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Abstract

Nuclear Magnetic Resonance (NMR) spectroscopy is a popular medical diagnostic
technique. NMR is also the favourite tool of chemists/biochemists to elucidate the
molecular structure of small or big molecules; it is also a widely used tool in material
science, in food science etc. In the case of medical diagnosis it allows for
determining a metabolic composition of analysed tissue which may support the
identification of tumour cells. Precession signal, that is a crucial part of MR
phenomenon, contains distortions that must be filtered out before signal analysis.
One of such distortions is phase error.
Five popular algorithms: Automics, Shanon’s entropy minimization, Ernst’s method,
Dispa and eDispa are presented and discussed. A novel adaptive tuning algorithm
for Automics method was developed and numerically optimal solutions to automatic
tuning of the other four algorithms were proposed. To validate the performance of
the proposed techniques, two experiments were performed - the first one was done
with the use of in silico generated data. For all presented methods, the fine tuning
strategies significantly increased the correction accuracy. The highest improvement
was observed for Automics algorithm, independently of noise level, with relative
phase error dropping by average from 10.25% to 2.40% for low noise level and from
12.45% to 2.66% for high noise level. The second validation experiment, done with
the use of phantom data, confirmed the in silico results. The obtained accuracy of
the estimation of metabolite concentration was at 99.5%.

Conclusions: The proposed strategies for optimizing the phase correction algorithms
significantly improve the accuracy of Nuclear Magnetic Resonance spectroscopy
signal analysis.

Introduction
Magnetic resonance spectroscopy (abr. MRS) is a technique widely used in, among the

others, modern oncology to determine metabolic profile of the tissues. It is especially

useful to differentiate between healthy tissues and tumours. However the differences in

metabolic profiles are in many cases slight, thus signal must be carefully pre-processed

in order to accurately estimate amount of metabolites in examined tissues. One of the

distortions that affects MR spectrum mostly is phase error. The first simplest
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mathematical model of phase error was proposed by Ernst [1] where the assumption

on linearity of phase error along the spectrum, described by two factors frequency

dependent and frequency independent one, was made. Such a model posits the phase

error to be mainly a consequence of eddy current induction in the scanner. The exten-

sion of linear model is bilinear one, incorporating multiplicatory factor that stands for

phase error fraction caused by magnetic field inhomogeneity [2,3]. In contrast to the

linear models, higher order models were proposed assuming the nonlinearity of the

phase error with respect to the frequency.

While considering MRS in clinical diagnosis, the influence of field inhomogeneity

may be neglected due to small spectrum complexity (low dimensionality) and signifi-

cantly lower field strength (than in chemical measurements), leaving the phase error

related to the induction of eddy currents in coils only [4].

The linear model of phase error consists of two parts: zero and first order and it is

given by:

�ϕ = ϕ0 +
k
N

ϕ1

Zero order component �0 is representing the offset between absorption and disper-

sion spectrum while first order component �1 is representing the frequency dependant

shift where dependency is modelled by straight line with slope coefficient k/N, where

k denotes index of the point in spectrum and N is total number of points.

There are two possible approaches of phasing MR spectra. The first one is man-

ual and requires expert knowledge about zero and first order component. Such a

procedure is time consuming and requires an experienced human operator. The

drawback of the manual method is the fact that it is hard to estimate the correc-

tion effect for the whole spectrum [5]. It is then done for small parts of spectrum

and leads to overcorrection of analysed fragments and no correction of other

fragments.

The second possible approach that is free of the mentioned drawback is the auto-

matic correction. For such an approach the correction is done accordingly to the linear

model, but the quality of spectrum is evaluated and maximized automatically, mostly

with the use of optimization techniques. The automatic phase correction algorithms

are still less popular than manual approach, which is partially caused by unsatisfactory

accuracy of the existing techniques.

The most popular techniques of automatic phasing of MR spectra are: Automics [6],

Shanons Entropy minimization [7], Ernst’s method [1], Dispa [8] and eDispa [9]. The aim

of this paper is to design, implement and verify the automatic tuning strategies for the

above mentioned methods that will result in efficiency increase of phase error correction

for 1H (Hydrogen isotope Protium) NMR spectra.

