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Abstract

Background: Techniques based on radio frequency (RF) energy have many applications in medicine, in particular
tumour ablation. Today, mammography screening detects many breast cancers at an early stage, facilitating
treatment by minimally invasive techniques such as radio frequency ablation (RFA). The breast cancer is mostly
surrounded by fat, which during RFA-treatment could result in preferential heating of the tumour due to the
substantial differences in electrical parameters. The object of this study was to investigate if this preferential
heating existed during experimental in vitro protocols and during computer simulations.

Methods: Excised breast material from four patients with morphologically diagnosed breast cancers were
treated with our newly developed RFA equipment. Subsequently, two finite element method (FEM) models were
developed; one with only fat and one with fat and an incorporated breast cancer of varying size. The FEM models
were solved using temperature dependent electrical conductivity versus constant conductivity, and transient
versus steady-state analyses.

Results: Our experimental study performed on excised breast tissue showed a preferential heating of the
tumour, even if associated with long tumour strands. The fat between these tumour strands was surprisingly
unaffected. Furthermore, the computer simulations demonstrated that the difference in electrical and thermal
parameters between fat and tumour tissue can cause preferential heating of the tumour. The specific absorption
rate (SAR) distribution changed significantly when a tumour was present in fatty tissue. The degree of preferential
heating depended on tissue properties, tumour shape, and placement relative to the electrode. Temperature
dependent electrical conductivity increased the thermal lesion volume, but did not change the preferential heating.
Transient solutions decreased the thermal lesion volume but increased the preferential heating of the tumour.

Conclusion: Both the computer model and the in vitro study confirmed that preferential heating of the tumour
during RFA exists in breast tissue. However, the observed preferential heating in the in vitro studies were more
pronounced, indicating that additional effects other than the difference in tissue parameters might be involved.
The existing septa layers between the cancer tissue and the fatty tissue could have an additional electrical or
thermal insulating effect, explaining the discrepancy between the in vitro study and the computer model.
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Background

At least 10% of the women in the western world face the
prospect of developing breast cancer. The tendency in
modern treatment of these tumours is towards less inva-
sive local treatment. Today breast conserving surgery
(BCS) has become more common than mastectomy in
many countries. BCS and mastectomy combined with
radiation are associated with satisfactory long-term out-
come. The survival rates after BCS of ductal carcinoma in
situ is approximately 98%, whereas approximately 100%
of these patents are cancer free after mastectomy [1,2].
However, multiple treatments and additional adjuvant
care are needed in up to 50% of the BCS cases, resulting in
higher associated costs compared to mastectomy alone
[3,4]. As in all surgery for breast cancer, the goal is to
remove all of the cancertogether with a sufficient margin
of healthy tissue, to prevent local recurrence. Further-
more, today many breast cancers are detected at an early
stage by mammography screening, raising a demand for
new techniques that minimise alternation of breast con-
figuration. Recently, approaches other than traditional
surgery have been explored to satisfy these demands [5-7].
These techniques are minimally or totally non invasive,
and include, cryosurgery, stereotactic excision, laser abla-
tion, focused ultrasound, and radio frequency ablation
(RFA). Potential benefits with these techniques are
reduced morbidity rates, reduced treatment duration, and
the ability to perform therapy for patients in poor medical
condition on an outpatient basis. Of these new tech-
niques, RFA is considered to be the most promising treat-
ment for breast cancer because of its effective destruction
of cancer cells and having a low complication rate [8,9].

RFA devises induce thermal tissue necrosis in the target
region. Temperature elevation is caused by ion agitation,
which is converted into heat by the effect of friction. Cur-
rent is generated by an applied voltage between two elec-
trodes. For the monopolar regime, these are the non-
isolated part of a treatment (active) electrode (see figure
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1), and an indifferent (passive) electrode. The active part
of the electrode is introduced into the tumour with ultra-
sonic guidance. The current flowing from the active part
heats the surrounding tissue. In the frequency range used
(1.5 MHz), the so called antenna current due to external
radiation is fairly low, i.e. the electrodes carry an almost
fully balanced current that flows in pathways of least
resistance between the electrodes. During RFA activation,
the imaginary part of the energy is negligible. Conse-
quently, henceforth we will use only the real-part of the
admittance (i.e. conductivity) in the equations describing
the process.

