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Abstract

Background: Detection of QRS complexes and other types of ventricular beats is a basic
component of ECG analysis. Many algorithms have been proposed and used because of the waves'
shape diversity. Detection in a single channel ECG is important for several applications, such as in
defibrillators and specialized monitors.

Methods: The developed heuristic algorithm for ventricular beat detection includes two main
criteria. The first of them is based on steep edges and sharp peaks evaluation and classifies normal
QRS complexes in real time. The second criterion identifies ectopic beats by occurrence of biphasic
wave. It is modified to work with a delay of one RR interval in case of long RR intervals. Other
algorithm branches classify already detected QRS complexes as ectopic beats if a set of wave
parameters is encountered or the ratio of latest two RR intervals RR, |/RR;is less than 1:2.5.

Results: The algorithm was tested with the AHA and MIT-BIH databases. A sensitivity of 99.04%
and a specificity of 99.62% were obtained in detection of 542014 beats.

Conclusion: The algorithm copes successfully with different complicated cases of single channel
ventricular beat detection. It is aimed to simulate to some extent the experience of the cardiologist,
rather than to rely on mathematical approaches adopted from the theory of signal analysis. The
algorithm is open to improvement, especially in the part concerning the discrimination between
normal QRS complexes and ectopic beats.

Background e addition or subtraction, or other procedure to be

Ventricular beat (VB) detection is one of the most fre-
quently addressed tasks in ECG signal processing and
analysis. A number of methods, electronic circuits, algo-
rithms and programs have been developed for real time
and off-line implementation. Various mathematical and
heuristic approaches have been used [1-13].

Some VB detectors operate on two ECG leads simultane-
ously. At first glance, such an attempt offers direct advan-
tages. Actually, it is bound to two non-evident choices:

applied on the lead signals, having in mind possible
changes of the dominant beat polarities;

e conjunction or disjunction of detected beats not coin-
ciding in time.

Real time algorithm for beat detection in single channel
ECG signal is suitable especially for stand-alone monitors,
telemetry devices of limited bandwidth, event recorders
for home use, defibrillators, pacemakers etc.
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Friesen et al. [14] compared nine QRS detection algo-
rithms with respect to noise immunity. Unfortunately, the
authors did not publish the threshold rules used for beat
candidates selection. We applied some of the reported
algorithms on signals with drift, electrode disconnection
and other artifacts without application of adaptive thresh-
old and obtained unsatisfactory results.

Dotsinsky [15] has proposed a criterion for VB candidates,
taking into consideration: i) high amplitudes, ii) steep ris-
ing and trailing edges and iii) sharp peaks. Good separa-
tion of ventricular beats from high and sometimes sharp
T waves was shown as an advantage. Similar concept has
been proposed by Zong et al. [16].

Bakardjian [17] applied Menard's derivative on a quasi-
orthogonal ECG lead. Ventricular beats (VBs) were
detected by conventional threshold law [6] and classified
using fractal number data. However, in our opinion some
of the classes have too small differences to be physiologi-
cally distinguishable.

Trahanias [18] has proposed mathematical morphology
transform for clipping and analyzing wave peaks, thus giv-
ing priority to QRS complexes. Morphological classifica-
tion has been reported also by Maier et al. [11].

Suppappola and Sun [19] have used non-linear trans-
form. Poli et al. [8] have optimized QRS detectors by
genetic algorithm. Afonso et al. [10] have proposed filter
banks for ECG signal decomposition in separate fre-
quency bands, where several features were independently
computed and combined in a decision rule.

The existence of many algorithms for QRS and/or VB
detection shows implicitly that despite the usually
reported high sensitivity and specificity, not all waveform
diversities offered by nature have been adequately identi-
fied. Therefore, a continuous tendency can be observed
for development of newer and improvement of existing
QRS and VB detection methods.

The first step of a thythm analysis needs discrimination
between normal QRS complexes and ectopic (supraven-
tricular or ventricular) beats. Some authors consider that
it must be done at a second detection step, when T waves
have been eliminated and wave onsets and offsets have
been identified [20,21,9].

