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Abstract
Optical molecular imaging is based on fluorescence or bioluminescence, and hindered by photon
scattering in the tissue, especially in patient studies. Here we propose a computational optical
biopsy (COB) approach to localize and quantify a light source deep inside a subject. In contrast to
existing optical biopsy techniques, our scheme is to collect optical signals directly from a region of
interest along one or multiple biopsy paths in a subject, and then compute features of an underlying
light source distribution. In this paper, we formulate this inverse problem in the framework of
diffusion approximation, demonstrate the solution uniqueness properties in two representative
configurations, and obtain analytic solutions for reconstruction of both optical properties and
source parameters.

Introduction
Gene therapy is a breakthrough in the modern medicine,
which promises to cure diseases by modifying gene
expression. A key for development of gene therapy is to
monitor the in vivo gene transfer and its efficacy in the
mouse model. Traditional biopsy methods are invasive,
insensitive, inaccurate, inefficient, and limited in the
extent. To map the distribution of the administered gene,
reporter genes such as those producing luciferase are
being used to generate light signals within a living mouse,
which can be externally measured [1]. A cooled highly
sensitive CCD camera has been built to take a 2D view of
expression of the bioluminescent reporter luciferases.
Such a 2D image of photon emission is then superim-
posed onto a 2D visible light picture of the mouse for
localization of the reporter gene activity. In addition to
gene therapy, this new imaging tool has great potentials in
various other biomedical applications as well. An in vivo

bioluminescence tomography system integrated with an
X-ray CT/micro-CT scanner is recently reported in [2,3].
The novel concept is to collect emitted photons from mul-
tiple 3D directions with respect to a living mouse marked
by bioluminescent reporter luciferases, and reconstruct an
internal bioluminescent source distribution based on both
the outgoing bioluminescent signals and the CT/micro-
CT volume of the mouse. Then, the 3D bioluminescent
source distribution and the corresponding CT/micro-CT
volume are registered of anatomical and pathological
structures, such as the lung and various tumors.

Optical imaging of small animals based on fluorescent/
bioluminescent probes promises great opportunities for
translational research and eventually clinical applications,
because fluorescent/ bioluminescent signals directly
reveal molecular and cellular activities, and are sensitive,
specific, non-ionizing, non-invasive and cost-effective.
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Pure optical imaging cannot detect the molecular activi-
ties triggered by biomarkers because the light generated
are generally out of the visible spectrum. Despite the
progress in optical molecular imaging of small animals,
little research has been done for optical molecular imag-
ing of patients. A light source induced by either fluores-
cence or bioluminescence probes is usually weak, and
would be often deep inside a body should it be used in
patients. Optical methods for in vivo imaging are all faced
with the problem of limited transmission of light through
tissues [[1], p. 237]. Because the human body absorbs and
scatters photons in the visible and near infrared ranges
with the mean-free-path in the sub-millimeter domain,
such a source cannot be effectively detected on the body
surface [4].

In this paper, we propose a computational optical biopsy
(COB) method [5] to supplement and enhance the capa-
bilities of fluorescent molecular tomography and biolu-
minescence tomographic, especially for their potential
uses in patients. In order to detect the light source in a
region of interest deep inside a subject, we can use a fiber-
optical probe to detect the light source directly in the sub-
ject along one or multiple biopsy paths and next to com-
pute the parameters or features of the embedded light
source.

Several optical biopsy needle systems are already in oper-
ation [6-8], which have indicated the physical feasibility
of this COB project. While similar to existing optical
biopsy procedures in using fiber-optic probes [6-8], the
proposed COB system and methods depend on not only
optical devices but also advanced modeling and computa-
tion techniques to reconstruct an underlying source inten-
sity distribution and extract its features of interest such as
source center and effective intensity. There are several dis-
tinctions that substantiate our innovations. Our COB
approach relies on sophisticated signal modeling and esti-
mation from data collected along a number of biopsy
paths, while other biopsy/endoscopic techniques perform
direct anatomical imaging on speci c spots only. Our COB
targets source intensity distributions triggered by probes
instead of tissue/vascular properties that are concerned by
other biopsy/endoscopic methods. Our COB intends to
sense both fluorescent and bioluminescent sources, not
just fluorescent sources as some optical endoscopic/spec-
troscopic techniques are designed for.

Mathematically we will Consider

where u0 is the average photon flux in all directions,

, µα are positive constants with µa

and µs being the absorption and scattering constants

respectively in  and f is either a measure or a L∞ ∩ L1

function, which represents the light source.

Single point source
We will first consider the case where the source term

, where δ is the Dirac operator.

In this case we have

where C is a constant such that

or

i.e.,

Assume that the needle insertion follows a straight line l :

, where  is the direction of the insertion

and  one point along the insertion (Figure 1).

Let υ be a direction that needle tip detects light from. Then
the measurement along the line l is given by

and  = (t1, t2, t3). υ = (υ1, υ2, υ3) which has a fixed angle θ with the needle direction , i.e., cos (θ) = t1υ1 + t2υ2 +
t3υ3
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such that

Due to the notation and translation invariant properties
of (1) and the design of the insertion needle, we may
assume, without loss of generality, that

so that υ1 = 0, (υ2υ3) = (cos α, sin α) and .