The absorbed power density at each point is:
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where q = power density (W/m3), E = electric field (V/m),
J = current density (A/m?) and ¢ = conductivity (1/
(€2-m)) (Vector variables have both a magnitude and a
direction and are presented with an over-bar.). The total
current through each closed surface enclosing one of the
electrodes always equals the total current from the gener-
ator, independent of surface size. Hence, the heating will
be concentrated in the region close to the active electrode,
where the surface area is small and the current density is
high. During experimental protocols with our electrode in
in vitro muscle tissue, 87% of the total electrical energy is
absorbed in an iso-potential volume with radius 2 cm
[10]. Between 43°C and 60°C the cell damage originates
from denaturation of proteins. Over 60°C the tissue coag-
ulates, because collagen is converted to glucose and the
time frame of cell death is considered almost
instantaneous. When the tissue temperature reaches
approximately 90-110°C, phase transformation of the
intra- and extra-cellular liquids occurs. Glucose develops
an adhesive effect after dehydration. The gas bubbles cre-
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Figure |

Treatment electrode. Outline of the treatment electrode with incorporated cooling lumina and electrical isolation layer.
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Figure 2

Model geometry with tumour. The model geometry
consists of two tissue elements, fat and tumour. In some
cases the tumour is not included in the model. The geometry
is rotationally symmetric, where the diagonal symmetry axis
is centred in the horizontal plane. All model geometries con-
sist of a spherical isotropic volume of fat (d = 200 mm). Addi-
tionally, in most cases, a smaller cancerous tissue mass is
added into the model along the symmetry axis. The tumour
dimensions in this figure are 52 mm % 4.7 mm. The electrode
is incorporated in the model by removing tissue with the
same geometry as the electrode and setting appropriate
boundary conditions at the electrode-tissue interface. The
tissue-electrode boundary is positioned around the symme-
try axis, where the active part is placed in the middle of the
spherical volume. In the enlarged section, we see that the
tumour is placed around the electrode along the symmetry
axis, with 63% of its length below the electrode.

ated function as electrical insulation, which alters the
effective current-path area and further increases the cur-
rent density and tissue temperature. If the temperature
reaches 200°C, tissue charring is initiated. This avalanche-
like phenomenon ultimately insulates the electrode from
the tissue, and heating often ceases non-reversibly. Thus,
the output power during RFA is limited, ensuring that the
maximum tissue temperature is below the initiation of the
avalanche-like insulation phenomenon. The coagulation
necrosis zone with one monopolar electrode will there-
fore be limited to approximately 13 mm in diameter dur-
ing in-vivo protocols in muscle tissue [7]. Several
approaches have been proposed to increase the necrotic
region. These are multiprobe electrodes [11], saline
injected electrodes [12], and internally cooled electrodes
[13]. Ultrasonography, which is used to guide the elec-
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Figure 3
Model geometry close to the electrode. W = width and
L = length of the tumour.

trode to the tumour, cannot adequately predict the ther-
mal lesion margin. Instead, MRI and/or a core biopsy can
be used to confirm adequate ablation [14]. The success
rate of the in-vivo studies performed before mastectomy
varyies from 86% (19-22) to 100% (21-21) [14-17]. This
variation might depend on different inclusion criteria, e.g.
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Table I: Description of cases
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Case description Tumour dimensions (mm) Const / Temp Number of Steady state/
dep. ¢ Elements Controlled
Transient
Width Length
| F - - C 1921 S
2 F - - T 5520 S
3 FT 4.7 52 C 2208 S
4 FT 4.7 52 T 2214 S
5 FT 4.7 104 T 2797 S
6 FT 4.7 26 T 1940 S
7 FT 9.4 52 T 1985 S
8 FT 2.35 52 T 1985 S
9 F - - T 5230 CT
10 FT 4.7 52 T 2214 CT

F = geometry with only fatty tissue, FT = geometry with fatty tissue and embedded tumour. C and T indicate constant and temperature dependent
electrical conductivity respectively. S indicates that steady-state analysis has been performed, i.e. when the model has reached thermal equilibrium
using constant boundary conditions. Cases denoted CT use transient analysis where Vin is controlled to maintain the maximum temperature at

100°C.

Table 2: Electrical and Thermal parameters

Tissue type Electric Conductivity Thermal Conductivity Specific heat Density
(H(Qm)) (Wi(m-°C)) (k)/(kg-°C)) (kg/m?)

