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Abstract:

Background: Electrochemotherapy provides highly effective local treatment for a
variety of tumors. In deep-seated tumors of the head and neck, due to complex
anatomy of the region or inability to cover the whole tumor with standard
electrodes, the use of long single needle electrodes is mandatory. In such cases,
a treatment plan provides the information on the optimal configuration of the
electrodes to adequately cover the tumor with electric field, while the accurate
placement of the electrodes in the surgical room in patients can remain a problem.
Therefore, during electrochemotherapy of two head and neck lymph-node
metastases of squamous cell carcinoma origin, a navigation system for placement of
electrodes was used.

Patient and methods: Electrochemotherapy of two lymph-node metastases of
cutaneous squamous cell carcinoma, one in the left parotid gland and the other in the
neck just behind the left mandibular angle, was performed using intravenous
administration of bleomycin and long single needle electrodes. The tumors were treated
according to the prepared treatment plan, and executed with the use of navigation
system.

Results: Coupling of treatment plan with the navigation system aided to an accurate
placement of the electrodes. The navigation system helped the surgeon to identify
the exact location of the tumors, and helped with the positioning of the long needle
electrodes during their insertion, according to treatment plan. Five electrodes were
inserted for each metastasis, one centrally in the tumor and four in the periphery of
the tumor. Five weeks after electrochemotherapy, computed tomography images
demonstrated partial response of the first metastasis and complete response of the
second one. Six weeks after electrochemotherapy, fine-needle aspiration biopsy
specimen obtained from the treated lesions revealed necrosis and inflammatory cells,
without any viable tumor cells.

Conclusion: We describe a new technological approach for electrochemotherapy of
deep-seated head and neck tumors, coupling of the treatment planning with
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navigation system for accurate placement of the single long needle electrodes into
and around the tumors, according to the treatment plan. Evidence of its
effectiveness on two lymph-node metastases of cutaneous squamous cell carcinoma
origin in neck lymph is provided.

Background
Electroporation based technology for biomedical applications is quickly developing [1].

Using different electroporation protocols it can be used for tumor ablation (irreversible

electroporation [2-8], nanopulses [9]), for gene transfer to cells i.e. gene electrotransfer

[10], and delivery of drugs i.e. electrochemotherapy [11,12]. Electrochemotherapy uses

electroporation for increased drug delivery to tumors and its effectiveness has been

demonstrated in a large variety of tumors [13], predominantly for the treatment of

cutaneous tumors using electrodes with fixed geometry [12,14]. For the treatment of

deep seated tumors, single long needle electrodes were developed, that can also be

placed in an irregular pattern in order to cover irregularly shaped tumors larger than

2 cm in diameter [15]. With appropriate imaging support, this approach also enables

appropriate placement of the electrodes with respect to sensitive structures such as

major vessels and nerve bundles. The applicability of this approach has already been

demonstrated and verified in the treatment of liver metastases, where antitumor effec-

tiveness of electrochemotherapy was confirmed also in tumors located in close proxi-

mity or in-between the major vessels [16,17].

A treatment planning method has been developed for the treatment of deep seated

tumors [18,19]. It has been evolving through the experience in treatment of liver

metastases [16,17], and now also a web based application is under development

(www.visifield.com). The aim of this method is to prepare treatment plans consisting

of instructions for positioning of electrodes and the voltages to be applied to each

electrode pair, which should ensure a successful treatment. Briefly, the treatment

plan is prepared using Computed Tomography (CT) or Magnetic Resonance Imaging

(MRI) based tumor images, which are used for segmentation of the tumor and

important normal structures in its surrounding. The electric field distribution is com-

puted taking into account different tissue conductivities [20] and changes in conduc-

tivity due to electroporation [21]. Adequate coverage of the tumor (i.e. target) is

assured with optimized electrode position and voltages. However, deviations in

implementation of the treatment plan can occur during the treatment in the clinic,

because the exact position of the tumor inside the body and in its relation to the

neighboring structures i) is different compared to the tumor position during treat-

ment plan creation; or ii) cannot be determined with sufficient precision. In both

instances, spatial relationship of the electrodes to the treated tumor does not corre-

spond to the treatment plan and electric field coverage of the tumor is suboptimal.

Consequently, the treatment effectiveness could be seriously hampered and toxicity

increased [22]. Treatment effectiveness could be improved with the aid of the exist-

ing techniques that enable exact positioning of the tumor and electrodes in the tissue

during the clinical intervention.

