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Abstract
Background: In body surface potential mapping, increased spatial sampling is used to allow more
accurate detection of a cardiac abnormality. Although diagnostically superior to more conventional
electrocardiographic techniques, the perceived complexity of the Body Surface Potential Map
(BSPM) acquisition process has prohibited its acceptance in clinical practice. For this reason there
is an interest in striking a compromise between the minimum number of electrocardiographic
recording sites required to sample the maximum electrocardiographic information.

Methods: In the current study, several techniques widely used in the domains of data mining and
knowledge discovery have been employed to mine for diagnostic information in 192 lead BSPMs.
In particular, the Single Variable Classifier (SVC) based filter and Sequential Forward Selection (SFS)
based wrapper approaches to feature selection have been implemented and evaluated. Using a set
of recordings from 116 subjects, the diagnostic ability of subsets of 3, 6, 9, 12, 24 and 32
electrocardiographic recording sites have been evaluated based on their ability to correctly asses
the presence or absence of Myocardial Infarction (MI).

Results: It was observed that the wrapper approach, using sequential forward selection and a 5
nearest neighbour classifier, was capable of choosing a set of 24 recording sites that could correctly
classify 82.8% of BSPMs. Although the filter method performed slightly less favourably, the
performance was comparable with a classification accuracy of 79.3%. In addition, experiments were
conducted to show how (a) features chosen using the wrapper approach were specific to the
classifier used in the selection model, and (b) lead subsets chosen were not necessarily unique.

Conclusion: It was concluded that both the filter and wrapper approaches adopted were suitable
for guiding the choice of recording sites useful for determining the presence of MI. It should be
noted however that in this study recording sites have been suggested on their ability to detect
disease and such sites may not be optimal for estimating body surface potential distributions.

Background
Although extensively utilised, the limitations of the con-
ventional 12-lead ECG for optimal detection of cardiac

abnormalities are widely appreciated [1]. The main defi-
ciency in the 12-lead approach is the fact that only 6 chest
electrodes are incorporated which cover a relatively
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constrained area of the precordium. The main reason for
the choice of the location of the conventional precordial
electrodes, suggested by Wilson over 70 years ago [2,3],
was the need to adopt some standard which to this day
has remained relatively unchallenged. In the years since
then, the growing appreciation for the limitations of the
conventional precordial electrode positions and the
increase in understanding of the localisation of various
cardiac abnormalities on the body surface has led to the
suggestion of various alternatives. One of the most widely
studied alternatives to the 12-Lead ECG in both clinical
and experimental electrocardiology has been the BSPM. In
this approach, anything between 32 and 219 electrodes
[4] are used in an attempt to sample all electrocardio-
graphic information as projected onto the body's surface.
The merits of this enhanced spatial sampling are obvious,
in that, localised abnormalities that are perhaps difficult
to detect using the 12-lead approach can readily be picked
up with the additional electrodes. As well as this ability to
provide more diagnostic information, BSPMs facilitate an
alternative method for visualisation as recorded data can
be displayed as a sequence of contour maps, allowing iso-
lation of significant electrocardiographic events in both
space and time.

In body surface potential mapping, many of the inade-
quacies associated with the conventional 12-lead
approach are addressed, but despite this, clinical utilisa-
tion outside the research laboratory is close to negligible.
Several reasons exist for this lack of clinical uptake. Kors et
al. [5] suggests the opposing interests of two groups as the
main motivating factor: on one hand researchers are keen
to further the diagnostic potential of the ECG using all
information on the body surface, on the other hand, clini-
cians satisfied with the standard 12-lead ECG are reluctant
to replace it with one of perceived technological complex-
ity. This complexity stems from the requirement to sam-
ple dozens of channels of ECG information
simultaneously, with the application of the associated
number of chest electrodes viewed as highly impractical,
particularly in acute care.

