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Abstract

Background: The computation of arterial wall deformation and stresses under
physiologic conditions requires a coupled compliant arterial wall-blood flow
interaction model. The in-vivo arterial wall motion is constrained by tethering from
the surrounding tissues. This tethering, together with the average in-vivo pressure,
results in wall pre-stress. For an accurate simulation of the physiologic conditions, it
is important to incorporate the wall pre-stress in the computational model. The
computation of wall pre-stress is complex, as the un-loaded and un-tethered arterial
shape with residual stress is unknown. In this study, the arterial wall deformation and
stresses in a canine femoral artery under pulsatile pressure was computed after
incorporating the wall pre-stresses. A nonlinear least square optimization based
inverse algorithm was developed to compute the in-vivo wall pre-stress.

Methods: First, the proposed inverse algorithm was used to obtain the un-loaded and
un-tethered arterial geometry from the unstressed in-vivo geometry. Then, the un-
loaded, and un-tethered arterial geometry was pre-stressed by applying a mean in-vivo
pressure of 104.5 mmHg and an axial stretch of 48% from the un-tethered length.
Finally, the physiologic pressure pulse was applied at the inlet and the outlet of the
pre-stressed configuration to calculate the in-vivo deformation and stresses. The wall
material properties were modeled with an incompressible, Mooney-Rivlin model
derived from previously published experimental stress-strain data (Attinger et al., 1968).

Results: The un-loaded and un-tethered artery geometry computed by the inverse
algorithm had a length, inner diameter and thickness of 35.14 mm, 3.10 mm and
0.435 mm, respectively. The pre-stressed arterial wall geometry was obtained by
applying the in-vivo axial-stretch and average in-vivo pressure to the un-loaded and
un-tethered geometry. The length of the pre-stressed artery, 51.99 mm, was within
0.01 mm (0.019%) of the in-vivo length of 52.0 mm; the inner diameter of 3.603 mm
was within 0.003 mm (0.08%) of the corresponding in-vivo diameter of 3.6 mm, and
the thickness of 0.269 mm was within 0.0015 mm (0.55%) of the in-vivo thickness of
0.27 mm. Under physiologic pulsatile pressure applied to the pre-stressed artery, the
time averaged longitudinal stress was found to be 42.5% higher than the
circumferential stresses. The results of this study are similar to the results reported by
Zhang et al., (2005) for the left anterior descending coronary artery.

Conclusions: An inverse method was adopted to compute physiologic pre-stress in
the arterial wall before conducting pulsatile hemodynamic calculations. The wall
stresses were higher in magnitude in the longitudinal direction, under physiologic
pressure after incorporating the effect of in-vivo axial stretch and pressure loading.
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Background
The computation of arterial wall deformation and stresses under physiologic conditions

requires a mathematical model of coupled compliant arterial wall-blood flow interac-

tion. The in-vivo arterial wall motion is constrained by tethering from the surrounding

tissues. This tethering, together with the average in-vivo pressure, results in wall pre-

stress. The release of this pre-stress in an excised artery results in its longitudinal and

radial retraction [1-3]. The longitudinal stretch required to elongate the artery from

the excised length to the in-vivo length is known as in-vivo axial stretch. The excised

artery sample without the arterial pressure and longitudinal stretch is known as the

un-tethered load-free artery. The pre-stressed arterial configuration is obtained by

applying the in-vivo longitudinal stretch and mean arterial pressure to the un-tethered,

load-free arterial configuration. Thereafter, the pulsatile pressure load is applied to the

pre-stressed arterial geometry to compute the interaction between the blood-flow and

arterial wall. For an accurate simulation of the physiologic conditions, it is important

to incorporate the wall pre-stress. Excessive deformation will result, if the in-vivo pres-

sure load is applied to the in-vivo arterial geometry without accounting for the wall

pre-stress.

Longitudinal shrinkage of the order of 48% has been reported by Van Loom, [4], in a

study of a canine femoral artery. Huang et al., [5], have reported a similar value of 33%

for longitudinal shrinkage and 12% to 16% circumferential shrinkage for human carotid

arteries with a plaque deposit. Considerable variation in the in-vivo axial stretch along

the arterial vasculature has been reported by Guo et al., [6], Hamza et al., [7], and

Algranti et al., [8], for both porcine aorta and coronary arteries. The level of axial pre-

stress has also been reported to vary with age and disease condition [9,10]. Therefore,

to accurately determine the state of stress and strain in an arterial branch under phy-

siologic condition it is important to account for the in-vivo arterial wall pre-stress

resulting from the in-vivo axial stretch and mean physiologic pressure.

The computation of wall pre-stress is complex, as the un-loaded and un-tethered

arterial shape with residual stress is unknown. A manual trial-and-error based proce-

dure to compute the load-free artery geometry has been developed by Huang et al.,

[11], for a carotid artery with plaque and Tang et al., [12], for a diseased coronary

artery. A similar methodology has been adopted for an idealized axi-symmetric arterial

geometry by Sinha-Roy et al., [13] for a canine femoral artery, and by Konala et al.,

[14] for a human coronary stenosis with anisotropic material model. However, manual

trial-and-error process may lead to variability in the arterial shape and pre-stress

values. Such process may not have unique solution.