In image-guided surgery, navigation system is used as assistance to display real-time

data on tumor position in relation to the preoperative CT or MR scans of a patient.
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It has been successfully implemented in otorhinolaryngologic surgery as a tool to

access difficult anatomic areas and for stereotactic biopsy procedures.

With respect to effectiveness of electrochemotherapy in cutaneous tumors, clinical

results gained in the group of tumors of the head and neck region is less promising

[13,23,24]. Possible explanations for the worse outcome are: deep seated parts of these

tumors exist, hidden under the visible skin or mucosal surface and of considerable

volume, head and neck tumors typically have irregular shape, and finally, the size of

these tumors can be up to 10 cm in diameter. For such tumors, electrodes with fixed

geometry are not suitable, because they cannot be inserted deep enough, to reach the

deep margins of these tumors. Thus, the use of single long needle electrodes is indi-

cated in such cases [15]. When using long needle electrodes, treatment planning with

visualization of electric field distribution and coverage of the tumor can offer a signifi-

cant advantage over blind insertion of the needles. Furthermore, coupling of the treat-

ment plan with navigation system improves precision of electrode placement during

the procedure and provides a technological advancement in the treatment of deep

seated tumors in the head and neck region.

The aim of our study was to couple treatment planning with a navigation system as a

new technological approach in treatment of head and neck tumors by electroche-

motherapy. The feasibility and effectiveness of this concept was demonstrated in the

case of a patient with two lymphatic metastases in the region of the head and neck.

Patient and methods
Patient characteristics

An 88-year-old male patient with a history of several surgical procedures for squamous

and basal cell skin cancers was treated at the Department of Otorhinolaryngology and

Cervicofacial Surgery, University Medical Centre Ljubljana, Ljubljana, Slovenia. The

patient had previously been irradiated due inoperable lymphatic metastasis of squa-

mous cell carcinoma origin, located in the left parotid region. Tumor was 42 mm in

diameter, deeply infiltrated into the left carotid space and jugular vein. Complete

response of the tumor was achieved after a cumulative dose of 70 Gy delivered by

6 MV linear accelerator photon beam in 2 Gy daily fractions.

Eleven months after radiotherapy a new lesion was clinically detected behind the left

mandibular angle. In addition, diagnostic workup also revealed disease recurrence in

the deep lobe of the left parotid gland. On CT scans, diameters of the two lesions

were 20.3 mm (left parotid gland, metastasis No. 1) and a 20.6 mm (centrally necrotic

lymph node behind the left mandibular angle, metastasis No. 2). Fine needle aspiration

biopsy confirmed metastases of squamous cell carcinoma. The patient was offered elec-

trochemotherapy as the only potentially curative treatment option, and after detailed

information about its advantages and drawbacks he signed informed consent for treat-

ment and publication of the data. The study was approved by the National Ethics

Committee 182/02/14.

Treatment plan

A treatment plan was prepared for both metastases. The bone and both tumor

lesions were segmented using the online Visifield tool (www.visifield.com). The blood

vessels were segmented using the 3-D adaptive contour implemented in ITK-SNAP
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(www.itksnap.org) [25]. Five electrodes were chosen as an optimal solution for this

clinical situation: one central electrode was placed in the metastasis and four addi-

tional electrodes around each of the tumors in surrounding healthy tissue. Care was

taken to ensure that the belt of normal tissue up to 5 mm wide around the node (i.e. a

safety margin) was also covered with an electric field and that the electrodes did not

penetrate the blood vessels or into the bone. The treatment plan was optimized using

procedures described previously [26-29]. The primary aim was to ensure coverage of

the whole tumor and safety margin with electric fields above the reversible electro-

poration threshold [29], while also ensuring adequate robustness. Robustness here

indicates that the coverage of the tumor with sufficient fields would not be lowered,

given small uncertainties in the tissue parameters and errors in electrode positioning

[22]. The robustness of the treatment in our case was established by creation of the

safety margins as shown on Figures 1 and 2, and by appropriate coverage of the whole

tumor volume with electric fields shown on Figure 3. The coverage of the target tumor

is slightly above the minimum required, but this is to a certain degree desirable, since

electroporation threshold has the largest effect on robustness of the treatment [22].

The electric field distribution in tumor was visualized in the Visifield tool to verify the

coverage of the target volume. The treatment plan and electric field distribution are

shown in Figures 1 and 2 for metastasis No. 1 and No. 2, respectively.