To address the impracticalities associated with high den-
sity spatial sampling procedures, investigators are inter-
ested in exploiting the redundancy in BSPMs to suggest
'limited lead' systems. This process can be succinctly
described as locating the minimum number of recording
sites required to capture the maximum amount of ECG
information [6]. Although in all studies the number and
location of sites is the focus, there are two main ways in
which 'optimality' can been quantified. These are:

1. Sites that provide the maximum diagnostic information
allowing enhanced discrimination between
abnormalities.

2. Sites that allow the most accurate estimation of the
heart's activity at other sites where information has not
been recorded.

The first significant work on this problem of selecting lim-
ited leads was conducted by Barr et al. [7] who proposed a
technique based on principal component analysis to
locate 24 recording sites that allowed consistent represen-
tation of the total body surface potential during depolari-
sation (over the QRS). Subsequent to this, and based on a
more representative dataset, Lux et al. [8,9] analysed cor-
relation and covariance in 192 lead BSPMs to suggest 32
optimal recording sites that could be used to reconstruct
the original BSPM frames with a level of error that was
consistent with the estimated system noise, which, in the
studied dataset was estimated to be 20 µV. In both sets of
studies [7-9], the recording sites were chosen based on the
ability to estimate potentials at sites that were not
recorded. Kornreich et al. [10-12] on the other hand con-
ducted several studies that suggested electrode configura-
tions that were most suitable for diagnosing a range of
abnormalities; in each study the objective was to find the
best discriminating recording sites. More recently Kors et
al. [5] conducted a study where the positions of the 6 pre-
cordial electrodes in the conventional ECG were altered
intuitively to provide greater information capture. In this
study, it was found that two of the standard precordial
leads could be re-positioned to provide greater informa-
tion capture whilst the remaining precordial electrodes
could accurately reconstruct the 12-lead ECG. Although
well validated in the research literature, the lead systems
proposed by all of these studies have never been widely
accepted in clinical practice.

Regardless of the rationale for the choice of recording
sites, early investigators were limited to mathematical and
statistical techniques in the selection process, exploiting
phenomena such as correlation and variance in the
recorded signals. Although yielding acceptable results,
new techniques that have emerged through the prolifera-
tion of domains such as data mining and knowledge dis-
covery [13] may provide greater insight into the process of
lead selection. The process of lead selection is itself analo-
gous to that of 'feature selection' which is a term com-
monly used in the aforementioned domains of data
mining and knowledge discovery to describe the elimina-
tion of redundant variables in a dataset [14]. Ideally, fea-
ture selection would involve exhaustively evaluating all
possible combinations of input features and choosing the
best subset, but in reality the computational cost of this is
prohibitive. For this reason, much research effort has been
directed at developing algorithms and strategies that
locate optimal features at low computational cost. In the
current study commonly used feature selection methodol-
ogy has been applied to the BSPM domain in order to
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select electrode subsets that are best for discriminating
between normal subjects and those with MI.

In many domains, determining the features or variables
that are relevant can give a useful insight into the nature
of the prediction problem at hand [15]. This is particularly
the case in the BSPM domain as information on the loca-
tion of the best recording sites may complement informa-
tion or understanding for those interested in the
underlying cardiac behaviour. To provide both informa-
tion that could be used to better understand cardiac func-
tion as well as information that is useful for computerised

classification, two common feature selection techniques,
'filters' and 'wrappers', were employed in the current
study.

Filters
In the filter approach, the predictive performance of each
individual feature is assessed and features that are deemed
unnecessary are 'filtered' out [16]. The resulting measure
of performance for each feature is used in a ranking proc-
ess and the desired number of features n, with the highest
scores, are selected. Although in this description, and
throughout the current study, consideration is given to
features on an individual basis only, subsets of features
can also be considered for inclusion or elimination. The
main evaluation techniques include correlation analysis
(determining how each variable correlates with the target
variable) and discrimination analysis (determining how
each variable acts as a classifier). This process is often
described as classifier independent as although a single
variable classifier may be used in the selection of each fea-
ture, the selected feature subset as a whole is not chosen
to suit any classifier.