Methods
While looking at the algorithms designed for phase error correction in MR spectra,

one can notice two groups of them: model based and model free techniques. In the

family of methods that derive direct value of phase error (without a priori assumed

error model) the most popular are: [5] which is based on filter diagonalisation method

and [10] which performs the phase correction with the use of separately measured
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water signal. The newest approach of direct phase error correction seems to be the

method by [11] requiring the registration of series of spectra.

The five chosen linear model based methods: Automics, Shanon’s, Ernst’s, Dispa and

eDispa, as being the most popular in clinical approaches, were implemented following

the description included in the original publications. The mechanism of finding opti-

mal solution was examined for each technique and tuning of algorithms, by means of

tuning of parameters or application of efficient numerical solution, was performed.

Automics

The first analysed algorithm, proposed by [6], is based on estimating linear model

parameters �0 and �1 dependent on a phase evaluated at the tails of spectrum. The

original method assumes definition of two intervals at each tail. For each pair of inter-

vals a mean phase is calculated. Than having two values of phase: at the beginning and

end of the spectrum, phase error is estimated. It is assumed that phase error in these

intervals does not differ significantly. The length of the intervals may be understood as

a parameter for the algorithm that may be optimized to find the best solution [6].

The developed procedure for interval length estimation starts with the initial interval

as a single point and then extends stepwise the interval by other points as long as

there is no significant trend in the data within the interval. To verify no trend hypoth-

esis a linear regression model is constructed within each interval and statistical test on

signal gradient being equal to zero is applied. For the purpose of this study significance

level was set to 5% (a = 0.05). The procedure is repeated for each of two intervals - at

the beginning and at the end of the spectrum. If a significant change of signal magni-

tude (and consequently phase error) is found in one of the intervals the procedure is

terminated and the found length is treated as the optimal one. The parameters of

phase error model are calculated by solving the set of two equations (for each tail) in

the form given by equation below.

�ϕj = atan
(
Rj,2 − Rj,1

Ij,2 − Ij,1

)
= ϕ0+

⎛
⎜⎝

kj,1 + kj,2
2
N

⎞
⎟⎠ϕ1

Where index j stands for the location of the interval: j = 1 for the interval located at

the beginning of the spectrum; while j = 2 for the interval located at the end of the

spectrum. Rj,2 and Ij,2 are the real and imaginary part of an element at the end of the

interval; and Rj,1 and Ij,1 are the real and imaginary part of an element at the beginning

of the interval, kj,1 and kj,2 are the indices of the beginning and the end of the jth inter-

val, and N is a length of the spectrum.

Methods based on reformulation to the optimization problem

Three of the above mentioned algorithms might be tuned by application of a properly

chosen numerical method for solving their optimization problem.

Shanon’s entropy minimization

The Shanon’s entropy minimization method is based on the assumption that ideal

absorption spectrum should be positive. Such a spectrum has smaller Shanon’s entropy

than spectrum that contains points that are both: positive and negative [7]. The pro-

blem for this method is to find set of parameters �0, �1 for which the spectrum phased
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with linear model has the smallest error of correction. The minimization problem is

given by equation.

minϕ0,ϕ1H = minϕ0,ϕ1

(
−

∑N

k=1
SA(k,ϕ0,ϕ1) · ln(SA(k,ϕ0,ϕ1)) + P

)

where H is the Shannon entropy of given spectrum, SA(k,...) is a magnitude of the

absorption spectrum at kth data point and P is a penalty factor.

Ernst

Ernst method is based on the axiom that the integral of single line (peak) dispersion

spectrum should be equal to zero. Since the spectrum is a composition of peaks it is

clear that for no phase error the dispersion integral of whole spectrum should be

zero [1]. Because of the noise it is rarely to be true. In the Ernst method the optimiza-

tion problem is to find parameters of linear model for which the dispersion integral

will be minimal.

minϕ0,ϕ1I = minϕ0,ϕ1

b∫
a

SD(x,ϕ0,ϕ1)dx

where I is an integral value, SD is a magnitude of the dispersion spectrum; a and b

are the integration limits equivalent to the minimum and maximum values on the fre-

quency [Hz] or [ppm] scale of the spectrum.

eDispa

In eDispa method authors use linear model as well and perform the two-step quality

calculation [9]. The first step is based on calculation of defined h -functional of the

form given below.

