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Abstract

Background: Ion Sensitive Field Effect Transistors (ISFETs) are one of the primitive
structures for the fabrication of biosensors (BioFETs). Aiming at the optimization of
the design and fabrication processes of BioFETs, the correlation between
technological parameters and device electrical response can be obtained by means
of an electrical device-level simulation. In this work we present a numerical
simulation approach to the study of ISFET structures for bio-sensing devices (BioFET)
using Synopsys Sentaurus Technology Computer-Aided Design (TCAD) tools.

Methods: The properties of a custom-defined material were modified in order to
reproduce the electrolyte behavior. In particular, the parameters of an intrinsic
semiconductor material have been set in order to reproduce an electrolyte solution.
By replacing the electrolyte solution with an intrinsic semiconductor, the electrostatic
solution of the electrolyte region can therefore be calculated by solving the
semiconductor equation within this region.

Results: The electrostatic behaviour (transfer characteristics) of a general BioFET
structure has been simulated when the captured target number increases from 1 to
10. The ID current as a function of the VDS voltage for different positions of a single
charged block and for different values of the reference electrode have been
calculated.
The electrical potential distribution along the electrolyte-insulator-semiconductor
structure has been evaluated for different molar concentrations of the electrolyte
solution.

Conclusions: We presented a numerical simulation approach to the study of Ion-
Sensitive Field Effect Transistor (ISFET) structures for biosensing devices (BioFETs)
using the Synopsys Sentaurus Technology Computer-Aided Design (TCAD) tools.
A powerful framework for the design and optimization of biosensor has been
devised, thus helping in reducing technology development time and cost. The main
finding of the analysis of a general reference BioFET shows that there is no linear
relationship between the number of charges and the current modulation. Actually,
there is a strong position dependent effect: targets localized near the source region
are most effective with respect to targets localized near the drain region. In general,
even randomly distributed targets are more efficient with respect to locally grouped
targets on the current modulation. Moreover, for the device at hand, a small positive
biasing of the electrolyte solution, providing that the transistor goes on, will result in
a greater enhancement of the current levels, still retaining a good sensitivity but
greatly simplifying the operations of a real device.
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Background
The integration of biologically active materials, such as molecules (enzymes, antibodies,

antigens, proteins or nucleic acids) and/or biological systems (cells, plants, tissues,

organs) with Ion Sensitive Field Effect Transistors (ISFETs) is one of the key elements

for the fabrication of the class of biosensors referred to as BioFETs. The aim is to build

an hybrid functional system, able to couple the unique (bio)receptor system capabilities

with an electrical read-out and acquisition system. Silicon Field Effect Transistors

(FETs) are nowadays the primitive element of the new generation of biosensors, since

BioFETs can be built from the basic ISFET structure by modifying the gate of the tran-

sistor or by coupling the gate oxide with biological sensing elements (receptors).

Aiming at the optimization of the design and fabrication processes of BioFETs, the

correlation between technological parameters and device electrical response should

more directly be obtained by means of an electrical device-level simulation. To this

purpose, different approaches have been proposed in literature [1-3] both at device

and circuit level [4-6]. In particular, in the approach proposed in [6] the incorporation

of a physical model of the electrolyte-insulator-semiconductor (EIS) structure into a

numerical device simulator has been carried out. The EIS system equations are coupled

with the charge-transport equations and solved self-consistently on the discretized

domain, thus resulting in a “custom” simulation tool.

In this work, we rely on the state-of-the-art commercial Synopsys Sentaurus TCAD

packages. Sentaurus is a suite of TCAD tools which simulates the fabrication, opera-

tion and reliability of semiconductor devices [7]. The Sentaurus simulators use physical

models to represent the device fabrication steps and operation, thereby fostering the

exploration and optimization of new semiconductor devices. The adoption of TCAD

tools reduces technology development time and cost at the same time providing insight

into advanced physical phenomena through self-consistent multidimensional modelling

capabilities, improving device design, yield, and reliability. However, the direct device

level simulation of an electrolyte solution in Sentaurus TCAD is not straightforward:

actually, the suite of standard materials does not include any electrolyte.