The tips and entry points of the 5 individual needles were marked on original CT

images, by setting the corresponding pixel intensity values to 3000. The same DICOM

images were then imported into the navigation system, and the marked points were

located on the images and used to position the guiding vector of the navigation system.

Figure 1 Treatment plan for parotid metastasis (No.1). The upper row (A-C) shows the 3-D model with
the bone (white), tumor (yellow), blood vessels (red), and electrodes (black) shown for clarity. Lower row
(D-F) shows the electric field strength according to the treatment plan. Blue color indicates tumor covered
above 400 V/cm, while violet indicates normal tissue above 350 V/cm. Care was taken to ensure electrodes
would avoid the major blood vessels and the bone.
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The same images were used for the treatment planning; the interval between image acqui-

sition and treatment was 27 days. In order to keep the minimal error, it is recommended

to keep the time interval as short as possible, since in the meantime the tumor may grow

and change its shape as well as the shape and position of the neighboring structures.

Navigation system

Optical navigation system Colibri (Brainlab AG, Feldkirchen, Germany) with ENT

V2.1.1 software package was used. The system itself is capable of navigation within less

Figure 2 Treatment plan for metastasis in the neck (No.2) behind the left mandibular angle. The
upper row (A-C) shows the 3-D model with the bone (white), tumor (yellow), blood vessels (red), and
electrodes (black). Lower row (D-F) shows the electric field strength according to the treatment plan. Blue
color indicates tumor covered above 400 V/cm, while violet indicates normal tissue above 350 V/cm. Care
was taken to avoid penetration of the electrodes into the blood vessels.

Figure 3 Cumulative coverage of both metastases with electric fields after each electrode pair. The
graphs show the volume fraction of tumor tissue that is covered with electric field of at least the strength
indicated on the horizontal axis. For visual reference, reversible and irreversible electroporation thresholds
for 8 pulses of 100 µs are indicated.
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than 1 mm accuracy; built-in tolerance in registration with system reported good pre-

cision is 1 mm. After the registration confirming known anatomical points on patient

and in navigation, a test of precision is made by the surgeon and is demanded by sys-

tem software. In case of discrepancy of more than 1 mm re-registration is done until

expected accuracy is confirmed.

The registration was carried out using standard multipoint technique of predefined

points around target surface. Five points adjacent to tumor site were used and good

accuracy with error margin towards the slice thickness of CT scan was achieved. The

registration star was fixed on patient’s head using standard headband (Headband

Brainlab AG, Feldkirchen, Germany). Plane of registration star was positioned at an

angle to achieve optimum link with infra-red (IR) camera. Plan of work was similar to

stereotaxy achieving optimum trajectory from entry point (skin) to target point (tumor

or predetermined position or electrodes). Hence the electrodes were positioned accord-

ing to plan using the virtual line, extending from the tip of the guiding instrument

towards the tissue (Figure 4).

Based on the treatment plan, five stainless steel needle electrodes were positioned

with navigation system guidance. Electrodes were positioned in a star pattern with

1 cm center-to-center distances between the central electrode positioned in the tumor

and the outside electrodes and 1.4 cm center-to-center distance between the outside

electrodes; 1000 V was applied between center electrode and the outside electrodes,

while 1200 V was applied between each pair of outer electrodes. This was enough to

ensure at least 500 V/cm of electric field strength in the whole tumor tissue which is

well above reversible threshold for tumor tissue and increases robustness of the

treatment.

Figure 4 Treatment 3-D planning for registration and navigation (A). Navigation was used to
accurately access the planned skin entry points and direction of electrodes (B). Positioning of navigation
system needle and first needle electrode (C) and the final positioning of all five needle electrodes (D).
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Treatment procedure

The patient was treated under general anesthesia. Five long needle electrodes with

3 cm active tip were used in both metastases [12,15,30]. Firstly, electrodes were posi-

tioned in the metastasis No.1 with the help of navigation system and in accordance

with patient specific treatment plan. Then, 27.000 IU bleomycin (15.000 IU/m2,

Heinrich Mack Nachf. GmbH & CO. KG, Illertissen, Germany) was intravenously

administered in bolus and after 8 minutes the metastasis No.1 was treated. Eight elec-

tric pulses, each in duration of 100 µs, were delivered to each pair of electrodes conse-

cutively by electric pulse generator Cliniporator Vitae® (IGEA, Carpi, Italy) (Figure 5).