maxϕ0,ϕ1η (ϕ0,ϕ1) = maxϕ0,ϕ12π

(
Q (ϕ0,ϕ1) −minQ (ϕ0,ϕ1)

maxQ (ϕ0,ϕ1) −minQ (ϕ0,ϕ1)

)4

Q is a functional defined as:

Q (ϕ0,ϕ1) =
∑N

k=1
(SA(k,ϕ0,ϕ1))

2 exp
(−2 · (2k−N)

N

)

where SA denotes the magnitude of the absorption spectrum, k is the index of data

point, N is a length of the spectrum.

Solutions to the optimization problems

The solution to three above mentioned algorithms could be found with the use of clas-

sical optimization algorithms. In case of Shanon’s entropy minimization and eDispa

problem the Nelder-Mead algorithm can be applied [12]. As for Ernst’s method the

problem is more complex, and it may be solved with the use of integral global optimi-

zation [13].

One of the crucial steps during the Nelder-Mead optimization, due to the strong

nonlinearity of the optimized functions, is setting of parameter initial values. To

improve accuracy of tuned algorithms and to make whole optimization process faster

the procedure for setting of initial conditions has been proposed. It is based on obser-

vation that water peak is located in the middle of spectrum and it is with no doubt the
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peak of maximal amplitude both in absorption and magnitude spectrum. As described

in previous paragraph, a phase angle between absorption and dispersion part measured

at peak maximum should be equal 0. If it is not, the measured value is a rough esti-

mate of phase error at the half of spectrum:

�ϕ0 = ϕ(Skmax )

where Δ�0 is an initial estimate of the phase error, and S stands for the MR spec-

trum, index kmax denotes the spectrum data point with maximum of magnitude

spectrum.

Knowing the value of Δ�0 it is easy to estimate �0 and �1 just using the equation for

linear phase error model and additional assumption that ratio of phase error compo-

nents is equal ¼. This value is empirical and it was chosen after set of experiments

done on clinical spectra. Example of effectiveness of the proposed initial condition is

shown in Figure 1.

The proposed initial condition may be used even when water signal is partially sup-

pressed during measurement procedure. When water signal is not present in the data

(full water suppression) the maximum of signal may be used, however it is definitely

not as good as water peak.

Dispa

Dispa method is based on the assumption that phase at the maximum of the peak

should, in an ideal case, be equal 0 [8]. Assuming the linear model of Δ� it is then

easy to estimate �0 and �1 with use of just two neighbouring peaks. It was noticed that

such approach might lead to wrong estimates because of noise presence and its influ-

ence on maximal point of peak. An idea for Dispa method is to evaluate phase value at

max points of all significant peaks and then estimate Δ� model with use of linear

regression model.

Quality criterion

In order to properly estimate value of phase error that remains in the data after phase

correction, a quality criterion was proposed. The assumed criterion uses the phase plot

(relation between dispersion and absorption spectrum), obtained for last significant

peak in the analysed spectrum. Because of signal sampling a peak and consequently

phase plot is not a continuous line but a set of points. Because the criterion uses

major radius of phase plot, an estimates of ellipse parameters are obtained from the

data points. Having ellipse equation it is then easy to derive the equation for its major

and minor radius. The assumption is that in case of no phase error, major radius of an

Figure 1 a) Spectrum before phase correction, b) spectrum after correction with random initial
condition, c) spectrum corrected with proposed initial condition.
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ellipse phase plot should lay exactly on the real axis. The remaining phase error is the

angle between real axis of the phase plane and major radius of an ellipse phase plot.

The idea of the assumed quality criterion is shown in Figure 2.

Data

To verify the quality of spectra phasing two data sets were collected. The first one con-

sists of numerically simulated spectra (named as synthetic data), while the second data

set consists of 27 measurements obtained for a brain phantom that contained: 5 mM

of Lactates at 0.5 ppm, 12.5 mM of N-acetylaspartate (abr. NAA) at 2.0 ppm, 10 mM

of Creatine at 3.0 ppm, 3 mM of Choline at 3.2 ppm and 7.5 mM of myo-Inositol

located at 4.6 ppm. The data were measured with the use of Philips Achieva scanner

of 1.5 T magnetic field induction. The echo and repetition time were equal to 35 and

1500 ms. Every spectrum was averaged over 128 replicates. The number of points was

equal to 1024 and the sequence type was PRESS.