The research in automatic inverse computation can be categorized into two classes:

1) the direct method of solving the inverse elastostatics boundary value problem, and

2) geometrical shape matching algorithms to match the pre-stressed arterial shape with

the in-vivo shape. The direct method was adopted by Lu et al., [15], to compute pre-

stressed arterial geometry of a patient-specific abdominal aortic aneurysm (AAA). The

mathematical formulation for this methodology is complex [15,16], which makes it dif-

ficult to program the algorithm in an existing finite element formulation. The bound-

ary conditions for the inverse boundary value problem have no physical significance

[16] and the models with incompressible material have been reported to be prone to
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ill-conditioned numerical convergence [16]. Therefore, shape-matching algorithms have

been more commonly adopted for such problems [17-21].

The shape matching algorithms iteratively modify the arterial geometry until a geo-

metrical configuration similar to the in-vivo shape that is in stress-equilibrium with the

applied in-vivo loads, is obtained [18,21-23]. Some of the shape matching algorithms

are based on optimization of an objective function that measures the deviation of the

computed shape from the in-vivo shape [18,22]. All shape matching algorithms itera-

tively update the nodal locations of the computational model. This essentially implies

that the position of each arterial wall node is an optimization variable. For a patient-

specific geometry with a large number of nodes, this can increase the number of opti-

mization variables, causing the convergence process to be non-trivial.

Bolls et al., [21], have implemented an algorithm that iteratively modifies the in-vivo

shape by subtracting the displacements resulting from the application of in-vivo pres-

sure load. Putter et al., [20], and Gee et al., [23], have proposed similar algorithms that

incrementally apply pressure load leading to full in-vivo pressure, while maintaining

stress equilibrium by updating deformation gradients and strain tensors. All of the

above mentioned algorithms have been mainly applied to AAA cases which have lower

axial stretch. For a patient-specific AAA geometry, assuming that the direction of

deformation to be predominantly radial, Raghavan et al., [18] and Lu et al., [22] sim-

plify the optimization problem to a single variable. However, such assumptions are not

valid for arterial wall under axial stretch. In most of the proposed algorithms, the stress

equilibrium state is computed using only the mean arterial pressure. However,

the importance of incorporating viscous flow induced stress has been reported by Hsu

et al., [24] study.

The objectives of this research were: a) to develop and test an optimization based

inverse algorithm to compute the load-free and pre-stressed arterial geometry from

in-vivo data, and b) to investigate the effect of in-vivo axial stretch on the state of

arterial stress, under a pulsatile pressure-flow condition for a physiological model of a

canine femoral artery. A novel optimization-based inverse algorithm was implemented,

that is applicable for any patient-specific arterial geometry. It can incorporate material

non-linearity as well as large deformations and strains resulting from the in-vivo axial

stretch. The main difference between the proposed algorithm and previously developed

optimization based inverse algorithms [17,18,20,21,25] is in simplifying the optimiza-

tion formulation into a two variable problem. This was achieved by developing a finite

element model of arterial shrinking and the arterial expansion under in-vivo axial

stretch and pressure. For any geometry, this simplification reduces the number of opti-

mization variables to just two variables: the axial shrink and the radial shrink. Unlike

other algorithms [17,18,20,21,25], the conservation of the volume of the in-vivo arterial

wall was enforced by incorporating an optimization constraint. This ensured that the

geometrical modifications of the arterial wall in optimization iterations maintained the

in-vivo wall volume.

Methods
The inverse method was specifically developed for any patient-specific arterial geome-

try. As a first step, an idealized arterial geometry with physiologic pressure load was

used as a testcase in this study. The inverse method presented here mimics the exact
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steps for any patient-specific case to be tested in future. First, the pre-stressed arterial

wall geometry was computed using the proposed inverse method. Then, the pulsatile

pressure load was applied at the inlet and the outlet of the pre-stressed artery to com-

pute the transient wall blood-flow interaction.

Arterial geometry

A straight arterial segment of a canine femoral artery of length of 52 mm, inner radius

of 1.8 mm and thickness of 0.27 mm was adopted for this study [13]. This geometry is

a simplified version of the tapered femoral artery studied by Sinha-Roy et al, [13]. In

this study, the taper due to the reduction of 0.1 mm radius from the inlet to the outlet

over the 52 mm length (angle of 0.11°) was neglected.

The lumen geometry is shown in Figure 1A, which can be obtained using image

reconstruction if a patient-specific case is used. The outer wall surface of the artery

was obtained by offsetting the lumen surface by computing an angle weighted normal

Figure 1 Application of the inverse algorithm to a straight artery. A) In-vivo lumen surface of STL
triangles for idealized geometry of dog femoral artery (Sinha-Roy et al., 2008). B) Computation of nodal
normal for offsetting lumen surface. C) Arterial wall geometry in form of STL mesh. D) Arterial wall mesh
with 8 node hexahedral element. E) Finite element model with boundary conditions.
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at each node of the stitched STL triangles (Figure 1B). The outward normal direction

was computed by,

N =

∑
k

αkek∑
k

αk
, (1)

where, e1, e2, ... are the unit normals of the k individual triangles, T1, T2, ... at a node

of the STL mesh. The angles a1, a2, ... are the included angle for these triangles

(Figure 1B). The position vector, R, of a node on the outer wall surface was calculated

from the corresponding position, r, of the node on the inner wall by:

R = r − tn̂. (2)

where, t is the in-vivo wall thickness and n̂ = N
/‖N‖ is the unit normal vector at the

node (Figure 1B). The resulting wall geometry was obtained as a mesh of surface trian-

gles as shown in Figure 1C. The wall geometry was meshed with 4-noded linear hexa-

hedral elements with 15 elements across thickness (Figure 1D). This meshed geometry

was used to construct the finite element model for the inverse algorithm described

below (Figure 1E).