Immediately after the treatment of the first metastasis, the electrodes were repositioned

into metastasis No. 2, which was then treated with the same treatment parameters

(total of 6 minutes between the two treatments, i.e. 14 minutes after bleomycin injec-

tion). The delivery of electric pulses was synchronized with the absolute refractory per-

iod of the heart to additionally ensure the safety of the patient and avoid delivery of

pulses during vulnerable period of ventricles [31].

Results and discussion
Treatment and clinical outcome

Two squamous cells carcinoma lymph-node metastases were treated by electroche-

motherapy. The patient presented with the first metastasis of 20.3 mm in diameter

sited in the left parotid gland close to the facial nerve (No 1). The second metastasis

was located behind the left mandibular angle, in close proximity to the left internal

jugular vein, and was 20.6 mm in diameter (No 2) (Figure 4, 6). Electrochemotherapy

was performed in general anesthesia, after intravenous injection of bleomycin using

single long needle electrodes that can be inserted individually, with 3 cm active tip.

Figure 5 Progression of metastasis coverage with electric fields in excess of 400 V/cm for the
metastasis No. 1. Each figure (A-H) shows the active electrodes, marked in Arabic numerals, of the 8
electrode pairs used with the coverage following the actual pulse delivery. The figure shows overlapping
coverage in most parts of the metastasis, which ensures additional robustness of the treatment. Metastasis
is marked light green, and the area exposed to an electric field higher than 400 V/cm appears red. While
overlapping coverage with more pulses would eventually lead to irreversible electroporation at the electric
fields delivered in this case, it should be noted that only 64 pulses were delivered in total, while typically
90 pulses per electrode pair are used in irreversible electroporation.

Groselj et al. BioMedical Engineering OnLine 2015, 14(Suppl 3):S2
http://www.biomedical-engineering-online.com/content/14/S3/S2

Page 7 of 14



The procedure of electrode insertion and execution of electrochemotherapy was suc-

cessful and without intra- or postoperative complications (e.g. bleeding, edema). The

total treatment time took 60 minutes and was completed 14 minutes after bleomycin

injection. Thus, both metastases were treated within the generally accepted time frame

of 8-28 min after bleomycin injection, as this is considered to be the time when the

concentration of bleomycin in the tumor is the highest [32]. The delivery of electric

pulses was successful, and no disturbances of the heart rhythm were detected. The

patient developed mild facial weakness, which resolved in five hours after procedure.

The patient reported only mild pain that lasted 1 week after the treatment and was well

controlled by paracetamol. The CT taken 5 weeks after electrochemotherapy demon-

strated good antitumor effect (Figure 7). According to RECIST criteria (version 1.1),

complete response of the metastasis behind the left mandibular angle (Metastasis No.2)

was recorded, and partial response of the metastasis in the left parotid gland (Metastasis

No. 1; Figure 6). Six weeks after electrochemotherapy, fine-needle aspiration biopsy of

Figure 6 Patient before (A) and 5 weeks after electrochemotherapy (B). Metastases No.1 (1) and No.2
(2) are marked.

Figure 7 CT images before (A, B) and after (C, D) electrochemotherapy. PR of the metastasis No. 1 in
the left parotid gland (A, C). CR of the metastasis No. 2 behind the left mandibular angle (B, D). Locations
of the metastases are marked with arrows.
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the treated area revealed necrosis and inflammatory cells, without any viable tumor cells

in the specimens from both of the treated lesions. In addition, good cosmetic effect was

obtained.

Advantages of the single long needle electrodes

So far, the technology of electrochemotherapy has evolved predominantly for the treat-

ment of cutaneous and superficial tumors, not extending deeper than few cm below

the skin. Electrodes with fixed geometry that can reach up to 3 cm in depth are used

for this purpose. However, these are often not long enough to reach the base of deep-

seated lesions in the head and neck region, compromising treatment results [13]. In

addition to that, due to the irregularity in shape of head and neck tumors, the coverage

of the whole tumor with such electrodes is often hampered or even not possible. In the

future, the development of new types of electrodes may be anticipated, specifically for

the tumors in head and neck region. For example, the first prototype has already been

designed for the treatment of brain tumors. The electrodes are inserted through the

skull, and afterwards extended in umbrella like fashion to encompass the tumors [33].