Methods
The properties of a custom-defined material were therefore modified in order to repro-

duce the electrolyte behavior. In particular, the parameters of an intrinsic semiconduc-

tor material have been set in order to reproduce an electrolyte solution: the

permittivity of the material can be set as simulation input parameter, depending on the

type of electrolyte, thus reproducing the real, measured, conductivity of the solution. In

this case the permittivity and the refractive index were set in order to reproduce the

behavior of water. The bandgap energy dependence on the temperature is modelled as

Eg (T) = Eg (0) − αT2

T + β
(1)

where a and b are material dependent parameters and Eg(0) is the bandgap energy at

T = 0K. We set the Eg(0) = 1.5eV thus satisfying the requirement
(
Eg/2 − qϕ

) � kT ,

i.e. greater than a few thermal energies (q is the elementary charge and � is the electri-

cal potential of the material). With this approximation the Poisson-Boltzmann (PB)
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equation, describing the charge distribution in the electric double layer, can be viewed

as the semiconductor equation applied to an intrinsic material [8]. By replacing the

electrolyte solution with an intrinsic semiconductor, the electrostatic solution of the

electrolyte region can therefore be calculated by solving the semiconductor equations

within this region.

The Shockley-Read-Hall (SRH) statistics has been adopted for the generation/recom-

bination processes modelling, by setting the maximum recombination time according

to literature findings [9]. In order to account for the surface effects on the carrier

mobility, the simplified Lombardi model was used [10]. Actually, in the channel region

of a FET, the high transverse electric field forces carriers to interact strongly with the

semiconductor-insulator interface. Carriers are subjected to scattering by acoustic sur-

face phonons and surface roughness. This model can describe the mobility degradation

caused by these effects; the maximum mobility values have been set to

μmax
p = 4.98 · 10−4cm2/V · s and to μmax

n = 6.88 · 10−4cm2/V · s respectively, to repro-

duce the behavior of Na+ and Cl- ions in a NaCl solution [16]. Actually, the maximum

mobility values of ionic species can be freely set as well as simulation input parameters.

It should be noticed that the carrier mobility is much lower with respect to standard

free carrier mobility of an intrinsic semiconductor, thus consistently miming the beha-

vior of ions in a real ionic solution.

Eventually, different ion concentrations within the solution are correlated to the free

carriers within the equivalent semiconductor through the densities of states which can

be set as input parameters, according to the pH of the solution.

The semiconductor state densities within the conduction and the valence bands, NC

and NV, are the most significant parameters that correlate the physical properties of an

electrolyte solution to the electrical parameters of an intrinsic semiconductor. Within

this framework, the electrons and holes represent the mobile ions in the solution. The

density of states NC and NV were therefore specified according to the molar concentra-

tion of the ionic solution, according to the following procedure. If we consider the

H2O dissociation H2O +H2O → H3O+ +OH− at the chemical equilibrium, the con-

centration of [OH-] and [H3O
+] are correlated by the ionic product for water

KW = [H3O+]
[
OH−]

(2)

This value is strongly dependent on the temperature; however, at T = 25 °C it reads

KW = 10-14 [11]. The analogy with the electrons and holes concentrations in a semicon-

ductor can be accomplished by accounting for the mass action law, stating that under

thermal equilibrium the product of the free electron concentration n and the free hole

concentration p is equal to a constant equal to the square of intrinsic carrier concentra-

tion. If the number of carriers is much less than the number of band states, the carrier

concentrations can be approximated by using the Boltzmann statistics, giving

n ∼= NCe
−
EC − Ef

kT
(3)

and

p ∼= NVe
−
Ef − EV

kT
(4)
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where EC is the lower energy limit of the conduction band, EV is the upper energy

limit of the valence band, Ef is the Fermi level and k is the Boltzmann constant. By

combining (3) and (4) if n = p

np = NCNVe
−
EG
kT = n2i

(5)

The effective density of states for electrons in the conduction band and for holes in

the valence band are calculated from NC = 2
[
2πm*

e kT
h2

]3/2
and NV = 2

[
2πm*

hkT

h2

]3/2

where m∗
e and m∗

h are the effective mass of electrons and holes for density of states

calculations, and h is the Planck constant.