Arterial wall material property

The arterial wall material was modeled as homogeneous, incompressible, isotropic

material of hyperelastic type. The constitutive equations for the wall material were

derived using the generalized Mooney-Rivlin strain energy density function, W, of

order N = 2

W =
N∑

p,q=0
p+q=1

Cpq(I1 − 3)p(I2 − 3)q (3)

with invariants I1 and I2 [1,2,26,27]. The material constants: C10 = 1.157 × 10-3 N/mm2,

C01 = -0.314 × 10-3 N/mm2, C20 = 13.689 × 10-3 N/mm2, C11 = 7.942 × 10-3 N/mm2, and

C02 = 4.433 × 10-3 N/mm2 were obtained by nonlinear least square curve-fitting using the

circumferential stress-strain data for the canine femoral artery obtained by Attinger, 1968

[28]. The plot of computed Cauchy stresses verses stretch in the circumferential direc-

tion is shown in Figure 2A along with the experimental data. Since the material model

is isotropic, the longitudinal stress versus strain plot for the material will be same as

the circumferential plot (Fit:Circumferential, Figure 2A). The experimentally obtained

longitudinal stress versus stretch data is also plotted in the same figure for comparison.

The material testing by Attinger (1968) was performed with an excised tubular-shaped

sample of the artery [28]. Therefore, the constitutive model (Eq. 3), obtained by

model-fitting the test data can be directly adopted for the cylindrical arterial geometry

used in this study. It may also be noted that the cylindrical arterial specimen has resi-

dual stresses. Therefore, the residual stresses are indirectly included through the mate-

rial model.

The contour plot of the strain energy density function, W (Eq. 3) with axial and circum-

ferential stretch ratios, lz and lθ, show that the contour shapes are convex (Figure 2B).

This shows that the strain energy density function, W, is positive definite. Moreover, the
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magnitude of strain energy density, W, at lz = lθ = 1 is 0.0 (Figure 2B). This demonstrates

the validity of the material model obtained by curve-fitting.

Inverse algorithm: load-free and pre-stressed wall geometry

The optimization-based inverse algorithm (Figure 3) was implemented using two

operators: a) Shrink (S), and b) Fit (F). The operators, S and F, were based on two

basic modes of wall deformation: radial deformation, cRS and longitudinal deformation,

cLS, as described below. The shrink operator, S, shrinks the arterial geometry in the

radial direction by δr, with the deformation operator cRS, followed by a longitudinal

shrinking by δl, using the deformation operator cLS. The fit operator, F, was imple-

mented to apply the in-vivo longitudinal stretch, δI and then apply mean arterial pres-

sure, pI (Figure 3).

Longitudinal deformations, cLS
The longitudinal deformation operator, cLS, was developed to perform the longitudinal

shrinking or stretching of the artery while maintaining its in-vivo shape. It is denoted

by cLS (X, δl), where X represents the arterial geometry it operates on and the real

number, δl represents the incremental longitudinal deformation applied at the outlets

of the arterial wall in the direction dz for extending or shrinking the wall geometry

(Figure 1E). To compute the longitudinally shrunk (or stretched) arterial configuration,

the operator performs a finite element solve with a frictionless, non-separating sliding

contact surface that is coincident with the outer surface of the arterial wall to maintain

the in-vivo arterial shape (Figure 1E). For a solution with δl > 0, cLS stretches the

Figure 2 Material model for arterial wall. (A) Experimental data and curve-fit of the circumferential
Cauchy stress and stretch data of dog femoral artery from Attinger et al., 1968. The curve-fit generated
using generalized Mooney-Rivlin model with N = 2. (B) Contour plot of the corresponding strain energy
density function.
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artery, whereas a solution with δl < 0 shrinks the artery radially. Since the sliding con-

tact computation projects the arterial nodes on the rigid contact surface, this surface

was extended at the inlet, as well as the outlet (Figure 1E), for ensuring a robust con-

vergence of the contact solve.

Radial deformations, cRS
The radial deformation operator performs radial expansion (stretch) or contraction

(shrink) of the artery. The radial deformation can be performed in two ways: 1) a

geometrical scaling by offsetting the nodes in the normal direction, n̂ (Eq. 2) or 2)

by expanding the arterial wall by applying a mean arterial pressure, pI. No wall stres-

ses are produced in the process of radial deformation by geometrical scaling. How-

ever, stresses are generated in the process of radial expansion under the pressure

load, pI. In a manner similar to cLS, the radial deformation is denoted by: cRS(X, a)
and its inputs are the arterial configuration represented by X and a real number a.