Fat 0.057129] 0.12[25] 3[271.126] 9201271

Tumour (carcinoma) 0.412[29] 0.28[25] 3.5026] 1000126]

The electrical parameters are measured at | MHz.

tumour size. The procedure was well tolerated, without
complications and cosmesis was excellent. To date, no
studies have used RFA as the only treatment method for
breast cancer. Hence, the long-term oncologic results of
this new method are yet to be evaluated.

The normal female breast is composed primarily of fat
with varying concentration partly due to body habitus.
The breast gland is composed of lobes, which empty into
separate major ducts terminating in the nipple. Each lobe
and its smaller subunits are separated by connective tis-
sue. The amount of the latter usually increases with age.
There are two types of breast cancers, which constitute
more than 95% of the malignant tumours; ductal and lob-
ular carcinomas. The former is derived from duct and the
latter from terminal duct epithelium. They differ greatly in
morphological as well as biological aspects. The classical
"crablike" appearance of the ductal carcinoma, with solid
central body from which strands stretch out in the sur-

rounding tissue has, in fact, given name to all cancers
(Krebs in German). The radiating branches consist of
tumour cells and connective tissue. The latter partly con-
sidered to be induced by the tumour. The lobular carci-
noma, on the other hand, has a diffuse growth pattern, is
often multifocal, and is difficult to diagnose radiologi-
cally. Thus, RFA treatment of breast cancer comprises a
unique situation, since the tumour is mostly embedded in
fat. The difference in electrical parameters between the fat
and the tumour tissues is substantial, which might result
in preferential heating of the tumour. The goal of this
study was to document if preferential heating existed dur-
ing in vitro treatment, and if it could be induced in com-
puter simulation by the dissimilarity of electrical and
thermal parameters.

Several computer simulation studies have investigated
RFA in a variety of locations such as the liver [18-21] or
the heart [22]. The main objective in most of these studies
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Figure 4
Ductal carcinoma cells with early coagulation necrosis. H&E
x 250.
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Figure 5
Tumour strand with acellular degenerated connective tissue
and non viable intraductal carcinom. H&E x 100.

was to predict the thermal lesion size. Other relevant
issues such as the effects of electrode cooling [21], vessel
size [20], multiple probes [19], and temperature depend-
ent conductivity [18] have also been addressed. Earlier
FEM studies on breasts have primarily studied thermogra-
phy for diagnostic purposes [23,24].

Methods

Experimental In vitro study

The in vitro study, approved by the local ethics commit-
tee, was performed on excised breast material with a mor-
phology diagnosis of breast cancer. After obtaining
informed consent, four patients underwent modified rad-
ical mastectomy. After surgery the specimens, three ductal
and one lobular carcinomas all over three centimetres in
diameter, were sent for pathologic examination. Subse-
quently, an internally cooled steel electrode (VibraTech
AB, Stockholm, Sweden, figure 1) was installed in the cen-
tral part of the tumour. Temperature was measured at the
needle tip with incorporated thermo-couples. The RF-gen-
erator was specially designed with a floating low-imped-
ance output (0-950 W, 1.5 MHz). The maximum tissue
temperature was maintained at approximately 100°C
over 15 min. It is difficult to measure the true maximum
temperature due to the circulating cooling media, i.e. the
true maximum is located within the tissue. We have devel-
oped an algorithm that compensates for the deviation
between the maximum temperature and the measured
value at the electrode tip. Electrical impedance was meas-
ured to ensure that the initiation of the avalanche phe-
nomenon did not occur. The temperature and the flow of
the cooling media were 20°C and 12 ml/s, respectively.

An electrode current (root mean squared) between 0.35
and 0.71 A was applied during the procedure. After the
treatment, the tissue was immersed and fixed in a 4% for-
malin solution. The tumour, including the electrode canal
and surrounding fat tissue, was cut out, trimmed, embed-
ded and processed for large sections, which underwent
histologic examination. Thermal lesion margin was
defined as the zone with well established coagulation
necrosis, i.e. condensation and loss of nuclear details and
homogenisation of the cytoplasm.