For the calculation of the electrolyte “equivalent” semiconductor NC and NV values, we

can consider the Avogadro constant NA = 6.022 · 1023mol−1 to convert

1mol/L → 6.022 · 1023 [ ] /L → 6.022 · 1020 [ ] /cm3 and assuming [H3O+] ≡ p,
[
OH−] ≡ n .

Therefore, for instance, for a solution with pH = 7 the concentration of

the ion [H3O+] = 10−7mol/L corresponds to the hole concentration

p = 10−7 × 6.022 · 1020 [ions] /cm3 = 6.022 · 1013 [ions] /cm3 . By substituting this

value in the expression (4), the “equivalent” density of states in the valence

band can be calculated, by considering, as previously introduced, the energy gap

Eg = 1.5eV and obtaining

NV = 2.4 × 1026cm−3. (6)

A similar procedure can be used to determine the density of states in the conduction

band. For a pH = 7 the concentration of both ion species are the same, i.e. [H3O+] =
[
OH−]

therefore we calculate n = 10−7 × 6.022 · 1020 [ions] /cm3 = 6.022 · 1013 [ions] /cm3 corresponding to

NC = 2.4 × 1026cm−3. (7)

The relations (6) and (7) hold for a pH = 7 solution. However, this is not a limiting

case. By considering the ionic product of water, the ionic species concentrations can

be translated to carrier concentrations, depending on the concentration of the solution.

In other words, for any given pH value of an equilibrium state solution at a constant

temperature T, it is possible to determine the concentration of n and p of the equiva-

lent intrinsic semiconductor, and therefore the values of NC and NV.

Results
ISFET simulation

In order to check the suitability of the modelling procedure, an ISFET device has been

simulated. The 2D cross-section of the simulated structure is reported in Figure 1, along

with its discretization mesh. The static characteristic of the device, namely the ID - VDS

curves for different biasing voltages of the reference electrode are reported in Figure 2.

The qualitative behaviour of the devices is very similar to the classical MOSFET ID - VDS

curves, as expected.

By varying the solution pH, e.g. the concentration of ionic species, the sensitivity of

the ISFET device as pH sensor can be evaluated (Figure 3 and Figure 4). By
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Figure 1 ISFET sketch. Cross-section of the simulated ISFET device

Figure 2 ISFET simulation. Output characteristics (ID vs. VDS) of the ISFET device.
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Figure 3 ISFET as a pH sensor - 1. Drain current as a function of the drain voltage at different pH
solution concentrations (VREF = 0).

Figure 4 ISFET as a pH sensor - 2. Drain current as a function of the reference voltage at different pH
solution concentrations (VDS = 2 V).
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considering a reference value of VDS = 2V, the family of curves of the drain current as

a function of the reference electrode voltage can be calculated, by varying the densities

of states of the electrolyte material according to the solution pH. A sensitivity of about

50mV/pH in terms of threshold voltage shift has been found, in agreement with litera-

ture data ([6], [9]).

Device simulation of a general BioFET device

Once assessed the suitability of the methodology, a physically sound modelling scheme

of BioFET sensors has been set-up. The label-free electrical biosensors rely on the field

effect induced by charges of target biomolecules in an electrolyte environment. In real

devices, receptor probes are immobilized on the surface of an electrolyte-insulator-

semiconductor system so that the target molecules are bound to the probes by the

bio-affinity phenomenon. The localized, fixed charges induce the field effect on the

underlying conduction channel that leads to the current modulation. The channel

modulation effect induced by irregular charge distribution can scarcely be estimated

through analytical methods. Moreover, significant effect have been observed at very

low target concentration when only a small portion of the receptor probes is bound to

the target molecules. On the other hand, the detailed analysis of the effect of the actual

charge distributions could conveniently be obtained through an accurate numerical

simulation method [8]. The proposed methodology guarantees the self-consistent mod-

elling of very different types of material regions, such as semiconductor, electrolyte

solution and organic molecule regions. In particular, a realistic picture of the charge

distribution can be obtained as a cluster of charges on the electrolyte region due to

target molecules which are bound randomly to a receptor site. When a binding reac-

tion occurs at a certain position on the surface, a given charge density is localized in

that specific position.

