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Abstract

Background: Ventricular tachycardia (VT) and ventricular fibrillation (VF) are ventricular cardiac
arrhythmia that could be catastrophic and life threatening. Correct and timely detection of VT or
VF can save lives.

Methods: In this paper, a multiscale-based non-linear descriptor, the Hurst index, is proposed to
characterize the ECG episode, so that VT and VF can be recognized as different from normal sinus
rhythm (NSR) in the descriptor domain.

Results: This newly proposed technique was tested using MIT-BIH malignant ventricular
arrhythmia database. The relationship between the ECG episode length and the corresponding
recognition performance was studied. The experiments demonstrated good performance of the
proposed descriptor. An accuracy rate as high as 100% was obtained for VT/VF to be recognized
from NSR; for VT and VF to be recognized from each other, the recognition accuracy varies from
84.24% to 100%. In addition, the results were compared favorably against those obtained using
Complexity measure.

Conclusions: There is strong potential for using the Hurst index for malignant ventricular
arrhythmia recognition in clinical applications.

Introduction

If a life-threatening ventricular tachycardia (VT) or ven-
tricular fibrillation (VF) is detected promptly, a high
energy electrical shock can be delivered to the heart, in an
attempt to return the heart to a normal sinus rhythm
(NSR). If a normal sinus rthythm is misinterpreted as VT or
VF, leading to delivering of an unnecessary shock, it can
damage the heart, causing fatal consequences to the
patient. Therefore, correct and prompt detection of VT or
VF is of great importance. However, the detection of these
life-threatening cardiac arrhythmia is difficult because the

waveform and frequency distribution of these life-threat-
ening arrhythmia changes with the prolonged duration
[1]. Furthermore, practical problems such as poor contact,
movement, interference, etc, can produce artifacts that
mimic these rhythms [2].

Till now, many linear techniques for VI/VF detection have
been developed, such as the probability density function
method [3], rate and irregularity analysis [4], analysis of
peaks in the short-term autocorrelation function [5],
sequential hypothesis testing algorithm [6,7], correlation
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waveform analysis [8], four fast template matching algo-
rithms [9], VF-filter method [2,10], spectral analysis [1],
and time-frequency analysis [11]. However, these meth-
ods exhibit disadvantages, some being too difficult to
implement and compute for automated external defibril-
lators (AED's) and implantable cardioverter defibrillators
(ICD's), and some only successful in limited cases. For
example, the linear techniques [5,11] using the features of
amplitude or frequency have shown their limits, since the
amplitude of ECG signal decreases as the VF duration
increases, and the frequency distribution changes with
prolonged VF duration. Therefore, more sophisticated sig-
nal processing techniques are needed to fully describe and
characterize VT and VF and facilitate the development of
new detection schemes with high correct detection rate, or
equivalently, with low false-positive and false-negative
performance statistics.

Recent studies [12,13] have shown that the cardiac
dynamics are complex and non-linear. Even if they could
be described by a set of differential equations, they would
be of high dimensionality. Normally, each heart beat is
initiated by a stimulus from pacemaker cells in the SA
node in the right atrium. The activation wave then spreads
through the atria to the AV junction. Following activation
of the AV junction, the cardiac impulse spreads to the ven-
tricular myocardium through a specialized network, the
His-Purkinje system. This branching structure of the con-
duction system is a self-similar tree with finely scaled
details on a microscopic level. The spread of the depolari-
zation wave is represented by the QRS complex in ECG.
Spectral analysis of the waveform reveals a broadband of
frequencies. To explain the inverse power-law spectrum,
West has conjectured that the repetitive branches of the
His-Purkinje system represent a fractal set in which each
generation of the self-similar tree imposes greater detail
onto the system [14]. The effect of the finely branching
fractal network is to subtly decorrelate the individual
pulses that superpose to form the QRS complex. The dis-
tribution in path lengths resulting from the fractal nature
of the branches give rise to a distribution of decorrelation
time. Some methods developed based on the theory of
non-linear dynamics have been highlighted for the analy-
sis of the signals generated from non-linear system [15].
Due to the complex and non-linear dynamical behavior of
the cardiac conduction system, non-linear dynamics or
non-linear mathematical models are considered to be
suitable tools for the analysis of ECG signals. Non-linear
techniques have been proven to be major cornerstones for
understanding the ECG signals [13,16,17].