Computer simulation

Governing equations

Because the tissue heating is induced by RF-energy, a
quasi-static electrical model can be used to describe the
electrical field and the current density. Under quasi-static
conditions the electric potential can be solved using
Laplace's equation:

V- [o(T)-VV]=0 (2)

where V is the electrical potential (V) and T is the temper-
ature (°C). The thermal behaviour is governed by the bio-
heat equation:

dar
pre o= V- (kVT) +q = ppCo®(T = Tpjp0a) + Qum (3)

where p is the tissue density (kg/m3), c is the heat capacity
(J/kg°C), k is the thermal conductivity (W/°C m), q is the
electrical energy source, py, is the density of blood, Cy, is the
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Table 3: Ablation data from the computer simulation protocols
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Case description Vin(V) 1(A) Z(Q) Power (W)

| F 37.1 0.099 373 3.686627
2 F 28.8 0.144 200 4.142817
3 FT 29 0.109 267 3.150734
4 FT 22.7 0.147 155 3.333956
5 FT 22.8 0.163 140 3.71184
6 FT 23 0.134 171 3.07717
7 FT 222 0.193 115 4301216
8 FT 23.6 0.120 196 2.840624
9 F 60-39 - - -

10 FT 60-32 - - -

F = geometry with only fatty tissue, FT = geometry with fatty tissue and embedded tumour. For cases using temperature dependent conductivity
the presented current, impedance and power are the final values at the end of the treatment.

heat capacity of blood, ® is the blood perfusion, Ty;,.q is
the basal temperature of the blood, and Q,, is the meta-
bolic heat source. In an in-vitro situation, the metabolic
heat source and the blood perfusion are set to zero.

Geometry

Because of the need to save computer resources, the geom-
etry of the computer model was defined using rotational
symmetry with cylindrical coordinates. The axial-symmet-
ric assumption requires axial-symmetry in geometry,
materials, loadings, and boundaries, which therefore also
leads to an axial-symmetric solution. All model
geometries consist of a spherical isotropic volume of fat (d
=200 mm) and a tissue-electrode boundary. In most cases
tumour tissue is also included in the model, figure 2 and
figure 3. The electrode have the same dimensions as the
one used in the experimental studies and is incorporated
in the model by setting appropriate thermal and electrical
boundary conditions to the tissue-electrode interface. The
tissue-electrode boundary is positioned around the sym-
metry axis, where the active part is placed in the middle of
the spherical volume. In cases 1, 2 and 9, only fatty tissue
is used in the model (table 1). The remaining cases have
additional cigar shaped cancerous tissue, with variable
length (L) and width (W), positioned around the elec-
trode along the symmetry axis (figure 3). The majority
(63%) of the cancer length is located below the electrode
tip. The shape and the placement of the tumour model
should give a similar preferential effect to the tumour
strands extending from the tumour. The tumour bound-
ary consists of a rotated third degree Bezier curve, to avoid
sharp edges along the tumour-fat interface that could dis-
tort the specific absorption rate (SAR) distribution. Bezier
curves create smooth curves by linearly interpolating the
slope between points.

Tissue parameters

Several previous studies have investigated the thermal and
electrical parameters of breast tissue [24-29]. The electrical
properties used in our FEM model have been measured by
Jossinet [29] for electrical impedance tomography (EIT)
applications (table 2). Jossinet has done the most exten-
sive study, which includes in vitro measurements from 64
patients. Thermal conductivities were gathered by Gauth-
erie, etal. [25], which is the most commonly used data. As
indicated by T in table 1, in case 2 and 4-10, temperature
dependent electrical conductivity was used. The tempera-
ture dependence of electrical conductivity in most ion
solutions and tissues is 2%/°C [30,31]. Whenever temper-
ature dependent electrical conductivity is included in the
model, this relationship is used.

Boundary conditions

The electrical boundary condition for the outer boundary
was set to V = 0, representing the ground electrode. The
electrical boundary condition for the conducting elec-
trode was set to a source potential of V = V,,. The non-con-
ducting part had an insulating boundary condition, i.e.
the current component orthogonal to the surface is zero.
The thermal boundary condition of the outer surface was
set t0 20°C, i.e. the initial temperature of the tissue. With
our equipment, the temperature at the electrode bound-
ary does not diverge far from the cooling media tempera-
ture. Thus, the thermal boundary condition of the
electrode was set to the cooling media temperature, T =
20°C, to incorporate the electrode cooling in the model.