The parameter a can be pressure (pI) in the case of pressure induced deformation, or

it can be a real number δr for the geometric scaling operation. The pressure induced

radial deformation can only result in a radial expansion of the arterial wall. Applying

a negative value of pressure at the inner wall is not feasible as it will lead to material

instability. For geometric deformation by scaling, cRS can expand the artery radially

by applying a radial stretch, δr, δr > 0, or it can shrink the artery radially by applying,

δr < 0.

Inlet and outlet constraints

At each inlet and outlet cross-section, a local cylindrical coordinate system, (dr, dθ, dz),

was created with its origin at the center of the cross-section. The coordinate system

axis, dz was defined normal to the cross-sectional plane (Figure 1E). The nodal con-

straints for the nodes on the cross-section plane were defined with respect to this local

cylindrical coordinate system. A reference node was created at the origin of the coordi-

nate system and was held fixed to prevent any rigid body motion (Figure 1E). To allow

the radial wall deformation due to pulsatile pressure, all nodes on the inlet and outlet

were allowed to move in the radial direction from the reference node. The displace-

ment of those nodes in the dz direction was prevented only at the inlet. At the outlets,

motion of the nodes in the dz direction was allowed in order to apply longitudinal

shrink or stretch.

Inverse algorithm

The inputs for the inverse algorithm are: 1) the unstressed in-vivo shape of the artery,

2) the mean in-vivo arterial pressure, pI , and 3) the in-vivo axial stretch, δI. For the

femoral artery, pI was 104.1 mmHg and δI was considered to be 48% of the load-free

artery length [4]. The inverse algorithm presented here, modifies the un-stressed in-

vivo arterial geometry by performing the shrink and fit operations, resulting in new

arterial configurations. To describe these configurations and their respective stress-

states, a notation of A(x,s) has been used in which, x is used to denote a particular

configuration, e.g., xI for in-vivo and xL for load-free, etc.; and s is used to represent a

3x3 stress tensor for symbolically denoting the non-zero stress-state of the configura-

tion. Therefore, A(xI,0) is used to denote the un-stressed in-vivo arterial configuration,

where 0 represents the 3 × 3 null tensor. The steps (Figure 3) of the inverse algorithm

are as follows:

1. Assume initial value of radial shrink, δr, and longitudinal shrink, δl.
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2. Apply shrink (S) to the unstressed in-vivo artery geometry, A(xI, 0). This is per-

formed in two steps:

a. Apply radial shrink, cRS to the in-vivo geometry, A(xI, 0), to radially shrink by δr.

That is: xRS = cRS (xI, δr), where xI is a point on the in-vivo artery geometry, and

xRS, its mapping on the radially shrunk artery.

b. Apply longitudinal shrink, cLS to the artery geometry resulting in the step 2a.

That is: xL = cLS(xRS, δl), where xL is a point on the load-free artery after radial

and longitudinal shrink. The resulting shrunk artery geometry, A(xL,sL) has stres-

ses, sL.

3. Delete stresses, sL from A(xL, sL) to obtain A(xL, 0). This is a trial load-free

geometry.

Figure 3 Flow-chart of the inverse algorithm. Block diagram of the inverse algorithm to compute the
load-free and pre-stressed geometry. For S and F, ∘ denotes the composition of two operators, f1 and f2;
defined as f2∘ f1 = f1(f2(x)).
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4. Apply fit (F) to A(xL, 0) obtained in step 3. This is also performed in two steps:

a. Apply longitudinal stretch, cLS to stretch the load-free geometry, A(xL, 0) by δI.

That is: x1 = cLS(xL, δI), where x1 is the location of xL after longitudinal stretch.

b. Apply radial expansion, cRS, by applying in-vivo mean pressure, pI . That is: x =

cRS(x1, pI), where x is a point on the pre-stressed artery. The result is a trial pre-

stressed geometry, A(x, s), with stresses, s.

5. Evaluate the least-square error function, ε:

ε = ‖x − xI‖� =
√∑

�

‖x − xI‖2, (4)

which is defined as the sum of the deviation of the nodal position of the nodes in the

set Ω, between their location on the pre-stressed artery and their corresponding loca-

tion, xI, in the in-vivo artery. For this study, Ω was taken as the set of nodes on the

outer surface of the arterial wall.

6. Stop the algorithm, if the value of ε is less than a pre-determined limit, L;

else, if ε >L, update, δr, and δl using Nelder-Mead optimization algorithm and pro-

ceed to the Step-2. The value of L was assumed to be 0.5 in this study.

It may be noted in Step-4, described above, that the pre-stressed arterial geometry

was computed as a part of the inverse algorithm. Therefore, the two sequential outputs

of the converged algorithm are: a) a load-free arterial geometry (Step 3); and b) the

corresponding pre-stressed geometry (Step 4).

