curve, but the time constants τ and T are assumed
to be global, so that the following a was used. It contains
32 parameters.

a = (τ, T, f1, g1, c1, f2, g2, c2, ..., f10, g10, c10)  (16)

As mentioned above, several ideas exist to take advantage
of the algorithm. Three of them will be described in the
following subsections:

Fit of the regions without an ECAP signal
The first possibility is to exclude the regions of the curves
where an ECAP signal is expected from the fit. In this
example, we included the whole range of the five meas-
urements from 0 to 355 cu stimulation amplitude that are
sub-threshold (figure 3), and the right part of the other
five measurements, where the ECAP signal (duration of
about 1 ms [10]) has vanished.

The run time of the algorithm was about one minute
(interpreted Matlab™ code with no attempts to speed it
up), calculating the fitted values for the 32 parameters. As
expected, straight lines were obtained for the fitted regions
when subtracting the fit from the original data, indicating
a tight fit (figure 4). The returned values for the time con-
stants were: τ = 322 μs and T = 138 μs. What we could not
expect was that the fit was good for the regions that did
not partake in the fitting process, because those regions of
the fit where g6 to g10 (the factors for the fast exponential
function) could be determined properly were excluded
from the fit as described before.

These patient specific time constants describe mainly the
electrical properties of the electrode-electrolyte interface
[11] and the geometry, and could be taken as diagnostic
parameters along with the ECAP amplitude or the residual
voltage measured in telemetry measurements.

If the ECAP signal is small compared to the amplitude of
the exponential decay, a good guess of f6 to f10 and g6 to g10
would yield a further fit over all regions where the other

Data minus fitFigure 4
Data minus fit. This figure shows the same data as in figure 
3 but with a fit subtracted. The selected region was excluded 
from the fit. The lines were plotted with an offset of 50 μV 
each. Details in text.

800 cu
711 cu

Ampl.

622 cu
533 cu
444 cu
355 cu

266 cu
177 cu

88 cu
0 cu

Additional fitFigure 5
Additional fit. Same as figure 4 with additional fit to obtain 
values for the parameters that describe the fit within the 
region that was excluded for the first fit. The lines were plot-
ted with an offset of 50 μV each. Details in text.

444 cu
355 cu

622 cu
533 cu

800 cu
711 cu
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coefficients are kept constant. We have done so in keeping
τ and T constant whereas the other parameters were calcu-
lated for the five "high current" curves. The result of this is
shown in figure 5.

A remark on the starting parameters: The method we used
to get the starting parameters was to fit the curves with a
simplified model having only one exponential term (with
shared time constant) and taking into account only the
right halves of the curves. In this way we obtained values
for the long time constant τ, fi and ci. We then subtracted
the fits of this simplified model from the curves and fitted
again, using only one exponential term with a shared time
constant T and taking into account the whole curve. After
that we got starting values for gi and T. These additional
fits needed only a few seconds calculation time.

Using σ2 to fit over all regions
Instead of first excluding the parts of the curves with an
ECAP signal and then fitting over all regions where some
of the previously determined parameters are kept con-
stant, we could initially fit over all regions and use the
uncertainty parameter σ2 (see section "Principle of the
algorithm") to characterise regions where the ECAP signal
is expected: These regions should receive a high σ2 value
compared with the σ2 value from the other regions, so that
the fitting algorithm doesn't punish the ECAP caused
deviations with a high contribution to the χ2 value.

The more of the following conditions are satisfied, the
better the results from this approach:

• The ECAP amplitude is small compared to the ampli-
tude of the artefact.

• There is a region before and after the ECAP-part of the
curve that is described by the artefact model used.

• The ECAP signal is dc-free, i.e. the integral over the ECAP
signal (without any artefact) is very small.

• The artefact time constants are larger than the ECAP time
constants.

Figure 6 shows the results of this variant when using σ2 =
10 instead of 1 within the selected areas where the ECAP
signal is expected. The retrieved values for τ and T were
328 μs and 176 μs.

Using an ECAP model to fit over all regions
A further approach is to model not only the artefact, but
the ECAP signal too. [12] would be an example for a
model that could be used. This model takes into account
the double-peak shape of some ECAPs as well. Doing so is
part of current investigation and may be published in the
future.

Conclusion
The introduced fit-algorithm uses the additional informa-
tion of the relation between measured curves to retrieve
more accurate parameters compared to the parameters
extracted from single fits. In the case of ECAP measure-
ments the algorithm could be used as (additional) artefact
cancellation method with the following benefits:

• There are no additional measurements necessary to
apply this method.

• The method can be used in combination with other arte-
fact cancellation methods.

• It can take into account implant specific system effects.

• Physiological or implant specific parameters like time
constants or the artefact amplitude are gained as values
that can be used for diagnostic purposes.

• No additional noise is added.

• It is very flexible because of the possibilities to judge dif-
ferent regions of a curve and different curves in special
ways with the σ2 parameter (e.g. curves with zero pulse
amplitude fit some of the parameters very accurately),
leave out data which should not be included in the fit (e.g.

Influence of σ2Figure 6
Influence of σ2. Data from figure 3 minus fit where the σ2 

value of the selected area was 10 instead of 1. The lines were 
plotted with an offset of 50 μV each.
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holes where the ECAP is expected), use different equa-
tions for different curves (e.g. combining results of ampli-
tude growth and recovery sequences), and exclude
parameters of some curves from the fit process (e.g. time
constants in curves with ECAP).

• Constant parameters (time constant, offset, ...) can be
reused (at least as starting parameters) to save calculation
time.

The drawbacks are that the calculation can be time-con-
suming (especially with many fit parameters) and that
there have to be suitable starting parameters. The first
issue can be improved by reducing the resolution of the
curves to receive a rough result, and optimising the stop
condition for the calculation loop to fit the problem. The
second issue can be dealt with by reusing parameters from
earlier runs, or by determining them by doing rough pre-
fits with less complicated equations.

Further investigation is necessary to develop a final
method based on the introduced ideas. ECAP signals
obtained with this method should be compared in size
and shape with results of traditional artefact cancelation
methods.
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