Numerical model

Ten finite element method (FEM) [32,33] models were
developed (cases 1-10, table 1), and solved using FEM-
LAB 3.0 (Comsol, Stockholm, Sweden) on a 2.0 GHz
AMD Athlon XP 2400 computer, with 1024 Mb RAM.
When the electrical conductivity is independent of tem-

Page 6 of 16

(page number not for citation purposes)



BioMedical Engineering OnLine 2005, 4:41

http://www.biomedical-engineering-online.com/content/4/1/41

Surface: Temperature Contour: Temperature Subdomain marker: Temperature Max: 35  Max: 99.87
35
0.108 | 91
0106
s | 25
0.104
0.102 |20
0.1
e | 75
0.098
0.09¢ |70
0.034 J70
0.092 |3
0.03 g0
0.088 460
0.086 |33
0.084 i
0.082 50
0.08 (43
0.078
= 40
0.07¢
0.074 =33
0.072
|30 20
0.07
0.068 —[23
0.066 =
0.01 -0.005 ! 0.01 0.03 E f ~20 20
Min: 20 Min: 20
Figure 6

Temperature distribution from case 2. The illustration shows half the plane through the symmetry axis. The coordinates
are cylindrical where the horizontal axis is denoted r and the vertical axis z. The symmetry axis located at r = 0. The redundant
three dimensional solution is obtained by rotating the half plane about the symmetry axis. The electrode is located along the
symmetry axis where Z > 0.09. The length scale of the axes is in meters. Isothermal lines from 20 to 95°C in steps of 5°C are
also shown. The temperature distribution shows the formation of a spherically shaped thermal lesion around the electrode.
The cooling of the electrode shifts the temperature maximum away from the electrode.

perature, the electrical potential, V, can be found without
solving the bio-heat equation. Thus, the calculated V,
defined over the entire volume, is subsequently used to
solve the bio-heat equation. When the electrical
conductivity is temperature dependent, equations 2 and 3
must be solved by a coupled method. The required itera-
tive computations for these non-linear problems are
much more computer intensive. All models were solved
without including blood perfusion and metabolic heat-
ing. Cases 1-8 were solved using a steady state approxima-
tion, where V;, was adjusted to obtain a final maximum

temperature of 100°C. Additionally, two controlled 15
min transient simulations were performed, cases 9 and
10. During these simulations, the maximum temperature
was maintained at approximately 100°C throughout the
whole treatment, by successively adapting the boundary
condition V.

A quadratic mesh consisting of Lagrange triangular ele-
ments was used for both the thermal and the electrical
problems. The conservationof energy introduced by the
source was checked and found highly reliable. This
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Electrical absorption from case 2. The illustration shows half the plane through the symmetry axis. The coordinates are
cylindrical where the horizontal axis is denoted r and the vertical axis z. The symmetry axis located at r = 0. The redundant

three dimensional solution is obtained by rotating the half plane about the symmetry axis. The electrode is located along the
symmetry axis where Z > 0.09. The length scale of the axes is in meters. The absorption of electrical energy is almost evenly
distributed along the electrode. Higher absorption occurs at the tip and the endpoint of the electrode isolation.

measurement serves as an indication of accuracy in the
formulation. Furthermore, a common ad hoc procedure
of successive mesh refinement was used, with the FEM
solution considered converged when the difference in
maximum temperature between successive calculations
was less then 0.1% for a doubling of the number of ele-
ments. Thermal lesion size was determined using the
50°C margin. Even though the thermal lesion volume is
dependent on both temperature and time of elevated tem-
perature, similar lesion dimensions have been obtained
using both thermal dose and threshold temperature [34].

Results

Experimental in vitro study

In a circular area around the electrode canal there was a
well established coagulation necrosis, i.e. condensation
and loss of nuclear details and homogenisation of the
cytoplasm (figure 4). The thermal lesion diameter was
approximately 2-3 cm. The changes were evident in the
tumour epithelium, connective tissue, and a rim of adja-
cent fat tissue, but were also seen in the fibro-tumourous
strands up to 3-8 mm from the main tumour mass (figure
5). However, the fat tissue between these ramifications,
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Temperature distribution from case 6. The illustration shows half the plane through the symmetry axis. The coordinates
are cylindrical where the horizontal axis is denoted r and the vertical axis z. The symmetry axis located at r = 0. The redundant
three dimensional solution is obtained by rotating the half plane about the symmetry axis. The electrode is located along the
symmetry axis where Z > 0.09. The length scale of the axes is in meters. Isothermal lines from 20 to 95°C in steps of 5°C are
also shown. The rough shape of the tumour is misleading because the Bezier curves are represented by a finite number of line
segments. The tumour shifts the heat from the electrode downwards along the tumour. Consequently, the 95°C isotherm is

now located below the electrode tip.

within a thin well-delineated rim, approximately 1 mm,
showed only slight vacuolar degeneration and preserved
nuclei, but was otherwise surprisingly unaffected. The
ductal carcinomas showed no areas with viable tumour.
In contrast, the lobular carcinoma with its irregular out-
line and diffuse growth showed tumour cells with pre-
served viable appearance in the surrounding fat at a
distance from the coagulated area around the electrode
canal. The impedance decreased up to 50% during the
treatment.