Wrappers
In this approach, the aim is to find the best subset of fea-
tures by testing them with the classifier that they are
intended for use with. As well as picking features to suit

192 Electrode ArrayFigure 1
192 Electrode Array. Schematic representation of the 192 electrode array, depicted as an unrolled cylindrical matrix. The 
middle region correspond with the anterior torso and the left and right regions correspond with the posterior.

Table 1: Composition of dataset describing infarct locations.

Normals 59
Myocardial Infarction 57

Inferior 30
Anterior 14
Posterior 2
Aterolateral 8
Inferolateral 2
Inferior-posterior 1

Total 116
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the classifier, this approach is advantageous in that fea-
tures are selected based on how well they work together
with other features. The process begins with the sugges-
tion of a feature subset which is evaluated using the
desired classifier, this feature subset is repeatedly modi-
fied (features are added and/or removed) and evaluated
until the desired level of performance is attained. The two
most common methods used to generate the feature sub-
sets are SFS and Sequential Backward Elimination (SBE)
[17]. In SFS the process begins with an empty set of fea-
tures. In the first iteration, all feature subsets containing
only one feature are evaluated i.e. the performance of each
individual feature is evaluated. The feature with the high-
est accuracy is used as the basis for the next iteration,
where, each remaining feature is evaluated in conjunction
with the previously selected feature. The feature that per-
forms best in conjunction with the first feature is selected
forming the basis for the next iteration. This process is
repeated until all features have been incorporated in the
subset, or the desired level of accuracy has been reached.
In SBE the process begins with a subset that contains all
available features, from which features are removed one
by one based on the performance of the remaining fea-
tures. In theory, going backwards from the full set of fea-
tures in the data may capture interacting features more
easily; however this is at greater computational expense as
building classifiers where there are few features in the
dataset is much faster [18]. At this point it is worth under-
lining that the main difference between the filter and
wrapper approach is that, in the filter approach, no feed-
back is used from the classification model.

Methods
From a practical perspective, the most widely used tech-
nique in locating recording sites or lead subsets is to start
off with a dataset recorded using a full BSPM electrode
array and try to find the best recording sites in that array
that satisfy the desired criteria. The locations of these 'best
sites', which are a subset of the original BSPM array, are
then proposed as the new limited lead set. In the current
study, BSPMs recorded using an electrode array of 192
electrodes were used. This dataset is of similar genre in
terms of acquisition format as that used in [8,9]. The lay-
out of the electrodes is depicted in the schematic in Figure
1. In this configuration electrodes are placed in equally-
spaced columns, each consisting of 12 electrodes, around
the thoracic circumference. For each subject, the 192
channels of ECG information were sampled simultane-
ously at 1000 Hz for a duration of several seconds. Subse-
quent to recording, this data was reduced to represent just
one cardiac cycle which on average consisted of 600 mil-
liseconds of information. This was achieved through RMS
averaging. In all, maps recorded from 116 subjects were
studied. Within this group of subjects, 59 were considered
as normal exhibiting no disease symptoms, the remaining
57 had electrocardiographic evidence of old MI with
lesions at various locations. Table 1 describes the compo-
sition of the dataset with a breakdown of the various inf-
arct locations. Following recording, the map sequences
from each patient were processed to provide QRS, STT,
and QRST isointegral features. This is common practice in
the BSPM domain and involves reducing a sequence of
map frames to one single map. Often referred to as isoarea