The efficiency of VB detection algorithms has usually been
assessed using ECG signals from the internationally recog-
nized databases of the American Heart Association (AHA)
and the Massachusetts Institute of Technology (MIT).
Because of the enormous data array, correspondence
between annotated and detected beats had to be checked
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and counted automatically. The marks (locations) of the
annotated beats have varying positions in time (e.g. in the
AHA database the marks are mostly near to the onset of
the R wave). Suppappola and Sun [19] determined a valid
detection interval, within which marks of the tested algo-
rithm were considered true positive (TP) with respect to
the annotations. The interval borders included the onset
and offset of the QRS complex. They may be set by the
user. Otherwise, the authors proposed default values for
the AHA database: 10 ms before and 140 ms after the
annotated locations. Any additional marks in the valid
interval are treated as false positive (FP). Detection marks
out of the intervals were classified as false negative (FN).
The sensitivity Se and specificity Sp are normally com-
puted by [10]:

Gecp  IN 0
TP+FN TP +FN
Sp=1 FP P @

“TP+FP TP+FP

Published values for Se and Sp by many authors have
been quite high, usually above 95%. Afonso et al. [10]
reported Se = 99.59% and Sp = 99.56%, obtained with the
MIT-BIH Arrhythmia Database. With the same database,
Poli et al. [8] showed 99.60% and 99.51%, respectively.
However, they did present neither the formulae nor the
number of TP beats used for Se and Sp computation.

Millet et al. [9] have proposed algorithms for discrimina-
tion between normal QRS complexes and ectopic beats
(EBs) by means of the following parameters: highest pos-
itive and negative peaks, sums of the signed and unsigned
amplitudes, number of samples with amplitude exceeding
70% of the unsigned highest peak, distance between this
peak and the averaged position of the other peaks. The
authors designated Se as a quotient between correctly
detected normal beats and the total beats number. Sp was
defined similarly for the EBs. The values obtained for two
algorithms are: Se = 94.6% and 98%; Sp = 97.3% and
98%. The valid detection interval of the first algorithm
encloses the annotated beats by samples with slope
change higher than 180°. In the second algorithm, the left
and the right interval borders are located at 60 ms and 80
ms before and after the R wave peak, respectively. How-
ever, the reported values for Se and Sp are obtained by
seven files only, taken from the MIT-BIH Arrhythmia
Database and consequently they hardly represent a high
confidence estimation of the algorithm efficiency.

Method

The algorithm for ventricular beat detection in single-lead
ECG improves previously developed method for QRS
detection, based on steep edges and sharp peaks
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evaluation [15]. It includes branches for separate detec-
tion of ectopic beats (EBs). Parameters and thresholds
used below have been evaluated by means of ECG data-
bases in order to obtain better Se and Sp.

Two filters are used for eliminating power-line interfer-
ence and suppressing baseline drift. The first is a comb fil-
ter with first zero at 50 Hz (60 Hz for certain countries).
The second one is high-pass filter with a cut-off frequency
f.= 1 Hz, given by the recursive formula

Yn = len-l + kZ(Xn - Xn-l) (3)

Here Y, is the current sample to be filtered, Y, , is the pre-
viously filtered sample and X and X , are unfiltered sam-
ples. The coefficients k; and k, are defined by

1- tg( )
k2=— (4)
1+t( )

1

k1=—
1+tg( )

where fgg is the sampling frequency.

A very simplified flow chart of the algorithm is shown in
Fig. 1. It presents the main considerations only and is used
to depict the heuristic principles implemented.