Then (7) becomes

Now let .

Assuming that each insertion line can detect sources from

two different angles α1, α2 such that α1 - α2 ≠ kπ, k ∈ ± ,
then

is non-singular. Therefore appropriate combination α1

and α2 depending on γ of the measurements m(s) would

single out , so that without loss of generality, we
may assume that

Prinicpal of computational optical biopsyFigure 1
A needle insertion path, where t is the direction of the insertion, 0 one point along the insertion, v a direction in which the nee-
dle tip detects light, s1; s2 are points along the path
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which are the measurements such that <x - xi, υ > = , k
= 2, 3 after combinations of α1 and α2 mentioned above
and define

Theorem 2.1
(Single point source) If N = 1, i.e.: if

, then one inser-

tion would uniquely determine λ, x1, and µeff, provided that the
insertion line does not go through the point of the source. (See
remark.)

Proof
In this case since

Differentiate (13) with respect to s, we have

such that the critical point of  (s) uniquely identifies x1.
Next with x1 identified, we obtain

or

And by taking the derivatives of  and evaluating them at
x1, we obtain that

where z = µeffw.

From (18) we obtain

and plugging it into (19) we have

If f (z) is monotone in z > 0, then (21) would give us a
unique solution z > 0.

We compute and obtain

i.e., we have uniquely solved by the information from 
the values of µeff, w and therefore λ by (17).

Next if we let x2 = w cos β, x3 = w sin β, then we get

which could uniquely determine β by the sign conditions

of , k = 2.3.

That is, by now, we are able to determine, (x1, x2, x3), µeff
and λ; i.e. complete information about the source.
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In case that the insertion line goes through the point of
the source, which is verified by having each
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{some single point}

then only the two components of the point source,
orthogonal to the insertion can be identified, which is the
best possible. On the other hand, in practice, such events
would have probability zero!

Single ball source
Next we consider ball sources, i.e., we assume that

where χΩ is the characteristic function of Ω and

.

For such source we have where

where

 – the total intensity of the

source in the form of λχB(o, r).  (24)

Again we will discuss the single ball source first, i.e. N = 1,
so that we have

Theorem 3.1
(Single ball source) If N = 1 ; i.e. if u0 is given by (25), then
one insertion would uniquely determine M (λ3, r1), x1 and µeff;
in case the line stays outside of B (x1, r1). In case the insertion
line enters the interior of B (x1, r1), then x1, r1, λ1 and µeff are
uniquely determined by one insertion.

Proof
Case 1
If the insertion line (refer to Theorem 1.1 in Section 2)
stays outside B (x1, r1), then the detected u0 is given by

i.e., u0 (x) behaves exactly as a single point source with an
intensity of M (λ1, r1) and hence Theorem 2.1 guarantees
the result.

Case 2
If the insertion line enters the support of the ball source B
(x1, r1) but misses the center point x1, then again due to
the rotation and translation invariant properties of (1), we
may assume, without loss of generality that the insertion
is given by (8) and x1 = (x1, x2, x3) and hence the detection
given by (6) is now

m (s)  (27)

where .

Again, assuming that each insertion line can detect
sources from two different angles α1, α2 such that α1 - α2 ≠
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 (s) = m2 (s)2 + m3 (s)2 = w2φ2 (s).  (30)

Note that since in this case we assume that the insertion
line enters the interior of B (x1, r1) but misses the center
x1, we have 0 <w <r1 and the line would enter and leave B
(x1, r1) when

which is exactly where our measurement Mk (s), or equiv-
alently φ (s) fails to be differentiable. Therefore let sin and
sout be two points where we observe the jump discontinu-

ity of 1 (s).

Then we have

(32) together with (29) uniquely identify x1 and establish
a relation between r1 and w. Then we are able to evaluate

 (x1) to get

i.e.,

Next by taking the derivatives of  and evaluating them
at x1, we obtain that

>From (35) we obtain

and plugging it into (36) we get

which can be veri ed to be an increasing function. There-
fore (38) has a unique solution z and (37) then uniquely
de nes the w which in turn defines λ1 uniquely by (34) and
r1 uniquely by (32).

Discussions and conclusion
We have demonstrated the modeling of computational
optical biopsy with the diffusion optics, the solution
uniqueness properties in two typical configurations and
provide explicit formulas for the reconstruction of both
optical properties and source parameters. Mathematically,
one single insertion will be enough to estimate the above
parameters. However, physically, more measurements
will guarantees the robustness of the estimates. The needle
trajectory can also be dynamically restarted and opti-
mized towards the center of the source based on the suc-
cessive estimate. Further investigation on multiple point
sources and multiple ball sources is undergoing. For
example the double sources probelm can be handled in
such a way that by using the moments defined (11) one
could reduce the problem to a equivelent one with a few
freedom and thus a numerical optimization technique
will be used to solve the inverse problems.
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