Some non-linear techniques [18-20] have been developed
for life-threatening ventricular arrhythmia recognition.
However, there are still many problems requiring solu-
tion. The computational demands for most of the existing
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algorithms are considerably high and a long ECG episode
duration is needed. In order to strike a balance between
lower computational burden and reliable recognition per-
formance, a non-linear descriptor, the Hurst index, is pro-
posed as a new tool in this study for recognition of the
life-threatening ventricular arrhythmia. The Hurst index is
defined in the multiscale domain as a feature to quantify
the non-linear dynamical behavior (such as, self-similar-
ity, roughness and irregularity) of the ECG signal for
detecting the life-threatening ventricular arrhythmia.

ECG episodes with VT and VF from MIT-BIH malignant
arrhythmia database [21] are tested for cardiac abnormal-
ity recognition. The data also included some NSR signals
to check on the validity of the algorithm. Experimental
results are compared with those obtained by a typically
used non-linear technique, the Complexity measure,
which has been shown to perform well for life-threatening
ventricular arrhythmia recognition [20]. In this paper, the
complexity measure is Zheng's complexity measure with-
out exception. Detailed description of Zheng's complexity
measure technique can be find in [20].

The present paper is organized as follows. Mathematical
background on the proposed non-linear descriptor is
given in Section. Methodology for the recognition of ven-
tricular arrhythmia is described in Section. Section covers
the experimental results and discussions. Lastly, a conclu-
sion of the proposed study is given in Section.

Multiscale-based non-linear descriptor

Multiscale analysis is a useful framework for many signal
processing tasks. Wavelet transform is a good tool for
multiscale analysis, which allows the expansion of a sig-
nal from the time domain into the time-frequency
domain. In this paper, the Hurst index, defined in multi-
scale space, is proposed for the characterization of ECG
episodes.

The Hurst index, H, is a single scalar parameter describing
the fractal Brownian motion (fBm) model, which is a use-
ful model for nonstationary stochastic self-similar proc-
esses with long term dependencies over wide ranges of
frequencies [22]. fBm is an extension of the ordinary
Brownian motion, and is a zero-mean Gaussian nonsta-
tionary stochastic process B (t), t € R, 0 <H < 1, [23]. Self-
similarity is inherent to the fBm structure. The fractal
dimension D is a commonly used parameter for measur-
ing self-similarity. The relationship between the fractal
dimension, D, and the Hurst index H is: D = S - H, where
S is the topology dimension. For a one-dimensional sig-
nal, S = 2; for a two-dimensional image, S = 3 [24]. The
fBm model has following features:
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e It is non-stationary, which necessitates some time-
dependent analysis.

E(By(1)By(s)) = o?/2(|t|?H + |s|?H - |¢ - s|?H) (1)

where E(-) represents the expectation operator, o is the
standard deviation, t is a time variable, s is a time lag var-
iable. Based on Equation (1), the variance of fBm, is com-
puted as var(By(t)) = o2|t]2!.

e [t is self-similar, which necessitates some scale-depend-
ent analysis.

{Bu(at)} a""By(t), a e R (2)

where R+ is the set of positive real numbers. means equal-
ity in distribution, which means that the fBm has station-
ary increments, and the probability properties of the
process By(t + s) - By(t) only depend on the lag variable s.
The scalar index H of fBm is related to the complexity and
roughness of fBm samples.

Consider a discrete orthogonal wavelet decomposition of
a given fBm, By,(¢).
H - _
Wg (jin) = <By.y, >
= 27112y (27Tt —n)de 3)
For any given resolution 2/, the wavelet mean-square rep-

resentation of fBm is:

By()=271/? f alnw(@ t-n)+ i 27112 f difnly (277t —n) (4)

N=—oo j=—co N=—oco

Computing the corresponding wavelet coefficients
amounts to evaluating the following approximate coeffi-
cients aj[n] and detail coefficients dj[n]:

ajln]= 2_j/2fj:BH(t)¢(2_jt—n)dt, jne Z (5)

djln) =272 [ By (@ Tt - nydt, jne z (6)

where ¢(¢) is the corresponding smooth function of wave-

let y(t).