Example QRS isointegral mapFigure 2
Example QRS isointegral map. Example of a QRS isointegral map derived from subset with Inferior wall MI (IMI). The 
areas of positive and positive and negative polarity are indicated with red and blue circles respectively.
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mapping, the process involves summing all the potentials
under a specific portion of the ECG trace at each recording
site, and plotting a contour map using the resulting
values. In this study, QRS and STT isointegrals were calcu-
lated to illustrate mean potential distributions during
depolarisation (activation) and repolarisation (recovery)
respectively, and QRST isointegrals were calculated to
illustrate mean potential distributions during
depolarisation and repolarisation combined. Each iso-
integral consists of 192 values which are used to generate
a contour map. Figure 2 depicts an example of such a map,
in this case a QRS isointegral map for a subject with Infe-
rior wall MI (IMI). The pattern of extrema, maxima and
minima of such a map are studied by the clinician in order
to provide diagnosis and because the pattern is character-

ised by the 192 calculated values, these values can be used
as inputs (features) to a computerised classifier. As we
have calculated 3 such maps, we effectively end up with
576 features for each subject (3 × 192). This also translates
to having 3 features per recording site per patient, e.g. for
each recording site we have one QRS, one STT, and one
QRST value. In all experiments, we combine the three set
of isointegral measurements for each patient, resulting in
576 features per patient.

Single variable classifier approach
In this study, the prediction accuracy of each individual
feature was assessed using a Nearest Neighbour (NN) clas-
sifier [19]. From this point onwards we shall refer to this
as the SVC approach as this is effectively a special case of
the filter approach. Using Leave One Out (LOO) cross val-
idation, the SVC was used to evaluate the performance of
each individual feature on a randomly selected subset of
87 of the 116 original recordings. In LOO cross valida-
tion, the performance of the given feature is obtained by
using all records bar one (86 recordings) to train the
classifier and using the remaining record to evaluate the
classifier. This process is repeated until every subset of one
record is evaluated, the final performance being obtained
through taking an aggregate of each individual classifica-
tion outcome. The remaining 29 records were treated as a
hold out set and were used to test the classification accu-
racy of various sets of the highest ranked features again in
conjunction with a NN classifier. The same features were
also tested using classifiers based on 5 Nearest Neighbour
(5NN) and Logistic Regression (LR), this was performed
to assess the chosen features on a range of classifiers.

Sequential forward selection wrapper approach
In the current study, the high ratio of features to cases
(observations) also becomes an issue in SBE, as most clas-
sifiers will exhibit instability when the number of features
greatly exceeds the number of variables. For this reason
the SFS approach was adopted, and applied using three
separate classifiers (LR, NN, 5NN) which resulted in three
feature sets each of which were classifier specific. In order
to reduce the computational time associated with the pro-
cedure the SFS process was invoked for 100 iterations,
resulting in selection of the 100 best features. To validate
the results, the data set of 116 records was again randomly
partitioned into a training set of 87 records and a test set
of 29 records (same as above). The training set was then
used to conduct the SFS process, and LOO cross validation
was used on each iteration of the feature subset selection
process. When the selection process was completed, the
training set was used to develop a classifier using the
selected features, which was then validated using the
unseen test set. This approach was taken to alleviate opti-
mistic biasing of the results as opposed to some studies, as
pointed out by [18] that use the classification accuracy of

Wrapper Based Feature SelectionFigure 3
Wrapper Based Feature Selection. Illustration of the 
wrapper based feature selection approach where the feature 
subset is generated by iterative evaluation of available 
features.
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the selection runs as a measure of final performance. A
flow diagram illustrating the wrapper approach imple-
mented in these experiments is shown in Figure 3.

In addition to performing the experiments outlined
above, a simple procedure was conducted to illustrate the
localisation of difference between normal and MI

Difference MapsFigure 4
Difference Maps. Spatial representation of the absolute difference between the means of the normal and MI population for 
(a) QRS, (b) STT, and (c) QRST isointegrals. Magnitude of difference increases as the colour changes from dark blue through to 
dark red.
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populations in the training set. This procedure involved
subtracting the mean of the normal population from the
mean of the MI population and presenting the resulting
difference as a contour map of the absolute values at each

recording site. For each isointegral (QRS, STT, QRST) 'dif-
ference' maps were calculated and the results are illus-
trated in Figure 4. These difference maps have been
generated merely for comparison with later results.