The main branch calculates the SUM of absolute ampli-
tude differences between the ongoing sample §; and two
surrounding it samples S;p; and S;,1p;, where Tp is the
period of the power-line frequency. Additional require-
ment is the equal sign of the two differences, i.e. SUM =
abs(2S; - Sirpy - Sivpr) if sign(S; - Sipp) = sign(S; - Sivrp)-
Then SUM is compared to an adaptive threshold AT. Its
initial value AT, (starting the algorithm) is AT, = 0.2 mV.
A QRS complex candidate is marked each time when SUM
> AT. After that, the threshold has the following time-
course:

e AT = 0.7 SUM, except for the occurrence of peak ampli-
tude <400 pV together with SUM > 0.3 mV (amplitude
values are referred to the amplifier input) when AT
becomes equal to 0.6 SUM.

e The threshold does not change for 200 ms (to avoid
high-amplitude T-waves).

e Further, AT decreases linearly to reach 0.2 of its initial
value at the end of the first second.

e Then the slope of the linear function becomes twice
lower until the threshold drops down to a level of 0.2 mV,
where it remains constant in order to avoid errors due to
noise and low-amplitude signal.

http://www.biomedical-engineering-online.com/content/3/1/3

It seems that the T, coincidence with the intervals for
SUM calculation makes the preliminary interference can-
cellation superfluous. Really, maximum SUM may be
obtained by shorter than T} intervals in case of narrow Q,
R or S wave that has to be checked on free of interference
signal.

A true beat candidate is expected to appear after a delay
DIST following the latest detected beat. DIST is related to
the expected QT interval duration of the ongoing RR inter-
val. Initially DIST = 200 ms. It is updated further using a
version of the empirical formula for the QT interval:

DIST = QT = 0.4/mRR [s]. (5)

Here mRR represents a combination of the averaged latest
four intervals RR,, ., with the shortest one of them RR;,
in a ratio of 7:1.

(7RR,

mean

+ RRmin)/8

The enhanced participation of RR,;, was introduced after
heuristic assessment of its influence, according to our pre-
vious experience in arrhythmia analysis [22]. DIST is lim-
ited to 350 ms maximum, corresponding approximately
to QT segment duration for heart rate HR = 55 beat/min.
Lower HR detection may be erroneous if one QRS com-

plex is missed or burst of EBs is encountered.

When the beat candidate is located nearer than DIST to
the latest detected QRS complex, the candidate is ignored
if its SUM is less than the SUM of the latest detected com-
plex. Otherwise, the latest valid detected beat is discarded
assuming it is a lower amplitude component of the same
QRS complex.

Further, the maximum value V,,, in an interval of 120 ms
around the candidate is found. The V, address is entered
in the buffer qrs to mark the position of VB if two require-
ments are met: V> 80 uV and the number of zero cross-
ings N < 8. The first threshold allows the detection of low-
amplitude QRS complexes. The second condition is
aimed at suppression of electromyogram artifacts and

other high frequency disturbances.

The second algorithm branch, which is for EB (ectopic
beat) detection is activated 120 ms after each detected
QRS complex. Its basic criterion is the presence of bipha-
sic wave. Intervals delineated by three consecutive cross-
ing of thresholds with alternative polarity W,;+W; are
checked in sequence. The first threshold is the minimum
of 200 puV or 0,25V,,,,. This measure improves EB detec-
tion in case of low amplitude QRS complexes. The corre-
sponding values of the second threshold are 300 pV or
0,25V« The level of 200 uV for the first threshold is set
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Simplified flow-chart: cs — current sample; CAND — VB candidate; Vmax — max value of CAND; RR_— current RR interval; RR_
, — last but one RR interval; grs — QRS buffer; ectopic — EB buffer; susp — buffer for subsequent analysis; TPL — normal QRS
template; BW — biphasic wave; RE — requirement to BW ectopic beat; RRE — reduced RE.

lower (with respect to 300 pV) because the previous
detected QRS complex might be really a large EB with
sharp peak, which remains for a long time-interval above
or below the zero line. The third threshold is of 100 pv
and is set low again to block erroneous end of long-trail-
ing EB.

The two waves delineated by the thresholds are classified
as parts of EB if:

¢ The distance between their peaks A; and A, are longer
than 30 ms (in order to avoid higher frequency noise) and
shorter than 300 ms (to reject zero line shift provoked by
large artefacts).
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e The distance between W, and W; do not exceed either
700 ms in case of |A;| > 0.8 V,,, or 400 ms otherwise.

e The sum |A,| + |A,| is higher than the threshold LEV,
which is equal to 0.6 V,, if V., > 400 pV. Otherwise LEV
= 600 V.