Flandrin et al. in [22] have deduced the following theo-
rem: When normalized according to

di[n) = 271 g ) )

Wavelet coefficients of fBm give rise to:
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2 .
var(d[n]) = %V, (H)(2 )11 ®)

where V, (H) is constant, which depends on both the cho-
sen wavelet and the fBm index H. It follows the power-law
behavior of the wavelet coefficients' variance:

log, (var(dj[n])) = (2H + 1)j + constant ~ (9)

Therefore, the fBm index H (and hence the associated frac-
tal dimension D = 2 - H) can be easily obtained from the
slope of this variance plotted as a function of scale in a
log-log plot.

Life-threatening ventricular arrhythmia recognition by
Hurst index

For each testing ECG episode, the following steps are
performed:

¢ Perform wavelet decomposition and computation of its
detail coefficients at different scales.

e Compute the Hurst index H according to Equation (9).

¢ Detect the life-threatening ventricular arrhythmia in the
feature space of H.

In this study, the wavelet used is a quadratic spline wave-
let with compact support and one vanishing moment. It is
a first derivative of a smooth function [25], whose discrete
Fourier transform is:

sing
(o) = iw(T4)4

(10)
4

The low-pass and high-pass filters L(w) and G(®) are
respectively:

L(w) = @/?) (cos%)3 (11)

G(0) = 4ie@/ (sin %)3 (12)

The dyadic wavelet transform (WT) of a digital signal f{(n)
can be calculated with Mallat's algorithm [26] as follows:

S,if(M) = Sy f(n—=27""k) (13)
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Figure |
Typical life-threatening ECG waveform of NSR

Wy fm)=3, Sy f(n= 2 g (14)

where S f(n) is a smoothing operator. W,;f(n) is the
wavelet transform of digital signal f(n). |k € Z and g,|k
Z are coefficients of a low-pass filter L(®) and a high-pass
filter G(w), respectively, and, L(w) = X, /e, G(w) =
Zyezge ™. Based on the frequency analysis of the ECG
characteristic waves [27], scale 2j (j = 1 to 4) are selected.

For each experimental episode, its wavelet transform coef-
ficient sets d,, d,, d; and d, corresponding to different

scales 21, 22, 23, 24 are computed. The Hurst index H is
then computed according to Equation (9). Smaller Hurst

500

600 700 800 900 1000

index corresponds to larger fractal dimension and more
irregular signal.

Comparative Experimental Results and Discussions
Description of the test data

The database used in this study is the MIT-BIH malignant
ventricular arrhythmia database [21] with a sample fre-
quency of 250 Hz. Typical waveforms of VT and VF as well
as NSR are shown in Figure 1 to 3. Selected ECG episodes
with different lengths are tested for evaluating the per-
formance of the life-threatening ventricular arrhythmia
recognition using the Hurst index. Each ECG episode is
characterized by the Hurst index H, computed by Equa-
tion (9). The statistical distribution of the Hurst indexes
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Figure 2
Typical life-threatening ECG waveform of VT

for characterizing different types of episodes is studied so
that VT and VF can be recognized in the feature domain of
the Hurst index. Recognition performance is measured by
Sensitivity (SE), Specificity (SP) and Accuracy (ACR). They

P
are defined as: Sensitivity = ————; Specificity =
v TP + FN pecificity
TN TP +TN
——————; Accuracy = . Where TP is
TN + FP TP + FN + TN + FP

true positive, the abnormal case being correctly recog-
nized as abnormal one; FN is false negative, the abnormal
case being wrongly recognized as normal one; TN is true
negative, the normal case being correctly recognized as
normal one; and FP is false positive, the normal case

500

600 700 800 900 1000

being wrongly recognized as abnormal one. Lastly, results
are compared with that of Complexity measure technique.