Lead Performance MapsFigure 5
Lead Performance Maps. Spatial distributions of the prediction accuracy at each of the 192 recording sites for (a) QRS, (b) 
STT, and (c) QRST isointegrals. Magnitude of difference increases as the colour changes from dark blue through to dark red.
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Results
SVC approach
The classification accuracy obtained for each individual
feature was used to rank the features in descending order
of significance. In cases where two or more features had an
identical score these features were ordered arbitrarily. A
method of Lead Performance Maps (LPMs) similar to that
adopted in [20] was used to graphically illustrate the spa-
tial distribution of feature performance. In this approach
a contour map is produced using the feature performance
values positioned with the same layout of the original
electrode array, the contour map is then shaded through
linear interpolation between the 192 data points. In this
study this resulted in three separate LPMs (for QRS, STT,
QRST isointegrals) which are illustrated in Figure 5.

As the overarching goal of this study was to assess the per-
formance of limited electrode arrays the classification per-
formance of the best 3, 6, 9, 12, 24, and 32 recording sites,
deduced from the top ranked features, were evaluated.
The choice of an upper limit of 32 is synonymous with the
number of leads in the 'clinically practical' lead system
proposed by Lux in [9]. It is worth pointing out that for
each of the lead subsets it was possible to have more than
the corresponding number of features as in some cases
multiple features were selected for each lead. A schematic
illustrating the positions of the top 32 recording sites is
illustrated in Figure 6. For the sake of comparison with
more conventional lead systems, the best 6 electrodes out
of the 32 have also been highlighted. The classification
accuracy of the various lead subsets is listed in Table 2. As

Electrode Locations (SVC Approach)Figure 6
Electrode Locations (SVC Approach). Locations of the 32 top recording sites as chosen using the variable ranking 
method. The first 6 sites chosen are highlighted using the filled circles; the filled squares show the remaining 26 sites.

Table 2: Subset Performance-SVC Approach. The performance of subsets of leads chosen using the SVC approach, evaluated using 
three classifiers.

No. 
Recording 

Sites

NN 5NN LR

ACC (%) SEN (%) SPE (%) ACC (%) SEN (%) SPE (%) ACC (%) SEN (%) SPE (%)

3 72.4 85.7 80.0 69.0 64.3 73.3 72.4 78.6 66.7
6 82.8 71.4 93.3 72.4 64.3 80.0 75.9 78.6 73.3
9 79.3 85.7 73.3 69.0 71.4 66.7 72.4 78.6 66.7
12 79.3 78.6 80.0 75.9 78.6 73.3 65.5 78.6 53.3
24 79.3 78.6 80.0 79.3 71.4 86.7 79.3 85.7 73.3
32 79.3 78.6 80.0 79.3 71.4 86.7 79.3 85.7 73.3
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well as classifications accuracies, measures for sensitivity
and specificity have been included with all results.

SFS approach
Because of the nature of the SFS approach, where the clas-
sification accuracy of each feature is determined accumu-
latively, it is not possible to display the individual
classification accuracy of each feature using LPMs. What is
possible, and probably of more significance from a raw
computer science perspective, is the display of the per-
formance of the SFS algorithm as features are
accumulatively selected. This is depicted in Figure 7 where

a graph for each wrapper based on a different classifier is
shown. In these three graphs, the performance of the clas-
sifier in the feature evaluation and selection process is
illustrated with the solid line, and the performance of the
same classifier and feature set with unseen data is illus-
trated with the dashed line. In Figure 8, the best 32 leads
chosen by each wrapper have been schematically repre-
sented as previously described, and as conducted for the
filter approach the classification accuracy of the various
lead subsets was also evaluated as presented in Table 3.