¢ A, and A, do not differ by more than 25%.

® The time interval from the latest VB to one of the peaks
A, and A, is longer than DIST. By default the peak used is
A = A, except for the case A, > 2A; when A takes the
address and amplitude of A,.

If the above-mentioned requirements are not met, W, is
discarded, while W, and W; are marked as W, and W,.
They compose the next two waves together with a new
crossing of the third threshold W;. This cycle is repeated
until EB or QRS is detected.

The address of A is entered in the buffer ectopic, marking
the EB position, and in the buffer susp for additional
analysis by the third algorithm branch for EB detection.

Two consecutive VBs may occur at distance shorter than
DIST in case of long RR intervals, which include burst of
EBs or an EB followed by compensatory pause. Therefore,
DIST is multiplied by 0.7 in the third algorithm branch for
EB detection. A criterion that does not need the approxi-
mate equality of A, and A, is added. Instead, EB must have
steep rising or trailing edge, tested as absolute amplitude
difference between A and one of the samples located at 50
ms before or after A. If the difference exceeds 0.7 LEV, EB
candidates are conditionally saved in the buffer susp wait-
ing for confirmation with the appearance of the next beat
detection. Long RR intervals are assumed if they extend
above 1.3 s or 1.5 mINT.

The candidates in susp are substituted for EBs that are
detected and saved in ectopic during long RR interval if:

¢ only one candidate is present (susp = ectopic + 1).

e the candidates are more than one (susp >ectopic) and
the amplitude of the first of them is higher than 60% of
the second one.

If susp >ectopic but the above amplitude requirement is
not met, the first candidate is not saved in ectopic, as it is
assumed to be a high T wave. The latest saved candidate is
examined for non-corresponding proximity to the latest
detected QRS complex. The checking for long RR interval
ends with setting the susp pointer at the ectopic pointer
value.

http://www.biomedical-engineering-online.com/content/3/1/3

The forth algorithm branch for EB detection compares the
parameters of the currently detected QRS complexes with
the corresponding parameters of a template QRSe chosen
initially as normal QRS. The parameters are: the maxi-
mum positive and negative amplitudes A, and A,,, the cor-
responding peak-to-peak amplitude App = Aj - A, the
number of samples N, exceeding the highest of the thresh-
olds 0.4 V_,, or +400 puV in intervals of 50 ms around
Vihaw @8 well as the number of samples N, below the low-
est of the thresholds -0.4 V, ,, or -400 uV in the same inter-
vals. The following differences are formed:

AA, = abs(A, - Ap.), AA, = abs(Ap, - A,), AApp = abs(App -
App), AN, = abs(Np - Np,) and AN, = abs(N, - N,..).

The template parameters are marked by index e. The latest
detected VB is classified as EB if

(AApp > 0.4Ap,) | (AN, > 0.2N,.) | (AN, > 0.2N,.) |
((AApp> 0.2Ap,,) &

((AN, > 0.4N_.) | (AN, > 0.4N,..)) & signQRS = sign-
QRSe), (6)

where & and | are the symbols for conjunction and dis-
junction, respectively. The set of criteria (6) includes the
following cases of detected VBs with relatively steep edges
and/or sharp peak that may be rather classified as EBs:

¢ deviation of the maximum QRS peak-to-peak amplitude
App above the limits due to respiration and change in the
patient body position.

e deviation in the QRS complex width either at positive
(0.4 V,,.x Or +400 V) or negative (-0.4 V,,,, or -400 pV)
level.

e deviation in App and change in the positive or negative
amplitude, the higher of them with different sign com-
pared to the highest template amplitude.

The program implementing the algorithm selects a QRSe
among QRS complexes with predominant polarity in a
learning period after starting the detection. This is a very
rapid and simple criterion but sometimes it may indicate
EB as normal beat that will change the annotation marks
used. Therefore, a sophisticated criterion is suitable for the
future algorithm improvement. In case of long term car-
diac monitoring, user intervention would be also
convenient.