In this study, about 5076 ECG episodes are tested for per-
formance evaluation of life-threatening ventricular
arrhythmia recognition using the proposed Hurst index.
Among them, 2588 cases are NSR episodes, 1390 cases are
VT episodes, and 1098 are VF episodes. In order to explore
the effect of the time series lengths on the recognition per-
formance using the proposed Hurst index, analyzing was
conducted using different lengths of ECG episodes from 1
sec to 5.5 sec with a difference of 0.5 sec. For each length,
the whole dataset was randomly divided into two equal
parts for training and testing, respectively. From a clinical
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Figure 3
Typical life-threatening ECG waveform of VF

point of view, it is essential to recognize and diagnose
malignant ventricular arrhythmia as soon as possible. This
calls for detection with as short a length of the time series
as possible.

The statistical results, viz, the means and standard devia-
tions for characterizing NSR, VT and VF episodes using the
Hurst index are given in Table 1. As a comparison, the
results by the complexity measure technique, are given in
Table 2. Graphical descriptions of the results listed in
Tables 1 and 2 are shown in Figure 4 and 5 respectively.

From the results shown in Figure 4 and 5, the following
observation can be made.

500 600 700 800 900 1000

¢ As the episode length increases, the mean of Hurst index
for every type of rhythm basically increases and tends to
approach a relatively stable value, while the standard devi-
ation decreases gradually.

¢ For a particular episode length, from NSR to VT then to
VF, the corresponding Hurst index increases gradually.
The increase from NSR to VT is more than the increase
from VT to VF.

¢ As the episode length increases, the mean of Complexity
measure for every type of thythm basically decreases and
tends to approach a relatively stable value, while the
standard deviation decreases gradually.
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Table I: Statistical results of Hurst index for episode characterization

Episode Length Hurst index
NSR VT VF
Mean SD Mean SD Mean SD
| sec 0.6099 0.0981 08117 0.0775 0.8567 0.0579
1.5 sec 0.6206 0.0805 0.8269 0.0671 0.8597 0.0501
2 sec 0.6317 0.0619 0.8373 0.0558 0.8618 0.0438
2.5 sec 0.6349 0.0549 0.8398 0.0509 0.8682 0.0419
3 sec 0.6389 0.0458 0.8445 0.0409 0.8766 0.0399
3.5 sec 0.6389 0.0458 0.8445 0.0409 0.8766 0.0399
4 sec 0.6395 0.0436 0.8452 0.0403 0.8794 0.0395
4.5 sec 0.6398 0.04 0.8455 0.0397 0.8797 0.0392
5 sec 0.6399 0.035 0.8458 0.0391 0.8799 0.0387
5.5 sec 0.6399 0.035 0.8458 0.0388 0.8799 0.0386
Table 2: Statistical results of Hurst index for episode characterization
Episode Length Complexity measure
NSR VT VF
Mean SD Mean SD Mean SD
| sec 0.1674 0.0433 0.2775 0.0428 0.2798 0.0498
1.5 sec 0.1476 0.0403 0.2562 0.0428 0.2601 0.0498
2 sec 0.1319 0.037 0.2413 0.0335 0.2454 0.0432
2.5 sec 0.1245 0.0366 0.2311 0.0335 0.239 0.0432
3 sec 0.1192 0.0363 0.2229 0.0349 0.2351 0.037
3.5 sec 0.1129 0.0348 0.2168 0.0349 0.2298 0.037
4 sec 0.1095 0.0332 0.2149 0.0342 0.2242 0.0343
4.5 sec 0.1071 0.0321 0.2136 0.0342 0.2205 0.0343
5 sec 0.1056 0.0315 0.2129 0.0342 0.2187 0.0341
5.5 sec 0.1056 0.0313 0.2129 0.0339 0.2187 0.0341

e For a particular episode length, from NSR to VT then to
VE, both the Hurst index and the Complexity measure
increase gradually, in which, the increase from NSR to VF
is far more than the increase from VT to VF.

¢ The mean values of Hurst index vary slower than those
of Complexity measure as the episode length increases
from 1 sec to 5.5 sec. It is concluded that the Hurst index
is more stable than the Complexity measure with respect
to episode lengths.

Using the Hurst index for VT or VF recognition from NSR
with different episode lengths, there is no false detection,
meaning that the VI/VF can be totally correctly recognized
from NSR without exception. For the Complexity meas-

ure, when the length of ECG episode is longer than 1 sec,
it has as good performance as the Hurst index; when the
length of the ECG episode is 1 sec, there is 6 false negatives
and 27 false positives; when the length of the ECG epi-
sode is 1.5 sec, there is 1 false negatives and 5 false posi-
tives. The statistical values of SE, SP and ACR for VI/VF
recognition from NSR using the Hurst index are all 100%.
Hence, the Hurst index can be used to detect VT and VT
earlier.