Discussion
The main observation from the preliminary difference
map calculation illustrated in Figure 4 is that for all fea-
tures per three maps there is significant localisation in the
precordial region, indicating that on average these
recording sites exhibit the most difference between
normal and subjects with MI. Although this is useful in
illustrating the significant localisation of difference
between populations, this technique has limitations in
lead selection as pointed out by Kornreich et al. [10], who
suggested that the discriminant ability of each recording
site is not truly reflected as intra-group variability is not
taken into consideration.

The variable ranking procedure was primarily imple-
mented to allow the selection of recording sites for evalu-
ation in simple classification problems, and in this study
the classification accuracy of 3, 6, 9, 12, 24, and 32
recording sites has been evaluated using three classifiers.
From the results presented in Table 2, it can be observed
that when using 24 recording sites, each classifier is capa-
ble of a predication accuracy of almost 80% which
remained the same when the number of recording sites
was increased to 32. Indeed, for all the configurations of
recording sites evaluated, with the exception of one (12
sites with the LR classifier), a reasonable level of classifica-
tion accuracy was observed. One characteristic of the
results that deserves further explanation is the fact that the
classification accuracy does not always increase, and
sometimes decreases when the number of recording sites
is increased. This is possibly due to the fact that in the
selection procedure no consideration is given to the selec-
tion of variables that are correlated. In some classifiers
correlation between variables can lead to deterioration in
performance. It should also be noted that in some cases
the seemingly coarse variations in performance, for exam-
ple a change in 82.8% to 79.3% between 6 and 9 record-
ing sites for the NN based SVC classifier, are largely
attributable to the relatively modest size of the validation
dataset. Evident in this particular example with a deterio-
ration in performance of 3.5% through the misclassifica-
tion of just one subject.

Wrapper PerformanceFigure 7
Wrapper Performance. Performance of the three SFS 
based wrappers using (a) NN classifier, (b) 5NN classifier, 
and (c) LR classifier. Each plot shows the classification accu-
racy as features are added during the selection process 
(train): And, the performance of selected features on an 
unseen test dataset (test).
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As well as providing useful information for classifier
development this variable ranking also lends itself well to
graphical display of the spatial distribution of the diag-

nostic features as is demonstrated in the LPMs in Figure 5.
These LPMs show the areas of the torso where the classifi-
cation accuracy of each individual feature is greatest. It can

Electrode Locations (SFS Approach)Figure 8
Electrode Locations (SFS Approach). Recording sites chosen by SFS algorithms using (a) NN, (b) 5NN, and (c) LR. On 
each layout the top 32 recording sites have been illustrated. Additionally the top 6 sites which are a subset of the 32 are also 
shown (filled circles).
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also be observed that the LPMs bear some resemblance to
the difference maps that are displayed in Figure 4, in par-
ticular the corresponding maps for STT and QRST isointe-
grals bear significant resemblance with respect to the
locations of areas of high and low significance.

In terms of the actual recording sites that were chosen
using the SVC approach it can be seen that the upper right
chest and back, and the lower left abdominal regions
exhibit the highest concentrations of suggested sites. This
of course is indicative of the information presented in the
difference maps and the LPMs, however one interesting
point is the fact that the six best electrodes are located in
the upper right chest and back as opposed to the left
precordial region as is the case with conventional electro-
cardiographic leads.

The performance of the three SFS algorithms depicted in
Figure 7 gives a good indication of the general perform-
ance of this type of algorithm, as in general there is an
increase in classification accuracy as features are initially
added which is followed by a fluctuation, or decrease in

accuracy as subsequent features are added. This is similar
to the responses observed in other studies where non-elec-
trocardiographic data has been used [15,21]. It can be
observed that for all three wrappers, there is a consistent
increase in performance on the train data as features are
added, and in the NN and 5NN based approaches there is
no significant deterioration in performance on the train-
ing data within the scope of the conducted experiments
(up to 100 features). In the case of the LR based wrapper
there is a less consistent response as performance deterio-
rates at approximately 20 features. This can be attributed
to the fact that LR based classifiers exhibit significant
instability when the number of variables is excessive com-
pared with the number of cases. Although there is no
definitive measure for predicting when this instability
might occur, it can be seen here that 20 variables with 86
cases, a ratio of 10/43 induced this phenomenon. With
regard to the performance associated with the test data, it
can be seen that in some cases, particularly the NN based
wrapper, there is not always consistent increase in per-
formance as features are added. Again this is similar to
observations in other studies [15,21] and appears to be a
trait of the SFS approach