The QRS parameters are measured after candidates' confir-
mation. If the conditions presented in (6) are met, the
QRS address is transferred from the qrs buffer to the
ectopic buffer. The template parameters are updated with
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Figure 2

Examples of VB detection. Correctly identified normal QRS
complexes and EBs marked by * and o respectively. Here, as
well as in Fig. 3,4,5,6,7, the used unfiltered lead is colored
blue. The VB symbols are set on the filtered black signal. The
green signal is the unused lead.

0.1% participation of the latest confirmed normal QRS
complex.

In a fifth algorithm branch for EB detection the latest two
RR intervals RR; and RR; ; are analyzed. The latest but one
QRS complex is classified as EB and its address is moved
from qrs into ectopic if RR;> 1.6 s and RR; ; < 0.3(RR; +
RR; ;).

Results and discussion

ECG signals taken from the AHA and MIT-BIH databases
and processed by the program, written in MATLAB envi-
ronment and implementing the described algorithm are
presented in the following figures.

http://www.biomedical-engineering-online.com/content/3/1/3
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Correct VB detection with some exceptions. A QRS com-
plex is early detected as EB because of muscle disturbances
between the 768t and 769t s of AHA 6003d2. Normal QRS
complexes after 22" and 28t s in AHA 2008d| are marked
erroneously as EBs. Difficult EBs with compensatory pause
are detected in AHA 5001dI, except for the low amplitude
EB after the 258ths.

Fig. 2 shows correctly identified normal QRS complexes
and EBs marked by * and o, respectively. The epochs
shown include both leads d1 and d2 of the designated file
and database (AHA 6002 d1 and d2). The used unfiltered
lead is colored in blue. The VB symbols are set on the fil-
tered signal shown in black. The green signal is the unused
lead, which offers an auxiliary point of view in case of
uncertainty, e.g. about the EBs marked before the 13031
and the 1308t s in d1.

A QRS complex early detected as EB because of muscle dis-
turbances may be observed between the 768t and 769t s
of AHA 6003d2 in fig. 3. The EBs marked after 22nd and
28ths in AHA 2008d1 are normal QRS complexes indeed.
Difficult EBs with compensatory pause are detected in
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Figure 4

Examples of VB detection. Some high and sharp P waves

accompanied by muscle disturbances are erroneously

marked as EBs in AHA 1010d1. QRS complexes with very

low amplitudes about 100 1V in an epoch of MIT-BIH 101d2

are correctly detected, with small exceptions. The recording

MIT-BIH 212d2 shows transition between two types of heart

activity.

AHA 5001d1, except for the low amplitude EB after the
258thg,

Some high and sharp P waves accompanied by muscle dis-
turbances are erroneously marked as EBs in AHA 1010d1
(Fig. 4). QRS complexes with amplitudes about 100 uV in
an epoch of MIT-BIH 101d2 are correctly detected, with
small exceptions. The recording MIT-BIH 212d2 shows
transition between two types of heart activity. According
to the algorithm, the latter is an EB sequence.

The next three epochs of MIT-BIH 203 are examples of dif-
ficult for VB detection signals (Fig. 5). However, except for
some contradictory classifications of EBs, only one error
can be seen at the 49th s, where non-existing VB is marked.

Accurate detection with small exceptions may be observed
in epochs of MIT-BIH 208d2 (Fig. 6).

http://www.biomedical-engineering-online.com/content/3/1/3

[green trace-> non used lead; blue trace-> used lead; black trace-> processed blue trace]

51
‘.
£
2F
1
Of ; i 4 , ) , . , ]
0 1 12 13 14 15 16 17 18 19 20
MIT-BIH 20341 [s]
i — : : ; . -
MgV, P v P AL Al et ] M fud
";le | ’: alal '
oF
4 42 43 44 45 46 47 48 49 50
MIT-BIH 203¢1 [s]
6t | RN i o T 11
— 2 R
>
z Flhewy 'l A "
-—2W B bt 6 e e e
gl > TN AL T"’f\"{"m
61 62 63 B4 65 665 6/ 68 69 70
MIT-BIH 2032 [s]
Figure 5

Difficult for detection epochs of ECG recordings. Except for
some contradictory classifications of EBs, only one error can
be seen at the 49th s, where non-existing VB is marked.