In this work, we propose this methodology to devise a BioFET aimed at the study of

electrophysiological neuronal activity. It has been already pointed out in the past that

ISFET devices can measure the extracellular voltage of a single neuron attached with

its cell membrane to the device insulator in an open gate configuration [12-14]. The

change of the extracellular voltage induced by the neuron gives rise to an electric field

across the insulator that modulates the drain-to-source current of the ISFET [15].

A sample simulated structure is therefore shown in Figure 5. The whole system is

based on a standard ISFET device, featuring a p-type low doped Si substrate, a thin

SiO2 interface and an electrolyte solution with a top reference electrode. The effect of

spatially localized charges due to immobilization of target molecules is reproduced by

means of a number of small blocks of dielectric material whose dimensions are compa-

tible with the dimension of the target cells (we assume that the shape of the cell does

not affect the charge distribution). The dimensions of the blocks and their distance

from the dielectric surface can be chosen as design parameters, in order to account for

different kinds of biosensors (e.g. target specificity and/or electrolyte characteristics

which define the receptor size and position). For the device at hand, a proper “segmen-

tation” of the gate of the ISFET structure previously simulated has been obtained by

considering ten receptors with 0.5 μm length (Figure 5).

When the affinity reaction occurs at the receptor site (i.e., receptor and target mole-

cule bind creation), a given charge distribution is assigned to each single block. The
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charge state of each block is assumed to be neutral (Q = 0) before the reaction occurs,

even if it is possible to model their actual value (being positive or negative), as a refer-

ence state to be compared with the situation when a binding reaction occurs and a

charge is localized (Q = QT). In this case, a value of |QT | = 4.8 · 10−16C has been

used. The value (order of magnitude) of the fixed charge has been taken from litera-

ture [8] as a reference value of the charge localized when a Streptavidin molecule is

sensed on a sensor surface. Due to the p-type Si substrate doping concentration, the

opposite polarity of the fixed charge is found to be the most effective on the modula-

tion of the FET electrical behaviour. However, both signs of the localized charge (posi-

tive or negative) can be taken into account, representing different localized molecules

(e.g. Avidin or Streptavidin ).

The aim is to evaluate the effect of the same amount of charge expected in Silicon

NanoWire (SiNW) FET biosensors over the electric potential distribution of the pro-

posed structure (which is much larger in terms of dimensions and distances).

The electrostatic behaviour (transfer characteristics) of the structure has been simu-

lated when the captured target number increases from 1 to 10. In a random distributed

charge modelling, however, the static characteristics cannot be represented by a single

curve. Actually, the transistor channel can have different conductance values depend-

ing on the bound target positions despite the fact that the number of bound targets is

the same. In particular, the electron density along the channel depends strongly on the

number and position of charged receptors (Figure 6). Since the conductance does not

have a linear relationship with the target charge, the overall conductance modulation

cannot be obtained through a linear combination of the modulation effects induced by

each target. Therefore, one should simulate every case of the receptor-target binding

combination to obtain a complete set of conductance results. This is of course an over-

whelming computational effort; we therefore simulated a still huge number of several

randomly selected sample cases.

However, thanks to the TCAD simulation environment set-up, the microscopic elec-

trical quantities can be analysed as a function of the BioFET technological parameters

and/or the electrolyte characteristics. As an example, the electrical potential distribu-

tion along the electrolyte-insulator-semiconductor structure can be evaluated for

Figure 5 BioFET simulated structure. Sketch of the simulated structure: charge localization at the SiO2

surface is modelled with localized dielectric block with or without charge.
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different molar concentrations of the electrolyte solution (Figure 7). This is important

in order to deeply evaluate the variation of microscopic quantities (e.g. the electric

potential distributions, as well as electron and hole concentrations) as a function of the

external conditions; this will eventually result in macroscopic quantities changes (i.e.

calculated current at the output electrodes) which can be better understood.