Computer simulation

The power consumption, impedance, voltage and current
during the treatment for each of the cases are shown in
table 3. The resulting temperature distribution from sim-
ulation with only fat tissue (case 2) and fat with
embedded cancer (case 4), using temperature dependent
electrical conductivity, is shown in figure 6 and 8 respec-
tively. The maximum temperature in case 2 is located on
the symmetry axis, 1.1 mm from the electrode tip. In case
4, where a tumour is situated in the fat, the heat pattern is
drawn further from the tip along the tumour. The maxi-
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Electrical absorption from case 6. The illustration shows half the plane through the symmetry axis. The coordinates are
cylindrical where the horizontal axis is denoted r and the vertical axis z. The symmetry axis located at r = 0. The redundant
three dimensional solution is obtained by rotating the half plane about the symmetry axis. The electrode is located along the
symmetry axis where Z > 0.09. The length scale of the axes is in meters. The tumour shifts the absorption of electrical energy
to the tumour area and to some extent the tumour fat interface. The absorption in the tumour is always higher compared to

the fat at the same distance from the electrode.

mum temperature is located on the symmetry axis, 2.9
mm from the electrode tip. The difference in electrical
power absorption between the cases with and without
tumour is substantial (figures 7 and 9). When comparing
solutions computed with constant and temperature
dependent electrical conductivity, and with and without
tumours along the symmetry axis, r = 0 (cases 1-4), the
resulting thermal lesions were largest using temperature
dependent electrical conductivity (figure 10). Along a line
with constant Z-coordinate, through the maximum
temperature point, the same observation can be made
(figure 11). The smallest thermal lesions were created in

case 1 (1.7 cm from the electrode) and case 3 (2.2 cm), in
the r = 0 and the Z = const direction, respectively. The
50°C lesion margin was approximately 1-2 mm further
from the electrode when temperature dependent electrical
conductivity was used in the simulation. When tumour
tissue was added to the fat model (cases 3 and 4), the
50°C margin increased by approximately 4.7 mm in the
tumour direction (r = 0) and decreased by approximately
1.5 mm along the Z = const. line, through T, .., using both
temperature dependent and constant electrical conductiv-
ity. The temperature plot along the symmetry axis (r = 0)
for different tumour dimensions (cases 4-8) using tem-

Page 10 of 16

(page number not for citation purposes)



BioMedical Engineering OnLine 2005, 4:41 http://www.biomedical-engineering-online.com/content/4/1/41

100 _
/1

95 7

90 /’

85 /
%) Vi Cases
Q80 —
o 75
2 70 74 — 1
S 65 Z —2
Q -
'E 60 // 3
- 55 4

50

45 —

40 ———

35 - [ I I I [ I

0.06 0065 007 0075 008 0085  0.09

Z (m)

Figure 10

Temperature distribution along the symmetry axis r = 0 for cases | to 4. Both temperature dependent and constant
conductivity was used for the only fat models and the tumour models. The electrode tip was located at Z = 0.09. Temperature
dependent conductivity creates significantly bigger thermal lesions. Additionally, the tumour increases the temperature in the
tumour compared to the models with only fat. The 50°C margin is increased 4.7 mm in the tumour direction for both temper-
ature dependent and constant conductivity when the tumour is incorporated, i.e. the difference in thermal lesion size between
the tumour and non-tumour models is not affected by the used conductivity type.

perature dependent electrical conductivity can be
observed in figure 12. The temperature profile does not
substantially change when altering the length of the
tumour. However, a small drop in case 6 is observed at the
tumour-fat interface. The width of the tumour, on the
other hand, has a considerable effect on the temperature
along the tumour. Both the thermal lesion margin and the
location of the temperature maximum were located fur-
ther from the electrode with increasing tumour width.
Surprisingly, the 50°C margin in case 8 was closer to the
electrode than in case 2. The tissue impedance decreased
by approximately 41-46% during the temperature
dependent simulations. Transient controlled simulations
created smaller thermal lesions than their steady state
counterpart (figure 13). The shift in the 50°C margin
between the tumour and non-tumour transient cases (9
and 10) was 5.6 mm along the symmetry axis. During the
initial time period, the isothermal lines were clearly
deformed in the tumour direction. However, this shape
gradually disappeared and became more and more spher-

ical as thermal conduction progressed. During the final
part of the treatment the increase in thermal lesion vol-
ume was caused mainly by thermal conduction, rather
than absorption of electrical energy.