Any geometrical shape matching-based inverse algorithm has two key operators: 1) an

optimization operator (Step-6) to compute a trial load-free geometry and 2) a computa-

tional mechanics operator (Step-2 and Step-4), to compute the deformed shape after the

application of the in-vivo pressure and longitudinal stretch. It is well established that

arterial wall materials are incompressible in nature. In the computational mechanics

operator, this incompressible behavior is incorporated through the material model. In

the present study, this has been achieved by using incompressible hyperelastic Mooney-

Rivlyn material. However, for a realistic simulation, the optimization operator which

computes a trial load-free arterial shape, also needs to incorporate this incompressibility

constraint. In this research, this was done through an additional volumetric constraint

to preserve the in-vivo arterial volume during optimization iteration.

Implementation and convergence

The complete methodology presented above was implemented using the python script-

ing language available in the ABAQUS CAE application (Dassault-Systems, Paris,

France). The rate of convergence in terms of the value of the least-square objective

function at the i-th evaluation from the beginning of the inverse process is shown in

Figure 4. The x-axis shows the number of objective function evaluations from the start

of the process. For the arterial geometry studied in this research, the algorithm was

found to converge within 20 to 30 evaluations of the objective function. The pre-deter-

mined termination criteria, L = 0.5 or less was found to provide an acceptable optimal

solution. In practice, the objective function values from the first few function evaluations

will provide a reasonable initial guess for δl and δr.
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Pulsatile pressure-flow response

The equations of motion for the arterial wall and blood-flow along with the boundary

conditions are described in the previously published research by Konala et al., [29].

The pulsatile pressure-flow response of the arterial wall was computed by solving the

coupled equations of wall deformation and the hemodynamic equations of blood flow

using ADINA (ADINA R & D, Inc., Watertown, MA). The non-Newtonian blood was

modeled as a Carreau fluid [30].

The dimensions of the load-free arterial geometry were obtained by the inverse method

described above. An axisymmetric finite element model of the fluid and the structure was

used for the pulsatile pressure-flow analysis [29]. The analysis was performed in two steps.

In the first step, the load-free artery geometry, which was obtained in the Step 3 of the

inverse algorithm, was pre-stressed by applying in-vivo longitudinal stretched, δI, and the

mean in-vivo arterial pressure, pI. In the second step, the pulsatile pressure was applied to

the pre-stressed artery. The pressure pulses, pin(t) and pout(t) were applied at the inlet and

outlet, respectively (Figure 5), as normal surface tractions [13].

Results
The results are presented in three sections. First, the results for dimensions of the

load-free and pre-stressed geometry computed by the inverse algorithm are presented.

Figure 4 Algorithm convergence. Convergence of the inverse algorithm in terms of the objective
function value and the number of function evaluation.

Figure 5 Pulsatile boundary conditions. Pulsatile pressure boundary condition pin(t) at the inlet, and pout
(t) at the outlet, applied as normal traction for blood flow-wall interaction.
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Then the stresses and strains in the pre-stressed arterial wall are presented. Finally, the

arterial wall stresses under the combined pulsatile pressure load and arterial wall pre-

stress are presented.

Load-free and pre-stressed arterial geometry

The cross-sectional dimensions of the load-free and pre-stressed arterial geometry for

the femoral artery using the inverse algorithm are presented in Figure 6. The in-vivo

artery dimensions are shown in Figure 6A. The load-free artery dimensions computed

by the inverse algorithm are shown in Figure 6B. The dimensions of the pre-stressed

artery obtained by applying in-vivo longitudinal stretch and mean arterial pressure to

the load-free geometry are shown in Figure 6C and 6D. For comparison, an image of

the load-free geometry is also superimposed on the image of the pre-stressed artery.

The dimensions of the in-vivo, load-free and the pre-stressed artery are compared in

Table 1. The length, inner diameter and thickness of the load-free arterial geometry

calculated by the shrink-and-fit inverse algorithm are: 35.14 mm, 3.1 mm and 0.435

mm, respectively. The load-free artery length of 35.14 mm represents shrinkage of

32.4% from the in-vivo length of 52 mm. It also represents an axial stretch of 48%

from the load-free length to the in-vivo length. The diameter change from the inner

arterial wall, between the load-free artery (3.1 mm) and the in-vivo artery (3.6 mm)

was 16.2%, whereas that for the outer arterial wall was 4.3%. The thickness of the

load-free artery was 0.435 mm, which was 61% thicker than the in-vivo artery with

thickness 0.27 mm.

Figure 6 Inverse algorithm results. Results from the inverse algorithm to compute the load-free and the
pre-stressed geometry for the idealized, straight, uniform diameter dog femoral artery model. Dimensions
of: A) in-vivo wall; B) load-free wall; C) pre-stressed arterial wall with load-free wall superimposed on it. D)
Details of the load-free and the pre-stressed cross-section. The comparison of the pre-stressed artery
geometry with that of the in-vivo artery show that the two are within 0.0015 mm deviation of each other
(the two nearly superimpose on one another).
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The length, inner diameter and the thickness of the pre-stressed artery obtained by

applying a mean arterial pressure and axial stretch of 48% to the load-free geometry

were: 51.99 mm, 3.603 mm and 0.2685 mm, respectively. The pre-stressed arterial geo-

metry shows a reasonable match with the in-vivo shape as is evident from the compari-

son of the corresponding dimensions shown in Table 1. The difference in length

between the in-vivo artery and the pre-stressed artery was 0.01 mm (0.019%). The

inner wall diameter of the pre-stressed artery was within 0.004 mm (0.11%) of the

in-vivo inner wall diameter of 3.6 mm. The difference in wall thickness between

the in-vivo artery and pre-stressed artery was 0.0015 mm (0.37%).