A summary plot is reported in Figure 8 where is shown the ID current as a function

of the VDS voltage for different positions of a single charged block. The reference elec-

trode voltage was set to ground, e.g. VREF = 0V. Starting from the lower curve (when

no localized charge at all is experienced, i.e. when no reaction has occurred), the cur-

rent tends to increase with the position of the charged block moving from the source

channel region (C1 on) toward the middle between source and drain (C5 on or C6 on),

and eventually decreasing when the charge approaches the drain region (C10 on).

As mentioned before, the distribution of the charge has a strong effect on the chan-

nel modulation. For instance, if we consider three receptors on, localized near the

source region or randomly distributed along the channel region, significantly different

currents have been calculated, namely a marked increase of the current is experienced

(more than one order of magnitude) when the turned on charges are more distributed

Figure 6 BioFET channel modulation. Channel modulation as a function of the number of the occupied
receptors: electron density along the channel.

Figure 7 BioFET electrical potential. Electrostatic potential along a vertical structure cut (on the right) at
different solution concentrations.
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along the bind sites (Figure 9 and Figure 10). These two cases have been considered as

emblematic among a really huge number of simulated situations. While it is question-

able if a real charge distribution can follow e.g. the situation depicted in the upper part

of Figure 9, this could illustrate the capabilities of the tool, e.g. a refined analysis of dif-

ferent spatially localized analytes, at the same time allowing for comprehensive electric

analysis of the whole device.

A significant effect on the overall current is related to the “biasing” of the electrolyte

solution, e.g. to the reference electrode voltage. Actually, when the equivalent transistor

switches in the conduction region (with respect to the sub-threshold regime) a marked

increase of the drain current is obtained, as expected. This is of particular interest when

setting the operating bias point of a real device (Figure 11 and Figure 12).

Figure 8 BioFET drain current. Drain current as a function of the reference voltage, depending on the
position of a single charged receptor.

Figure 9 BioFET channel charge distribution. Channel charge density: localized vs. distributed charged
receptors.
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An overall effort aiming at summarizing the current modulation effects of an increas-

ing number of localized charges is shown in Figure 13. It should be noted that the order

of magnitude of the calculated current for the structure at hand are in agreement with

literature data (simulated and measured) related to similar ISFET structures [9].

As a general comment, the relationship between current modulation and target num-

ber is not linear at all. Actually, the position of the targets has a strong effect: for

instance, the localization of few targets turned on can result in a greater current mod-

ulation with respect to even a bigger number of grouped active targets. In general,

charges localized near the source and drain region (C1 and C10 in the example at

hand) are less effective, since the modulation of the channel is mostly affected by the

influence of the lateral diffusion of source and drain region implants. Moreover,

charges localized near the source (C2, C3) are more efficient in current modulation

with respect to charges localized near the drain (C8, C9).

A further significant effect on the electrical current values is due to the reference elec-

trode voltage. If we increase the reference voltage, a marked increase of the current

(around four orders of magnitude) has been calculated. This is due to the different con-

ducting region of the equivalent FET transistor. Even if is not straightforward to deter-

mine its threshold voltage, when the VREF = 0V the transistor is in the sub-threshold

region, namely in a very low current regime. On the other hand, when the VREF = 1V

the transistor goes on, and a much greater current flows between source and drain even

when a small VDS voltage is applied. In both cases the conductive channel modulation

effect is visible; a smaller modulation ratio (namely, the ratio Imax
D /Imin

D between the max-

imum current Imax
D when all receptors are on with respect to the minimum current Imin

D

when no charge is applied) has been obtained when VREF = 1V (Figure 14), but the big-

ger values of the current are a definite advantage, for instance allowing for a much sim-

plified real experimental measurement setup. The same behaviour is further enhanced if

a greater VREF is used, e.g. VREF = 2V.