The inclusion of the sensitivity and specificity figures, as
defined in [22], also provides some insight into how each
set of features perform. These figures, which give an indi-
cation of how well subjects from each group (MI and Nor-
mal) have been correctly classified, were not taken into
consideration during the selection process. The first obser-
vation is that the SFS selection approach using the 5NN
classifier seems to provide the best balance between the
two measures, as for each lead subset there is typically just
a few percent difference between the measures. This is in
contrast to some of the other selection/classifier combina-
tions, for example the SFS/NN combination at 9 recording
sites, where the sensitivity was 50% but the specificity was
93.3%. The reason for such an imbalance is likely to be

Table 3: Subset Performance-SFS Approach. Respective classification accuracy of recording sites chosen using NN, 5NN and LR 
wrappers.

No. 
Recording 

Sites

NN 5NN LR

ACC (%) SEN (%) SPE (%) ACC (%) SEN (%) SPE (%) ACC (%) SEN (%) SPE (%)

3 79.3 71.4 86.7 72.4 71.4 73.3 79.3 85.7 73.3
6 72.4 71.4 73.3 79.3 78.6 80.0 82.8 92.9 73.3
9 72.4 50.0 93.3 79.3 78.6 80.0 75.9 92.9 60.0
12 75.9 64.3 86.7 75.9 78.6 73.3 72.4 85.7 60.0
24 79.3 78.6 80.0 82.8 85.7 80.0 69.0 78.6 60.0
32 79.3 71.4 86.7 82.8 85.7 80.0 72.4 71.4 73.3

Table 4: Subset Performance-Cross Comparison. Classification 
accuracy of recording sites selected for 5NN classifier, evaluated 
on LR classifier.

No. Recording Sites ACC (%) SEN (%) SPE (%)

3 75.9 85.7 66.7
6 75.9 85.7 66.7
9 72.4 85.7 60.0
12 69.0 85.7 53.3
24 69.0 85.7 53.3
32 65.5 78.6 53.3
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attributable to the fact that these measures were not taken
into consideration as features were being selected. If it
were necessary to give preference to either sensitivity of
specificity then consideration would have to be given to
these variables during the selection process.

The classification accuracies obtained using the SFS wrap-
pers (Table 3) show that this technique is as good as and
in some cases better than the variable ranking procedure
discussed above. In particular the performance of the
5NN classifier using features obtained from 24 and 32
recording sites is consistently better than the correspond-
ing numbers of recording sites selected using the variable
ranking approach. This can be attributed to two factors
that make the wrapper approach superior in most
applications. Firstly, as features are selected, their evalua-
tion is based on how well they work together as a sub set,
thus reducing the likelihood of selecting multiple features

that are highly correlated and effectively measuring the
same thing. Secondly, the characteristics of the final clas-
sifier are considered in the feature selection process there-
fore the chosen features are classifier specific. This second
point accounts for the fact that although measuring sites
were located on the same general areas of the torso as can
be seen in Figure 8, there is significant discrepancy
between the exact measuring sites chosen for each of the
three wrappers. To illustrate just how specific the chosen
recording sites are to each individual classifier a simple
experiment was conducted. In this experiment the record-
ing sites and hence features that were chosen by the 5NN
based wrapper were tested on a LR classifier. The results
are listed in Table 4. Here it can be seen that there is sig-
nificant deterioration in the classification accuracy as the
number of recording sites increases, illustrating that the
features chosen for the 5NN classifier do not work any-
where as well for the LR classifier.