To obtain the synthetic data set being similar in structure to the brain data, ran-

domly chosen single spectrum was taken from phantom data and it was manually

phased by human expert. Then the absorption spectrum was extracted and pre-

Figure 2 Visualization of idea behind assumed quality criterion [15].
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processed to filter out noise and baseline. The smoothed signal was used as the refer-

ence for synthetic signal generator.

Single synthetic spectrum was generated with the use of the following procedure:

1) To ensure signal complexity similar to the clinical spectra, additional peaks

together with additive noise were randomly added to the reference signal in fre-

quency domain.

2) The dispersion spectrum was reconstructed with the use Hilbert transformation.

3) Signal was disturbed with additive phase error of parameters: �0 = {2.5, 5.0, 7.5,

10.0, 12.5} degrees and �1 = {2.5, 5.0, 7.5, 10.0, 12.5} degrees.

4) Additionally, signal was disturbed by additive noise with SNR equal to: 30.75 dB

(named low noise) and 8.52 dB (named high noise).

Since the noise component was purely random each combination of �0 and �1 was

repeated 50 times. In total 1250 simulations were performed. Exemplary simulated

spectrum is presented in Figure 3.

Evaluation

To evaluate the efficiency of the proposed strategies for algorithm tuning, every spec-

trum was corrected twice, by original and tuned algorithm. The residual post correc-

tion error was calculated following the procedure described in Quality criterion

section. The error residuum expressed as a percentage of the applied phase distortion

value was named a relative error.

The block diagram describing performed comparison study is shown in Figure 4.

Results
Experiment I - synthetic data

The experiment was performed for 9 values of Δ� = {5.0, 7.5, 10.0, 12.5, 15.0, 17.5,

20.0, 22.5 and 25.0} degrees (obtained for different combination of �0 and �1 in a

range: 2.5, 5, 7.5, 10 and 12.5 degrees each). Each combination of Δ� was distorted

Figure 3 Exemplary spectrum obtained with the addition of the phase error equal to 10 degrees
and low level noise. [15]
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with an additive noise of 30.75 dB (low) or 8.52 dB (high) and repeated 50 times what

results in 1250 simulations in total. The correction was applied to every generated

spectrum in both manners: with the use of original algorithm and with applied tuning

routines. The relative error was calculated, and the results were grouped with respect

to the total Δ� value. For each group mean value, standard deviation and coefficient of

variation CV were calculated.

Low level of additive noise

Basing on the above results it may be noticed that proposed tuning routines improve

phase correction quality for each of the analysed algorithm. The highest increase was

observed for algorithm Automics and the lowest increase was observed for Ernst algo-

rithm. By looking at a mean value of relative error it may be concluded that with the

increase of Δ� the remaining phase error after the correction increases in both cases

(before and after tuning). By looking at descriptive statistics, for correction with the

use of tuned algorithms the dispersion of results among spectra with different noise is

much lower for Automics, Shanon’s and Ernst but remains at the same level for Dispa

and eDispa.

High level of additive noise

The second part of the synthetic data experiment differs from the first by a much lar-

ger additive noise that was applied to all generated spectra. As previously a huge

Figure 4 Proposed experiment scheme. Both tuned and not tuned methods are examined [15].
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improvement in results obtained for with tuning was noticed. For all five algorithms

the values of relative phase error are worse while compared to the low noise level

results. The best results were obtained for Automics algorithm. It was also observed

that addition of higher-level noise increases the dispersion of spectra generated for

same combination of �0 and �1 values. With low noise this value was equal to ~1% for

all methods without tuning, while by increase of the noise level it doubles. By applica-

tion of tuning it was possible to decrease the dispersion to about 1%.

Experiment II - brain phantom data analysis

In the second part of validation procedure a data obtained on brain phantom was

analysed. The number of processed spectra was equal to 27. All signals were col-

lected at different time frames with use of Philips Achieva (1.5 T) with parameters:

echo time = 35 ms, repetition time = 1500 ms, number of averages = 128, number

of points = 1024 and the sequence type PRESS. Thus it was assumed that the distor-

tions such as phase errors or noise would be different from spectrum to spectrum.