However, complex anatomy with proximity of several vital structures (e.g. blood ves-

sels, cranial nerves), limited space, bony structures, and usually rather large tumors of

irregular shape represent a considerable challenge which could be overcome by using

single long needle electrodes. Long needle electrodes were developed for electroche-

motherapy of the deep seated tumors. So far, they were used in the treatment of sarco-

mas and of liver metastases [28,34]. Our group has gained experience in the use of

such electrodes for the treatment of liver metastases of the colorectal adenocarcinoma

[16]. The recently published study provided evidence that the electrodes with 3 or

4 cm of active, un-insulated part can be placed into the tissue, exposing the tumor to

the active part and shielding the normal tissue. Furthermore, their use was safe also in

the treatment of tumors adjacent to big tumor blood vessels [17]. Comparison between

the effectiveness of electrochemotherapy when using electrodes with fixed geometry

and the single long needle electrodes demonstrated that the latter provided comparable

antitumor effectiveness to those with the fixed geometry [35].

Importance of the treatment plan for effective electrochemotherapy

For good antitumor effectiveness of electrochemotherapy, two conditions have to be met:

sufficient amount of drug molecules present in the tumor, and adequate tumor coverage

by the electric field [11,36]. The second prerequisite ensures that membrane permeability

in the whole tumor area is sufficiently increased. Electrodes with fixed geometry have pre-

set electrical parameters in electric pulse generator to meet the condition of covering the

whole tissue volume which is encompassed between the electrodes. When using the long

needle electrodes, the electrical parameters have to be adjusted to approximately 1000 V

per cm voltage-to-distance ratio according to the specification of the manufacturer. How-

ever, with larger and more irregular shaped tumors, it is often difficult to adequately place

the electrodes and determine the sequence of the delivery of electric pulses. Principally,

one or two electrodes are placed into the center of the tumor, while the remaining 4 or 5

are placed around it into the normal tissue. The electrodes need to be placed parallel, to

ensure that the distance between each electrode remains constant along the length of the

active region. With treatment planning of electrode positioning and electric field
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simulation together with well controlled navigation, this restriction could be relaxed

somewhat, e.g. to enable access in difficult-to reach location. The pulse sequence is

between the central and peripheral electrodes and in-between the peripheral ones

(Figure 4). The treatment plan is needed in order to define the position of electrodes

and the amplitude between each pair of electrodes, which would guarantee that the

whole tumor including a safety margin will be covered with sufficiently high electric

field that would enable permeabilization of the cell membranes (Figure 4). Of course,

calculation of the anticipated currents has to take in account also the limitations of the

clinical device (i.e. max current delivered). The advantage of treatment plan is also in

predicting the effectiveness of electrochemotherapy in the clinical situations when

tumors are close or in-between the blood vessels or adjacent to the bones. In our

patient, treatment plan was prepared with the configuration of 5 electrodes per tumor.

In each of the two metastases, one electrode was positioned in the center of the tumor

and four around the tumor in the normal tissue ensuring sufficient coverage of the

tumor and surrounding tissue (i.e. safety margin) with electric field. The currents dur-

ing the delivery of pulses are monitored and recorded by the pulse generator. The

measured currents correspond well with the computed currents (Table 1). The errors

(defined as (Icomp - Imeas)/Imeas, were between -19 and +58 %. The Root Mean Square

Errors (RMSE) were 2.1 A and 3.7 A for the first and second metastasis, respectively.

Some of the discrepancies between the model and measured values could be stemming

from the fact that the patient had received high radiation doses to the region, thus

changing the tissue dielectric properties. Also, only four homogeneous tissue types

were included in the simulation, while the reality is inevitably more complex. The

larger RMSE for the second metastasis probably stems from the fact, that the blood

vessels in the simulation were fixed, but their actual location during the treatment

could have been shifted by the handling of the metastasis during treatment.

Based on the treatment plan, the electrodes were effectively placed and the treated

area adequately electroporated, which was demonstrated by complete response of the

metastasis behind the left mandibular angle (Metastasis No. 2) and partial response of

the metastasis in the left parotid gland (Metastasis No. 1; maximal diameter before and

after electrochemotherapy: 20.3 mm and 14.3 mm). Based on the radiological examina-

tion 5 weeks after electrochemotherapy the difference in the response of the two

metastases to electrochemotherapy could most likely be ascribed to inadequate drug

distribution. Namely, the area of the Metastasis No. 1 has been previously irradiated

Table 1. Comparison of measured currents and currents computed using numerical
simulations

Metastasis 1 Metastasis 2

Electrode
pairs

Voltage
[V]

Measured
[A]

Computed
[A]

Error
[%]

Voltage
[V]

Measured
[A]