Discussion

Comments on the FEM results

The largest thermal lesions were created using tempera-
ture dependent electrical conductivity and steady state
solving. Furthermore, temperature dependent electrical
conductivity mimics the impedance behaviour in the in
vitro studies, which demonstrated a decreasing imped-
ance of up to 50%. Hence, only temperature dependent
electrical conductivity was used to document the effect of
tumour spatial shape and the influence of time depend-
ence. The baseline impedance in the experimental studies
varied between 80 and 200 Q. During FEM simulation the
baseline impedance varied between 51 and 373 €, using
only tumour tissue or only fat tissue, respectively. Conse-
quently, the electrical parameters in the in vitro experi-
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Temperature distribution along the Z = constant line through Tmax for cases | to 4. For case |, 2 and 3, 4 this line
was through Z = 0.087 and Z = 0.0889 respectively. Both temperature dependent and constant conductivity was used for the
tumour models and the homogenous non-tumour models. Temperature dependent conductivity has the same effect on ther-
mal lesion size as in the previous figure. Interestingly the tumour cases resulted in lower temperatures in this direction com-

pared to the only fat cases.

ments and in the FEM model correspond well. In the
models with only fat tissue, the heat was shifted towards
the tip and away from the electrode because of the cooling
along the electrode shaft and the increased SAR created by
the curvature of the electrode tip. The shift in temperature
between corresponding models with and without tumour
is primarily explained by the shift in absorbed electrical
power density (figures 7 and 9). In the models with
tumour, the electrical absorption was relatively higher in
the tumour tissue and relatively lower in the fat tissue
compared to a non-tumour model. Even though the ther-
mal lesion volume decreased during steady state simula-
tion, preferential heating of the tumour increased. The
thermal lesion volume decreased because of the shorter
treatment time, i.e. less energy is transmitted by thermal
conduction to heat the distant regions. Initially, the
tumour shape could be detected in the isothermal lines.
but with time this shape effect gradually decreased.
Hence, as entropy increased and thermal conduction lev-
elled out the differences in temperature with time, the
temperature difference between the tumour and the fat

gradually decreased to the steady state. The width of the
tumour, compared to the length, has a more pronounced
effect on the preferential heating. With increasing tumour
width, both the location of the temperature maximum
and the thermal lesion margin are pushed away from the
electrode, along the symmetry axis, In case 8, the thermal
lesion margin is closer to the electrode than in the original
fat model. Yet the region near the electrode is relatively
hotter in case 8. It seems that the heat dissipation from
thin tumours decrease the lesion size. However, during
transient analysis, this effect might decrease. The altering
of the tumour length only changed the tumour in the
region where the contribution to the impedance and resis-
tive heating were small. Hence, almost no dependence on
tumour length is detected. The tissue near the electrode is
heated mainly by the absorbed electrical energy, while
regions further away are mainly heated by thermal con-
duction. Thus, the preferential heating of the tumour is
governed by the electrical parameters near the electrode,
whereas thermal parameters become increasingly impor-
tant further away.
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Differences in temperature distribution along the symmetry axis for tumour models of variable size. Tumour
models with varying length and thickness are compared to the only fat case 2. Only temperature dependent conductivity was

used. The electrode tip was located at Z = 0.09. The only spatial
tribution was the tumour width W. Increased width enlarged the

variable that had any significant effect on the temperature dis-
thermal lesion and pushed the maximum temperature further

from the electrode. Interestingly, very thin tumours generated smaller thermal lesions (50° margin) than the original fat model.

The effects of temperature dependent electrical conductiv-
ity during RFA have been studied by Chang [18]. Temper-
ature dependent conductivity results in increased current
density, whereas the electric field remains almost constant
compared to constant conductivity. The maximum tem-
perature increases by 5-8%, using constant voltage
between the electrodes. Furthermore, one study has inves-
tigated the preferential heating of hepatic tumours [35].
The study concludes that ablation at low frequencies,
where the difference in electrical parameters are relatively
higher, may preferentially target tumour tissue. This effect
only arises if the active electrode is in contact with both
liver and tumour tissue. The extent of the effect is also
dependent on probe geometry and control algorithm.
Moreover, Tungjitkusolmun, et al. have investigated the
sensitivity of tissue parameters on thermal lesions for
radio frequency cardiac ablation [22]. Their study shows
that the accuracy of tissue property values is critical to
FEM modelling.