The volume of the load-free as well as the pre-stressed artery was 169.90 mm3. This

volume was calculated from the tessellated arterial geometry (Figure 2B). It was within

0.79 mm3 of the in-vivo volume of 170.69 mm3 since the optimization based inverse

algorithm has preserved the material volume of the artery.

Stresses and strains in pre-stressed artery

The stress, strain and deformation results for the pre-stressed artery under the mean

in-vivo pressure of 104.1 mmHg and in-vivo longitudinal stretch of 48% from the load-

free length are presented in this section. The value of the stresses, strains and deforma-

tions at the inner and the outer wall are tabulated in Table 2.

The radial stress (srr) varies from the value of 0.0136 N/mm2, at the inner wall, equal

to the applied pressure, to 0.0 N/mm2 on the outer wall surface (Table 2). The change in

circumferential stress from the inner wall surface (0.127 N/mm2) to the outer wall sur-

face (0.071 N/mm2) was 44%. Due to the nonlinear material property, the longitudinal

stress also varied across the vessel thickness. The difference in the longitudinal stress

between the inner (0.193 N/mm2) and the outer wall (0.140 N/mm2) was 27.8%. In the

pre-stressed configuration, the circumferential stresses are lower in magnitude than the

longitudinal stresses. At the inner wall, the circumferential stress (0.127 N/mm2)

was 34% lower than the longitudinal stress (0.193 N/mm2). Similarly, at the outer wall,

Table 1 Inverse algorithm results

In-vivo
(I)

Load-free
(inverse)

Pre-stressed
(P) % =

(
I − P
I

)
× 100

Inner diameter (mm) Inlet 3.60 3.104 3.604 1.1 × 10-1

Outlet 3.60 3.104 3.604 1.1 × 10-1

Outer diameter (mm) Inlet 4.14 3.974 4.140 0.0

Outlet 4.14 3.974 4.140 0.0

Thickness (mm) 0.270 0.435 0.269 3.7 × 10-1

Length (mm) 52.0 35.13 51.99 2.0 × 10-2

Volume (mm3) 170.69 169.90 169.90 4.6 × 10-1

The dimensions of load-free and pre-stressed geometry calculated by the inverse algorithm.

Table 2 Arterial wall stresses on inner and outer wall surface

srr × 101 sθθ × 101 szz × 101 εrr × 101 εθθ × 101 εzz × 101 dr × 101

r = ri (Inner wall) -0.137 1.271 1.937 -5.376 1.473 3.903 2.49

r = r0 (Outer wall) -0.0015 0.708 1.404 -4.356 0.426 3.929 0.82

Stresses, logarithmic strains and radial deformation on the inner and outer arterial wall of the pre-stressed artery. Units
for deformations are in mm and stresses in N/mm2.
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the circumferential stress (0.071 N/mm2) was 49% lower than the longitudinal stress

(0.140 N/mm2).

Pulsatile flow rate

The transient flow rate computed for the pre-stressed artery by applying the pulsatile

pressure pulse is shown in Figure 7. The numerically computed time averaged flow

rate, 246 ml/min, was 30% higher than the measured flow rate of 188 ml/min as

reported by Sinha-Roy et al., [13], for the tapered femoral artery. The measured flow

rate of 188 ml/min was obtained using Doppler flow wire for the tapered femoral

artery. The difference between the computed and measured value could be because of

Doppler measurements, which are based on average peak velocity (APV) and have

been reported to register a lower flow rate than actual [31-33].

Wall stresses under pulsatile pressure load

The variation of the longitudinal and circumferential Cauchy stress over the cardiac

cycle under the pulsatile inlet and outlet pressure pulse is presented in Figure 8. The

time averaged value of Cauchy stress at the inlet in the longitudinal direction was

0.148 N/mm2, and that in the circumferential direction was 0.104 N/mm2. Therefore,

for an in-vivo axial stretch of 48%, the time averaged longitudinal stress was 42.5%

higher than the circumferential stress.

Due to the pulsatile flow, the time-averaged longitudinal stresses had a difference of

0.001 N/mm2 between the inlet (0.149 N/mm2) and the outlet (0.148 N/mm2).

Between the inlet (0.104 N/mm2) and the outlet (0.101 N/mm2), the corresponding dif-

ference in the circumferential stress was only 0.003 N/mm2. The peak stress in the cir-

cumferential direction was 0.187 N/mm2 at the inlet and 0.168 N/mm2 at the outlet,

which corresponded to the time instant of peak pressure (Figure 5). Therefore, as evi-

dent from Figure 8, the overall time-variation of stress showed a similar trend between

the inlet and outlet.

Discussion
The primary contribution of this study was the development of an inverse algorithm to

calculate the in-vivo arterial pre-stress for a patient-specific artery. This algorithm was

developed for a patient-specific arterial geometry. For the present study, the algorithm

was tested using an idealized arterial wall geometry that was cylindrical in shape. Even

Figure 7 Computed flow-rate under pulsatile pressure. Transient flow rate under pulsatile pressure load
with wall pre-stress.
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though this idealized geometry was axisymmetric, the algorithm was tested using a 3D

cylindrical geometry. This was done to mimic the steps of a patient-specific case.