Figure 10 BioFET current evaluation. Drain current as a function of the reference electrode voltage with
three active receptors: localized vs. distributed charged receptor effect on the ID current.
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Discussion
The adopted simulation methodology (ISFET and electrolyte simulation with a com-

mercial TCAD tool) aims at devising innovative, large BioFET sensor for neuronal

Figure 11 BioFET channel modulation: voltage reference effects. Electron current densities at different
reference electrode voltages.
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activity monitoring. We adopted a simulation scheme which has been used for the ana-

lysis of “conventional” biosensors such as Silicon NanoWires (SiNW) [8] on a larger

scale. The goal was to check the suitability of the approach to the study of different

structures in different operating conditions. The simulated domain has been therefore

suitably tailored. This allowed the comparison between the simulated results (e.g. pH

Figure 12 BioFET current at different reference electrode voltages. ID as a function of VDS at different
VREF.

Figure 13 Drain current as a function of the number of charged receptors - 0 V. Drain current as a
function of the number of charged receptors: coloured circles in each column (e.g. for the same number
of charged receptors) correspond to different random position combinations (VDS = 100mV, VREF = 0V).
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sensitivity, calculated currents) with literature data [9]. Once assessed the parameters

of the device and the simulation methodologies, a “segmented” ISFET structure has

been devices. This device would be much bigger (hundreds of micro-meters) with

respect to SiNW FET. However, in order to retain sufficient spatial resolution for the

cell activity monitoring, interdigitated FET structure could be proposed. Organic FETs

have been proposed as well, however with intrinsic limitation in spatial resolution [17].

Within this framework, the simulation of the structure sketched in Figure 4 has been

carried out. The obtained simulation results foster the application of this “segmented”

ISFET on a large scale. Actually, its sensitivity is in agreement with simulation findings

obtained in [8], even for small localized charges at bigger distance from the conductive

channel. Moreover, some interesting indications have been obtained, e.g. the adoption

of a higher biasing reference voltage for the electrolyte solution (e.g. greater than 1

Volt) will allow much easier current measurements, at the same time retaining a good

sensitivity.

The final goal of this study would be the proof of concept of the feasibility of an

integrated high-precision multi-channel system capable of stimulating neural activity

while recording very low-voltage responses as low as tens of microvolts. A lumped-

element prototype of this system is currently under study within the framework of an

international collaboration including the authors of this paper [18].

Conclusions
In this work we presented a numerical simulation approach to the study of Ion-Sensitive

Field Effect Transistor (ISFET) structures for biosensing devices (BioFETS) using the

Synopsys Sentaurus Technology Computer-Aided Design (TCAD) tools. In particular,

Figure 14 Drain current as a function of the number of charged receptors - 1 V. Drain current as a
function of the number of charged receptors: coloured circles in each column (e.g. for the same number
of charged receptors) correspond to different random position combinations(VDS = 100mV, VREF = 1V).
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we concentrate on the analysis of the field effect on the conduction channel of a general

BioFET structure that leads to the current modulation due to the fixed charges induced

by immobilization of target biomolecules in an electrolyte environment. The channel

modulation effect induced by irregular, locally distributed charges can be deeply investi-

gated by means of device-level numerical simulation, as well as the effects of different

electrolyte concentrations (pH) on the device sensitivity.

In this way a powerful framework for the design and optimization of biosensor can

be devised, thus reducing technology development time and cost. The main finding of

the analysis of a general reference BioFET shows that there is no linear relationship

between the number of charges and the current modulation, but there is a strong posi-

tion dependent effect: targets localized near the source region are most effective with

respect to targets localized near the drain region, and in general even randomly distrib-

uted targets are more efficient with respect to locally grouped targets on the current

modulation. The effect of the VDS drain source voltage on the sensitivity of the device,

as well as the effect of the different polarization of the electrolyte reference voltage

(VREF) can be studied in detail. In particular, for the device at hand, a small positive

biasing of the electrolyte solution, providing that the transistor goes on, will result in a

greater enhancement of the current levels, still retaining a good sensitivity but greatly

simplifying the operations of a real device.
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