Computed
[A]

Error
[%]

1 - 2 1200 21.5 22.6 5% 1200 22.2 18.4 -17%

1 - 4 1200 20.7 20.4 -1% 1200 17.6 15.5 -12%

2 - 3 1200 17.6 19.5 11% 1200 20.2 17.5 -13%

3 - 4 1200 20.9 21.2 1% 1200 17.6 22.2 26%

2 - 5 1000 17.8 21.1 19% 1000 17.8 17.1 -4%

1 - 5 1000 23.5 22 -6% 1000 17.2 20 16%

3 - 5 1000 17.8 20.2 13% 1000 16.1 15.6 -3%

4 - 5 1000 16.2 19.5 20% 1000 12.6 19.9 58%
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with 70 Gy, which most likely compromised vasculature in this region. It has been

suggested that this problem could be overcome by combining intravenous and intratu-

moral bleomycin administration [24].

Aid of the navigation system

Navigation system aids the surgeon in locating the tumor based on the pre-treatment

CT or MRI images and is frequently used in surgical interventions in the head and

neck region. The use of navigation system enables superior orientation in 3-D space.

Data is acquired by the navigational computer consisting of main unit with interface

and processor, sensors on navigational antenna with twin infrared cameras and multi-

ple emitters (IR camera), navigation star fixed on patient and navigated pointer free in

3-D environment of patient’s skin [37-40].

Based on our first experience, the use of navigation system substantially improves the

accuracy of electrode placement. Pre-treatment CT or MRI images are imported into

the system and with the aid of the fixed markers, a precise position of the tumor in

the patient can be verified with these images. In addition, the system significantly con-

tributes to the accurate positioning of the electrodes in the patient. This is of crucial

importance, since the entry and the angle of the electrode insertion can be controlled

also in deep-seated tumors. The drawback of the system used in our case is that the

depth of the electrode penetration cannot be controlled; however, this obstacle can

be compensated by the measurement of the length of the electrode penetration into

the tissue which should be adjusted according to the treatment plan.

In the presented case, treatment planning was coupled with navigation system. All elec-

trodes were positioned according to the treatment plan, and electrochemotherapy exe-

cuted as planned. As can be seen from Figure 3, the electrodes were positioned to within

1-2 pixels of the marked entry trajectory, corresponding to an error of up to 1.14 mm (the

pixel size was 0.57 mm). The depth of the electrode insertion was measured by the ruler

(the depth of electrode insertion could not be controlled by the navigation system as the

geometry of the needle electrodes and appropriate navigation markers for electroche-

motherapy have not yet been implemented into the guidance system). The insertion of the

electrodes required some extra time, compared to the routine electrochemotherapy using

fixed geometry electrodes. However, one must bear in mind that this technological

approach is amenable for specific clinical situations with very limited treatment options

that demand more attention than usual cases. In addition, it is expected to improve the

efficacy of electrochemotherapy in head and neck region. Namely, currently available data

indicate considerably lower efficacy of electrochemotherapy in non-melanoma head and

neck cancers, compared to the basal cell carcinoma in the same region (CR rate: 25% vs.

78%) [24,41]. Electrochemotherapy is also very effective in some other tumor types, such

as melanoma, with complete response rate of 73.7% after single treatment [42,43]. The

reason for this difference is probably the lack of adequate technological solutions, i.e. the

appropriate electrodes and of the approach, assuring satisfactory coverage of tumor area

with electric field. The approach described here may provide improvement of results in

such cases, and increase the efficacy of electrochemotherapy with single needles compared

to treatment with standard electrodes of fixed geometry. Furthermore, with this technolo-

gical solution, also deep-seated tumors of the head and neck can be placed on the list of

indications for electrochemotherapy.
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Conclusion
Our study is the first showing that coupling treatment planning with the navigation sys-

tem for precise placement of long single needle electrodes is a feasible and effective way to

approach deep-seated tumors in the complex anatomical region of the head and neck.

This technological approach may lead to improved therapeutic effectiveness of electroche-

motherapy in larger tumors of head and neck region, which are often located deep under

the skin, are irregular in shape, and/or close to sensitive structures. Although primarily

developed for neurosurgical application, intraoperative navigation has gained acceptance

in head and neck surgery, especially in the functional endoscopic sinus surgery. Therefore,

the aid of navigation system represents a technological advancement for electroche-

motherapy of deep seated tumors, since navigation system can provide identification of

tumor position and accurate placement of the electrodes.
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