As for VF differentiation from VT, the statistical values of
SE, SP and ACR for different episode lengths using the
Hurst index and the Complexity measure, are shown in
Table 3. The computational time of the Hurst index and
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The mean and standard deviation values for characterizing NSR, VT and VF episodes using the Hurst index
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The mean and standard deviation values for characterizing NSR, VT and VF episodes using the Complexity measure

the Complexity measure for different ECG episode length e The performance on differentiating VT and VF is worse
are presented in Table 4. From Table 3, the following con-  than the performance of VI/VF recognition from NSR, for
clusions can be obtained: both the Hurst index and the Complexity measure.
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Table 3: Statistical values of SE, SP and ACR for VF differentiation from VT

Episode Length Hurst index Complexity measure

SE SP ACR SE SP ACR
| sec 0.8351 0.8482 0.8424 0.8242 0.8302 0.8275
I.5 sec 0.8780 0.8698 0.8734 0.8689 0.8597 0.8637
2 sec 0.9080 0.8834 0.8942 0.9007 0.8798 0.8890
2.5 sec 0.9408 0.9158 0.9268 0.9381 0.9194 0.9277
3 sec 0.9608 0.9439 0.9513 0.9654 0.9489 0.9562
3.5 sec 0.9754 0.9669 0.9707 0.9818 0.9734 0.9771
4 sec 0.9854 0.9849 0.9851 0.9918 0.9885 0.9899
4.5 sec 0.9936 0.9914 0.9924 | 0.9986 0.9992

5 sec | 0.9978 0.9988 | | |

5.5 sec | | | | |

Table 4: Computation time comparison in seconds

Length of episode Hurst index Complexity measure Length of episode Hurst index Complexity measure
| sec 0.0546 0.0654 1.5 sec 0.0697 0.0824
2 sec 0.0794 0.1143 2.5 sec 0.0933 0.1538
3 sec 0.1168 0.2176 3.5 sec 0.1401 0.2991
4 sec 0.1885 0.4003 4.5 sec 0.2407 0.609
5 sec 0.2803 0.6833 5.5 sec 03122 0.7792

e The recognition performance by either descriptors
improves as the length of ECG episode increases.

¢ When the length of ECG episode is less than or equal to
2 sec, the recognition performance for the Hurst index is
better. When the length of ECG episode is longer than 2
sec and less than 5 sec, the recognition performance for the
Complexity measure is better. When the length of ECG
episode is longer than 5 sec, VT and VF can be 100% dif-
ferentiated with either descriptor, the recognition per-
formance for both descriptors are same.

According to Table 4, the computational time for the
Hurst index is less than that for the Complexity measure.
These two algorithms are programmed using MATLAB 5.3
running on a SUN SPARC-333MHz workstation. The
computational burden for the Hurst index is O(N log, N),
while the computational burden for the complexity is
O(N2), where N is the length of ECG episode. It is noted
that with more powerful computer programming in C, the
computational speed will be further improved.

Time is an important factor for saving lives in clinical sit-
uations, therefore, algorithm with less computational
burden is obviously preferred. In addition, using short

ECG episode length is preferred for earlier detection of
arrhythmia (such as VI/VF). Based on the experimental
results, it is observed that the Hurst index has a better
potential for clinical adaptation than the Complexity
measure.

Conclusions

In this paper, a new technique based on multiscale analy-
sis and non-linear dynamics was presented for VT and VF
recognition. Hurst index defined across multiscale was
proposed for characterizing ECG episode so that life-
threatening arrhythmia can be recognized. Furthermore,
upon applying to the MIT-BIH malignant ventricular
arrhythmia database, the performance for malignant
arrhythmia recognition using Hurst index was compared
with that using Zheng's complexity measure. The Hurst
index requires less computation and is more reliable in
detecting VT and VF with short ECG episode. There is
strong potential for using the Hurst index for malignant
ventricular  arrhythmia  recognition in  clinical
applications.
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