In addition to the idealized axisymmetric geometry, the algorithm was tested for a 3D

patient-specific arterial geometry. This was done to test the proposed steps (Figure 3) as

described in the methods section, for a patient-specific case. The intermediate steps

of the inverse algorithm for a patient-specific artery are shown in Figure 9. Specifically,

Figure 9A shows the lumen boundary, which in the patient-specific case will be obtained

from image reconstruction. As shown in Figure 1A, for the straight artery case, this sur-

face is simply a cylindrical surface. Similarly, Figure 9B shows the arterial wall geometry

obtained by adding wall thickness using nodal normal defined by Eq. 1. The correspond-

ing wall geometry for the straight artery case (Figure 1C) was constructed by adapting

the same procedure. Next, the finite element mesh used by the longitudinal and

radial shrink operators for the patient-specific case is presented in Figure 9C,

whereas Figure 1D shows the same for the straight artery. Finally, the boundary con-

ditions and constraints imposed on the finite element mesh for the patient-specific

case and the straight artery case are shown in Figure 9C and 1D, respectively. The

complete pressure-flow analysis using blood-arterial wall interaction for such a

patient-specific case will be presented in future.

The proposed algorithm simplified the inverse optimization problem to a two variable

problem involving radial and axial deformation. This helped in substantially reducing

the number of optimization variables from positions of each node to just two variables.

Moreover, the incompressibility of arterial material was incorporated in the inverse opti-

mization as a volumetric constraint; which preserved the in-vivo arterial volume during

optimization iterations. The performance and robustness of the algorithm for patient-

specific case needs to be tested with realistic artery geometry. For example, the algo-

rithm employed a longitudinal wall deformation operator to shrink or stretch the arterial

wall. The operator used sliding contact on a rigid contact surface, without contact

separation, to deform the wall while not altering its in-vivo arterial shape. However, for a

patient-specific case, the accuracy and performance of the contact algorithm is expected

to be influenced by the complex and tortuous 3D wall shape.

In the implementation of the inverse method, the Nelder-Mead optimization algo-

rithm was utilized for solving the non-linear least square minimization problem. One

of the drawbacks of the Nelder-Mead algorithm is its slow convergence near the

Figure 8 Arterial wall stresses under pulsatile pressure load. Cauchy stresses at the mid-wall location
in the circumferential and longitudinal direction at the inlet and outlet.
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optimal solution. In addition to that, the convergence of Nelder-Mead to an optimal

solution has not been proven mathematically. Other researchers have typically used

the Levenberg-Marquardt (LM) algorithm for inverse computation. However, the

advantage of Nelder-Mead is that it is a derivative free algorithm, whereas LM requires

computation of derivatives. The computation of the derivatives can be expensive when

a finite element solution is required for the evaluation of the objective function.

In the test with the idealized straight arterial geometry, the proposed inverse algo-

rithm was found to converge to an acceptable solution within 20 to 25 evaluations of

the objective function (Figure 4). However, as stated above, the convergence and

robustness of the algorithm needs to be tested for a real patient-specific case.

The validity of the load-free geometry computed by the inverse algorithm was assessed

by two criteria: 1) the geometrical match between the dimensions of the pre-stressed

artery and the in-vivo artery, and 2) the change in diameter between the load-free artery

and the pre-stressed artery. The first criterion is the necessary condition for a valid

inverse solution. The second criterion is also important which is discussed here. It is

Figure 9 Application of the inverse algorithm to a patient-specific artery. Intermediate steps of the
inverse algorithm. A) Lumen surface in form of triangular mesh of STL triangles obtained by geometry
reconstruction. B) Arterial wall geometry in form of STL-mesh of surface triangles. C) Finite element mesh
of the wall geometry using 8 node (or 20 node) hexahedral elements. D) Constraints imposed on the
arterial wall motion in each shrink and fit iteration. Rigid contact surface superimposed on the outer
arterial wall surface and extended at the ends, to maintain arterial shape during the longitudinal (axial)
shrink or stretch operation. Contact surface meshed with 4-noded quadrilateral elements. Only in-plane
radial motion in dr-dθ plane allowed for the nodes of the inlet and outlet surfaces. Additionally, nodes of
the outlets are allowed to move in dz direction during longitudinal stretch or shrink operation.
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possible to obtain a solution of the inverse problem satisfying the first criteria even if

inaccurate arterial wall material properties are specified in the computational model.

However, under such a scenario the deformation of the pre-stressed artery from the

load-free configuration may not be accurate. For example, if the arterial wall material

property is erroneously specified to be softer than what is actually observed, the defor-

mation of the artery from the load-free to the pre-stressed configuration will be large.