Following the results of the analysis performed on synthetic data, each phantom

spectrum phase was corrected with the use of Automics algorithm only. The correc-

tion was performed twice: with and without parameter tuning. The spectra were

then decomposed into Gaussian Mixture Model (abr. GMM) and the concentrations

of metabolites were calculated [14]. The obtained estimates of concentrations are

presented in the form of boxplots in Figure 7 and their descriptive statistics are

included in table 5.

One can conclude that the tuning routine applied to the Automics algorithms

improves the results of phase correction giving more accurate estimates of metabolite

concentrations. In comparison to the algorithm before tuning the increase is significant

for each analysed metabolite. After application of tuning procedure the maximum dif-

ference between estimated mean and the true values of metabolite concentration is

0.4% (10.04 vs. 10.00 mM for Creatine and 5.02 vs. 5.0 for Lactate). Estimated mean

concentration of Choline is exactly at desired value of 3.0 mM. By looking at the

Figure 5 The relative phase error [%] and its confidence intervals obtained for phase correction
algorithms a) before and b) after the application of tuning procedures - low noise.
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Figure 6 The relative phase error [%] and its confidence intervals obtained for phase correction
algorithms a) before and b) after the application of tuning procedures - high noise.

Figure 7 Distributions of metabolite concentration calculated for 27 spectra obtained on brain
phantom. For each spectrum two experiments were performed: with phase correction by original
Automics algorithm (original) and second by tuned Automics (tuned). Boxplots represent median and
upper and lower quartiles of distribution, Tukey’s criterion was used for outlier detection (marked as dots).
For each metabolite desired value is indicated by dotted line.
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Table 1. The statistics of location (mean) and dispersion (standard deviation and
coefficient of variation) for relative phase error [%] obtained for phase correction
algorithms before the application of tuning procedures - low noise

Δ� Automics Shanon’s Ernst Dispa eDispa

x̄ s CV [%] x̄ s CV [%] x̄ s CV [%] x̄ s CV [%] x̄ s CV [%]

5.00 9.84 0.99 10.06 8.89 0.91 10.24 3.01 0.98 32.56 6.31 1.03 16.32 6.35 1.01 15.91

7.50 9.99 1.02 10.22 9.01 0.94 10.38 3.28 0.94 28.51 7.06 0.96 13.53 6.57 1.03 15.61

10.00 10.11 1.04 10.32 9.18 0.93 10.17 3.62 0.93 25.78 7.32 0.94 12.89 6.83 1.06 15.56

12.50 10.19 1.05 10.28 9.31 0.92 9.91 3.89 0.94 24.08 7.44 0.98 13.21 7.32 1.06 14.51

15.00 10.26 1.03 10.06 9.39 0.92 9.80 4.50 0.93 20.71 7.46 0.98 13.19 7.99 1.09 13.59

17.50 10.37 1.04 10.06 9.51 0.92 9.70 4.87 0.92 18.88 7.75 0.97 12.56 8.40 1.11 13.15

20.00 10.45 1.04 9.96 9.64 0.91 9.44 5.31 0.93 17.50 7.72 1,00 12.99 8.94 1.13 12.60

22.50 10.49 1.02 9.68 9.70 0.9 9.28 5.82 0.93 15.98 7.67 1.05 13.62 9.73 1.12 11.51

25.00 10.55 0.97 9.19 9.69 0.91 9.39 6.93 0.91 13.13 7.55 0.99 13.11 10.67 1.18 11.06

Table 2. The statistics of location (mean) and dispersion (standard deviation and
coefficient of variation) for relative phase error [%] obtained for phase correction
algorithms with applied tuning - low noise

Δ� Automics Shanon’s Ernst Dispa eDispa

x̄ s CV [%] x̄ s CV [%] x̄ s CV [%] x̄ s CV [%] x̄ s CV [%]

5.00 2.01 0.61 30.35 1.89 0.53 28.04 2.03 0.58 28.57 2.38 1.06 44.54 2.15 1.05 48.84

7.50 2.12 0.63 29.79 1.98 0.55 27.85 2.21 0.60 26.92 2.47 0.97 39.27 2.29 1.01 44.10