Limitations of the computer model

We have limited the computer model to include two tis-
sue types: fat and tumour, giving a fair representation of
the real situation. The electrical properties of glandular
and connective tissue are similar to those of cancer. Thus,
connective and glandular tissue are also preferentially
heated by the RF-energy, which was confirmed in the in
vitro studies. Hence, incorporation of glandular and con-
nective tissue provides little additional information on
the preferential heating of the tumour. To correctly mimic
the SAR situation during RF ablation, a three dimensional
model must be used, i.e. the iso-potential surface must
increase with the distance squared from the electrode.
This is for obvious reasons not the case in two dimen-
sional or one dimensional Cartesian models. However, if
the situation demonstrates rotational symmetry a two
dimensional axially symmetric model can be used instead
to significantly decrease calculation time and related
computer resources. Non-linear models, transient analy-
sis, and the use of different tissue types made rotational
symmetry essential in our case. The tumour shapes
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Temperature distribution along the symmetry axis for the transient controlled simulations. Two controlled tran-
sient solutions were compared, one only fat model (case 9) and one tumour model with tumour size 52 mm X 4.7 mm (case

10). T

max

was kept at 100°C during the whole 15 min treatment using temperature dependent conductivity in both cases.

These simulations resulted in significantly smaller lesion compared to their steady-state counterpart. However, the difference

in thermal lesion between the tumour and the non-tumour case increased.

considered are not claimed to be perfect representations
of the true situation. A better representation would be a
core tumour from which thin outgrowths extend. How-
ever, this configuration is impossible to achieve with
rotational symmetry and with current limitations in our
computational resources. Additionally, such a model
would have too many variables to easily assess any con-
clusions. In this study the tumours introduced were
shaped to present a similar situation as in the tumour
strands extending from the core. We have, as a first step,
developed a model with rotational symmetry and only
two variables, thickness and length, which can demon-
strate possible preferential heating of the tumour. Poten-
tial effects of temperature dependent thermal conductivity
are not incorporated in this model. This phenomenon is
usually not accounted for because of its low temperature
coefficient, approximately 0.1%/°C for muscle tissue
[36], and no breast specific data are available. The change
in tissue electrical conductivity during heating has revers-
ible and permanent effects [37]. The permanent tempera-
ture effect increases with time and appears to be the result

of structural changes of the tissue. Our model only
accounts for the reversible part of the temperature
dependence. However, the permanent temperature effect
is less significant compared to the reversible effect. Fur-
thermore, the 2%/ °C coefficient used in this study is an
over estimation of the measured reversible part, giving a
fair approximation of the total change during our time
interval of heating.

Regarding the FEM simulations, a strict error analysis is
not considered possible for this multi-field problem. An
indication of accuracy in the formulation is the conserva-
tionof energy introduced by the source. This was checked
and found highly reliable. This finding verified that the
element approximation is able, in the limit, to reproduce
the governing mathematical formulation. With respect to
grading of the element mesh, a Cauchy convergence test
was used to assess if the mesh had an appropriate size. The
accuracy level in the two aspects of the simulations is
thereby considerably higher than for the tissue material
parameters used. The computer and experimental studies
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were performed in an in vitro situation, disregarding
possible effects of blood perfusion. Thus, the lesion size is
overestimated compared to the in vivo case. Furthermore,
the preferential heating of the tumour is probably
decreased due to the temperature dependent blood flow.

Comparison between experimental results and computer

model

We have shown that RFA of breast cancer in vitro results
in preferential heating of the tumour during both the
experimental and the computer simulation studies.
However, during computer simulation of thin tumours,
the preferential heating at the thermal lesion margin van-
ishes due to increased heat conduction from the tumour.
Thus, the preferential heating of the tumour observed in
the experimental studies was more pronounced, espe-
cially in the long outgrowths extending from the core
tumour, indicating that additional effects other than just
differences in electrical and thermal parameters must be
involved. During cancer growth, fibrous septa membranes
are produced by the tumour and existing membranes are
pushed in front of the tumour, creating numerous thin
membrane layers at the tumour interface. These septa lay-
ers between the cancer tissue and the fatty tissue could
have an additional electrical or thermal insulating effect.
Thermal insulating membranes would probably increase
the temperature in the tumour in distant regions where
they dominate.
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