A further issue that we wished to investigate was the
notion of 'uniqueness' introduced in [8]. In the study the
authors suggested that there was no unique set of 'optimal
leads' for reconstruction of BSPMs. Fuelled by the
diversity of recording sites suggested in each of the
techniques investigated in this study we wanted to find
out if the same were true for recording sites that were
selected for classification. To test for this condition, the
experiment using the SFS wrapper based on the 5NN clas-
sifier was repeated. Under normal conditions this algo-
rithm starts off by choosing the best individual feature as
it makes its first pass through the list of available features.
This time, however, the algorithm was forced to pick a

Electrode Locations (Forced SFS Approach)Figure 9
Electrode Locations (Forced SFS Approach). Recording sites chosen by SFS algorithms using 5NN when the first 
selected feature is forced.

Table 5: Subset Performance-Forced SFS Approach. 
Classification accuracy of recording sites chosen using the 5NN 
based wrapper approach with a forced initial selection.

No. Recording Sites ACC (%) SEN (%) SPE (%)

3 79.3 78.6 80.0
6 75.9 71.4 80.0
9 86.2 85.7 86.7
12 86.2 85.7 86.7
24 82.8 78.6 86.7
32 75.9 71.4 80.0
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non-optimal feature the first time around; subsequently
the algorithm reverted back to normal operation choosing
the best combinations from that point on. The 32 meas-
uring sites chosen in this approach are illustrated in Figure
9, and the number of correctly classified cases are shown
in Table 5. It can be seen that the pattern of chosen record-
ing sites is not dissimilar to those for the original 5NN
classifier based approach (Figure 8b), however, the exact
location of each electrode differs in many cases,
particularly within the case of the first 6 chosen electrodes
as only one of these occupies the same position as in the
original experiment. Consulting the table of classification
accuracies it can be observed this rearrangement of elec-
trodes does not necessarily come at a cost, indeed in the
case of 9 and 12 recording sites a superior rate of classifi-
cation is in fact achieved. These results would tend to sug-
gest that like in the best recording sites chosen for
reconstruction [8], there is no unique best set of electrodes
for classification.

Conclusion
In this study previously unutilised techniques have been
applied to the perennial problem of selecting optimal
recording sites from BSPMs. The filter and wrapper
approaches to feature selection have been studied and
have been found useful in locating useful diagnostic infor-
mation. As well as evaluating the diagnostic capabilities of
selected lead subsets, the study demonstrated how fea-
tures chosen using the wrapper approach are specific to
the given classifier. In addition, the study also introduced
the notion of the non-uniqueness of selected lead subsets
by suggesting two relatively different lead subsets using
the same method, which exhibited comparable perform-
ance. Although the relatively small data set does limit the
findings of the study, it is believed that the results
obtained show that these techniques could be applied to
a larger population of recordings to suggest limited lead
systems that could be used in clinical practice.

A subtle limitation to the study is the fact that features
used mainly in the BSPM domain are used to evaluate the
classification performance of limited lead sets. These fea-
tures are the isointegral measurements already men-
tioned. In reality, if a limited number of leads were used
there may be a more effective way for representing the
underlying ECG information, as isointegral maps were
adopted mainly to counter the effect of excessive amounts
of spatial data. This limitation does not prohibit the
comparison of results within the study, however, it makes
benchmarking with studies conducted by other investiga-
tors more difficult. To this end, if the study were to be
extended it may be useful to investigate the use of tempo-
ral features such as wave amplitudes and durations as
would be more common in conventional 12-lead
electrocardiography.

Finally, the study has investigated the application of
knowledge discovery to the problem of locating diagnos-
tic information in BSPMs and the tools studied could be
used to guide the development of recording system con-
figurations. A clear distinction exists however between
this approach and that where lead systems are developed
to allow reconstruction of BSPMs. There is no evidence to
suggest that recording sites selected based on their ability
to discriminate between normal and abnormal are opti-
mal for estimating potential distributions on the entire
body surface, hence this area warrants further
investigation.
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