10.00 2.28 0.58 25.58 2.09 0.57 27.48 2.35 0.56 23.97 2.56 1.01 39.50 2.36 1.03 43.58

12.50 2.38 0.55 22.92 2.20 0.58 26.20 2.42 0.55 22.57 2.65 1.08 40.74 2.46 1.03 41.62

15.00 2.43 0.54 22.14 2.31 0.56 24.35 2.45 0.55 22.57 2.70 1.07 39.70 2.53 1.04 40.98

17.50 2.54 0.52 20.51 2.41 0.57 23.63 2.55 0.55 21.37 2.78 1.08 38.67 2.62 1.03 39.37

20.00 2.64 0.48 18.06 2.53 0.57 22.53 2.60 0.52 20.10 2.85 1.14 39.95 2.69 1.05 39.21

22.50 2.66 0.47 17.70 2.64 0.55 20.64 2.59 0.54 20.66 2.92 1.17 39.97 2.78 1.05 37.66

25.00 2.64 0.51 19.32 2.76 0.51 18.48 2.57 0.58 22.57 2.92 1.05 35.96 2.79 1.08 38.71

Table 3. The statistics of location (mean) and dispersion (standard deviation and
coefficient of variation) for relative phase error [%] obtained for phase correction
algorithms before the application of tuning procedures - high noise

Δ� Automics Shanon’s Ernst Dispa eDispa

x̄ s CV
[%]

x̄ s CV
[%]

x̄ s CV
[%]

x̄ s CV
[%]

x̄ s CV
[%]

5.00 12.25 1.61 13.14 10.25 1.75 17.07 5.67 1.55 27.34 8.03 1.88 23.41 8.55 2.05 23.98

7.50 12.29 1.64 13.30 10.46 1.86 17.74 5.75 1.62 28.09 8.09 2.04 25.17 8.62 2.09 24.19

10.00 12.33 1.66 13.47 10.56 1.83 17.36 5.79 1.75 30.22 8.13 1.95 24.04 8.78 2.39 27.26

12.50 12.38 1.64 13.27 10.64 1.78 16.75 5.96 1.76 29.45 8.26 1.99 24.10 9.55 2.52 26.33

15.00 12.42 1.64 13.23 10.71 1.76 16.42 6.19 1.78 28.81 8.34 1.98 23.69 10.12 2.55 25.24

17.50 12.47 1.65 13.25 10.82 1.76 16.26 6.32 1.84 29.14 8.42 2.00 23.76 10.51 2.68 25.49

20.00 12.51 1.65 13.19 10.88 1.69 15.57 6.48 1.89 29.23 8.51 1.94 22.76 11.12 2.87 25.78

22.50 12.57 1.62 12.89 10.93 1.65 15.05 6.78 1.83 26.99 8.66 2.01 23.21 12.13 2.80 23.04

25.00 12.61 1.65 13.08 10.97 1.66 15.13 7.09 1.89 26.66 8.67 1.92 22.15 12.39 2.71 21.87
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values of standard deviation and coefficient of variation it may be noticed that for all

metabolites dispersion of results among 27 spectra is smaller while compared to not

tuned version (highest increase for myo-Inositol: standard deviation for not tuned

Automics was 0.73 while 0.06 for tuned algorithm).

Discussion
The in silico experiment was performed to verify effectiveness of the proposed tuning

for five popular phase correction algorithms. Parameter tuning increases the correction

efficiency by at least 4%. The higher impact of tuning algorithm is observed for higher

phase errors. The highest impact was observed for Automics algorithm for which mod-

ification was the most complex. The adaptive definition of interval length is more effi-

cient than the fixed length option. Additionally, it minimizes the risk that interval

contains points that significantly differ in magnitude and phase error. For the group of

methods based on the reformulation to the optimization problem it was observed that

implementation of efficient simplex algorithm increased accuracy of all three of them.

It is also a result of efficient setting of the initial condition. The high (around 5%)

improvement was observed for the tuned version of Dispa algorithm. It is a result of

accurate estimation of Δ� parameters with the use of all peaks not just selected two.