Excessive diameter changes between the calculated load-free geometry and the pre-

stressed geometry will imply inaccurate load-free geometry. Ideally, the diameter change

should match with the in-vivo measurements. For the femoral artery in the present

study, the change in the outer diameter was 4.3% between the load-free (3.97 mm) and

pre-stressed artery (4.14 mm). The corresponding change in the inner diameter was

14%. This was similar to the 5% outer diameter change reported by Huang et al., [5], for

a human carotid artery using a direct method (based on trial and error procedure). Simi-

larly, a change of 19% in the inner diameter of a porcine left anterior descending (LAD)

artery was reported by Hamza et al., [7].

It may be noted that the pre-stresses in an arterial wall segment are the result of

equilibrium of the wall segment (in the time averaged sense) under the applied stresses

and stretch. This equilibrium is primarily a balance between the different stress com-

ponents caused by the arterial pressure and tethering, along with the shear stresses

due to the blood flow, in relation to the stretch ratios in the axial, circumferential and

radial directions. Therefore, as indicated by Raghavan, et al., [34], some deviations in

the arterial wall material property values do not significantly affect the results of the

wall pre-stress. However, specification of significantly inaccurate material properties

may result in an incorrect computation of the load-free arterial geometry.

The time-averaged flow rate computed with the pulsatile pressure was 30% higher

than the measured value of 188 ml/min as reported by Sinha-Roy et al., [13]. The poten-

tial under-measurement than actual arterial flow rate by the Doppler flow wire, which

measure flow rate based on APV could have contributed to this difference [31-33].

The magnitude of the average circumferential and longitudinal stress in the artery

has been reported to depend on the value of the longitudinal stretch applied to an un-

tethered and unloaded, ex-vivo artery. For porcine LAD, Zhang et al., [35], have

reported lower magnitude of the average stress in the longitudinal direction compared

to the circumferential direction when the axial stretch was less than 40%. They report

that longitudinal stresses exceed circumferential stresses for axial stretch ratios greater

than 1.4 (i.e., 40% stretch from load-free length). The present study shows a develop-

ment of higher stresses in the longitudinal direction than circumferential, when the

artery is subjected to an in-vivo longitudinal stretch of 48% from its load-free length.

Specifically, under the pulsatile pressure, the mean stress in the longitudinal direction

was 42.5% higher than the stress in the circumferential direction.

The factors involved in the computation of in-vivo arterial stress are: a) wall defor-

mations, and b) wall material properties. The present results for the dog femoral artery

can be affected by any of those factors. Zhang et al., [35] have reported that the use of

an isotropic Mooney-Rivlin material model, instead of an anisotropic model, can result

in a lower value of the computed circumferential stresses. Similarly, considerable varia-

tion in the in-vivo axial stretch along the arterial vasculature has been reported by

many studies. These studies include, Guo et al., [36] for mouse aorta, Algranti et al.,
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[8], for coronary arteries and Guo et al., [6], for coronary arteries, as well as veins. Guo

et al., [6] study have also shown the dependence of in-vivo axial stretch on the vessel

diameter. It is possible that the axial stretch of 48% for the diameter of the femoral

artery evaluated in this study may need further investigation.

Conclusions
In this study, a methodology has been developed to incorporate the arterial wall pre-

stress in wall-blood flow interaction computation under pulsatile pressure. An optimi-

zation-based inverse algorithm has been developed and tested to incorporate arterial

wall pre-stresses in the computational model. This algorithm was used to compute the

load-free arterial geometry from the in-vivo arterial wall shape, axial stretch and mean

arterial pressure. For the canine femoral artery, the resulting pre-stressed artery geo-

metry, obtained by subjecting the computed load-free geometry to in-vivo pressure and

longitudinal stretch, was within 0.0015 mm of the in-vivo geometry. The inverse algo-

rithm has been designed to handle patient-specific cases. However, further testing is

required for a patient-specific case with: a) the realistic material property, and b) an

accurate measurement of the in-vivo longitudinal stretch.

Under pulsatile pressure and the in-vivo axial stretch of 48% from the load-free

length, the arterial stress in the longitudinal direction was found to be 42.5% higher

than those in the circumferential direction. This could be the result of either the rela-

tively higher in-vivo stretch (48% of load-free length) considered in our computation

or the use of an isotropic material model for the arterial wall material, rather than an

anisotropic material formulation.

Nomenclature
x = a point of the pre-stressed artery.

xI = a point of the in-vivo artery.

xL = a point of the load-free artery.

δr = radial deformation computed by optimization algorithm.

δl = length of longitudinal or axial stretch (or shrinking) computed by the optimiza-

tion algorithm.

δI = in-vivo axial stretch.

pI = mean in-vivo pressure.

cRS = radial deformation operator.

cLS = longitudinal or axial deformation operator.

S = shrink operator to shrinks the arterial geometry in the radial and axial direction.

F = fit operator to deform artery by applying the in-vivo longitudinal stretch and

mean in-vivo pressure.

sL = residual stresses in the load-free artery; a 3 × 3 tensor.

s = stresses in pre-stressed artery; a 3 × 3 tensor.

0 = zero stress state (at all points); a 3 × 3 null tensor.

A(xI, 0) = in-vivo arterial geometry without any stress.

A(xL, sL) = load-free arterial geometry with stresses, sL.
A(xL, 0) = load-free arterial shape with stresses deleted.

A(x, s) = pre-stressed artery with stresses, s.
ε = objective function for least-square minimization.
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