[green trace-> non used lead; blue trace-> used lead, black trace-> pracessed blue trace]
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Figure 6

Precise (with small exceptions) VB detection with changed
annotation marks for normal QRS complex and EB, because
of the simple but rapid criterion used for normal QRS tem-
plate selection. The erroneous discrimination of the beats
before the 55 and 57 s is due to the assessment of their dif-
ferent widths.
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Table I: Sensitivity and Specificity
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database annotated beats N true TP false negative FN false positive FP shifted SH
AHA 328471 324739 1411 1376 945
Se =99.28 % Sp = 99.58%
MIT-BIH 213543 210080 1570 648 1245
Se = 98.68 % Sp = 99.69%
AHA&MIT-BIH 542014 534819 298I 2024 2190
Se =99.04 % Sp = 99.62%

A test program for automatic efficiency assessment of the
algorithm was written in C++. It counts true positive TP,
false positive FP, false negative FN and shifted SH beats.
The algorithm marks the peaks of the complexes, while
the annotated database locations most often designate the
rising edges. Therefore, in opening a file we defined win-
dows surrounding the annotated normal QRS complexes
and EBs, if any. TPs are the detected beats within the win-
dow. Missed beats in the window are classified as FN.
Detected beats outside the window are taken as FP. We
introduced the category of SH beat, representing a single
fault, assigned to a couple of adjacent erroneously
detected FP and FN, if they are preceded and followed by
TP beats. As SH beats are in fact non-existing, like the FN
beats, both are summed for the computation of Se. We
used formula (7) as an extension of the original formula

(1).

TP
Se=————.
TP+ FEN+ SH

@

Figure 7
QRS complexes, which cannot be detected without using the
other lead (green trace).

Sp is calculated by eqn. (2). The values of Se and Sp
obtained by applying the algorithm on recordings of AHA
and MIT-BIH databases are given in the Table 1.

The first and the last error of each recording are disre-
garded if they are within 1 s of the beginning or the end.
The analyzed files from the first seven AHA sections
(1xxx-7xxx) are 139. One file, AHA 5003d2, was
excluded. Fig. 7 shows that QRS complexes cannot be
detected even by experienced cardiologists without the
use of the other lead AHA 5003d1. If the annotated beat
number 2373 is added to the amount of FN, i.e. no beat
was detected, Se of AHA database will drop down to
98.56%. Two recordings, MIT-BIH 101d2 (Fig. 4) and
MIT-BIH 200d2, are also excluded from the 96 recordings
of MIT-BIH arrhythmia database because of very low
amplitudes in these single leads.

Many epochs with strong disturbances and practically
zero amplitude because of low electrode contact are
present in the recordings. Two of them are illustrated in
Fig. 8, using the test program. In spite of the low ampli-
tudes, the algorithm errors were accounted as wrong
detections. The vertical red dashes show annotated nor-
mal QRS complexes. The blue small ellipses are for
detected EB. The black rectangles delineate the window
wherein the algorithm has missed VB. Time-marks are
inserted into the signals.

Conclusions

The results of applying the algorithm for one channel ven-
tricular beat detection in real ECG signals taken from
internationally accepted databases show high sensitivity
and specificity. The algorithm can be categorized as a real-
time algorithm since it has minimal beat detection
latency. It is based on heuristic rules aimed to simulate to
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Figure 8

Automatic efficiency assessment of the algorithm. The verti-
cal red dashes show annotated normal QRS complexes. The
blue small ellipses are for detected EB. The black rectangles
delineate the window wherein the algorithm has missed VB.
Time-marks are inserted into the signals.

some extent the experience of the cardiologist, rather than
to rely on mathematical approaches adopted from the
theory of signal analysis. The algorithm is open to
improvement, especially the branches concerning
discrimination between normal QRS complexes and
ectopic beats.
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