Because of the noise presented in the data, the position of maximal point in the peak

Table 4. The statistics of location (mean) and dispersion (standard deviation and
coefficient of variation) for relative phase error [%] obtained for phase correction
algorithms with applied tuning - high noise

Δ� Automics Shanon’s Ernst Dispa eDispa

x̄ s CV [%] x̄ s CV [%] x̄ s CV [%] x̄ s CV [%] x̄ s CV [%]

5.00 2.58 0.65 25.19 2.79 0.93 33.33 2.78 0.86 30.94 3.08 0.99 32.14 2.94 1.24 42.18

7.50 2.60 0.64 24.62 2.86 1.01 35.20 2.80 0.89 31.61 3.11 1.12 36.07 2.97 1.10 37.10

10.00 2.63 0.68 25.89 2.86 0.97 33.80 2.87 0.92 31.90 3.12 1.14 36.43 3.02 1.17 38.63

12.50 2.65 0.68 25.59 2.88 0.97 33.54 2.90 0.93 31.92 3.14 1.13 36.07 3.08 1.18 38.46

15.00 2.66 0.68 25.68 2.89 0.94 32.57 2.93 0.95 32.49 3.15 1.11 35.35 3.13 1.22 38.83

17.50 2.69 0.69 25.79 2.92 0.95 32.39 2.97 0.98 32.86 3.16 1.14 36.13 3.18 1.21 38.05

20.00 2.71 0.71 26.35 2.92 0.90 30.86 3.02 1.00 33.04 3.17 1.11 34.87 3.24 1.29 39.88

22.50 2.72 0.69 25.37 2.94 0.91 30.78 3.02 1.01 33.33 3.19 1.08 33.75 3.30 1.29 39.09

25.00 2.73 0.71 26.01 2.95 0.85 28.81 3.06 1.06 34.64 3.17 1.03 32.49 3.36 1.35 40.18

Table 5. Results of the analysis of 27 brain phantom spectra obtained for two different
phase correction algorithms: original Automics and Automics with proposed tunning
applied

Metabolite not tuned tuned paired t-test p-values

x̄ s 95% CI CV [%] x̄ s 95% CI CV [%]

NAA 12.32 0.87 (12.25; 12.39) 7.48 12.51 0.24 (12.33; 12.69) 2.33 0.0023

Creatine 9.51 0.79 (9.45; 9.57) 8.36 10.04 0.09 (9.95; 10.13) 1.15 0.0048

Choline 2.87 0.14 (2.86; 2.88) 4.93 3.00 0.06 (2.85; 3.14) 1.89 0.0023

myo-Inositol 6.67 0.73 (6.61; 6.73) 10.81 7.49 0.06 (7.38; 7.59) 1.36 0.0048

Lactate 4.72 0.58 (4.67; 4.76) 12.07 5.02 0.12 (4.86; 5.17) 2.00 0.0023

The presented descriptive statistics are: sample mean ( x̄ ), sample standard deviation (s), 95% confidence interval for
population mean value (95%CI) and coefficient of variation (CV). Right column presents paired t test p-value resulting
from testing the hypothesis on no accuracy improvement by algorithm tuning.
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is shifted. If the observed maximum is not a true maximum, the phase evaluated at

that point is also wrong. For lower noise the correction accuracy is slightly better but

that was expected.

In the analysis of clinical phantom data it was proven that tuned algorithm outper-

forms not tuned version. Only the Automics algorithm was used for phase correction,

as it was demonstrated to be the best performing during the synthetic data analysis. Its

original version gives results that are satisfactory however we have proven that tuning

may increase accuracy and may decrease the dispersion of metabolite concentration

estimates among the spectra.

Conclusions
The proposed tuning routines significantly increase the accuracy of phase error correc-

tion for all examined algorithms: Automics, Shanon’s entropy minimization, Ernst’s,

eDispa and Dispa. To understand the importance of proper spectrum phasing two-step

validation experiment was performed. The first one was based on the analysis of spec-

tra with known phase error disturbed by additional random noise (synthetic data),

while the second validation experiment was performed on spectra with unknown phase

error but known original concentration of metabolites. Both validation experiments

showed that tuning routines increase the accuracy. The second, phantom based valida-

tion experiment has shown that phase error correction the crucial role in determining

the metabolite concentration and may lead to more accurate clinical diagnosis.
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