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Abstract

Background: The high-resolution X-ray imaging system employing synchrotron
radiation source, thin scintillator, optical lens and advanced CCD camera can achieve
a resolution in the range of tens of nanometers to sub-micrometer. Based on this
advantage, it can effectively image tissues, cells and many other small samples,
especially the calcification in the vascular or in the glomerulus. In general, the
thickness of the scintillator should be several micrometers or even within
nanometers because it has a big relationship with the resolution. However, it is
difficult to make the scintillator so thin, and additionally thin scintillator may greatly
reduce the efficiency of collecting photons.

Methods: In this paper, we propose an approach to extend the depth of focus
(DOF) to solve these problems. We develop equation sets by deducing the
relationship between the high-resolution image generated by the scintillator and the
degraded blur image due to defect of focus first, and then we adopt projection onto
convex sets (POCS) and total variation algorithm to get the solution of the equation
sets and to recover the blur image.

Results: By using a 20 μm thick unmatching scintillator to replace the 1 μm thick
matching one, we simulated a high-resolution X-ray imaging system and got a
degraded blur image. Based on the algorithm proposed, we recovered the blur
image and the result in the experiment showed that the proposed algorithm has
good performance on the recovery of image blur caused by unmatching thickness
of scintillator.

Conclusions: The method proposed is testified to be able to efficiently recover the
degraded image due to defect of focus. But, the quality of the recovery image
especially of the low contrast image depends on the noise level of the degraded
blur image, so there is room for improving and the corresponding denoising
algorithm is worthy for further study and discussion.

Introduction
Currently, high-resolution X-ray imaging systems such as Nano-CT based on the

third-generation synchrotron sources and X-ray detector with transparent lumines-

cent screen have been widely used to achieve a high spatial resolution in sub-micro-

meter or nanometer range [1,2]. So it can be effectively used to image tissues, cells

and many other small samples in-vitro or in-vivo, especially the calcification in the
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vascular and in the glomerulus. The detector consists of scintillator (YAG:Ce or

LuAG:Ce), microscope optics and low-noise CCD. The scintillator receives the x-ray

and converts it into visible light, which is then magnified by the microscope optics

and collected by the CCD camera [2]. To achieve good image quality, the depth of

focus of the microscope optics must match the thickness of the scintillator. The

final spatial resolution depends both on the thickness of the scintillator and the

depth of focus. According to Rayleigh criterion, the microscope lens in detection sys-

tems that employ transparent luminescent screens usually has a large numeric aper-

ture (NA) to extend the limits of resolution of certain wavelengths of visible light.

However, with an increasing NA, the depth of focus will become thinner and thin-

ner. Therefore if we want to focus the lens into the thin layer of the luminescent

screen and to obtain an image of good quality, we must grind the luminescent

screen very thin even down to several micrometers or less. The thinning of the scin-

tillator lowers the efficiency of converting X-ray into visible light and makes the

manufacture challenging. For example, if we desire that the detection system

employing transparent luminescent screens should achieve the limit of resolution of

visible light (~0.3 μm), the thickness of corresponding scintillator should be ~0.5 μm

according to Rayleigh criterion and formula of depth of focus. In the traditional

microscope system, the resolution is proportional to 1/NA, and the depth of focus is

proportional to 1/NA^2, so they are incompatible and usually we must compromise

the two parameters to suit specific needs. Fortunately, in the detection system

employing luminescent screens, there are some unique properties that we can

employ to extend the depth of focus. One of them is everywhere in the scintillator is

uniform, so the light intensity distribution across arbitrary layer in the scintillator is

identical except the minor difference that may arise from the divergence of X-ray

and the change in amplitude due to the x-ray attenuation. The divergence is negligi-

ble because the scintillator is relatively thin and the cone angle is very small for

most high-resolution X-ray imaging systems [2]. For example, the scintillator

installed before the objective with 5× magnification is about 20 μm thick, and the

one matching with 20× objective lens is about 5 μm. And usually in those cases,

the effect of divergence can not be seen. In order to avoid the effect of divergence,

we just focus our method on extending the depth of focus of objective lens with

higher magnification than 5× to about 20 μm. Because the 20 μm-thick scintillator is

easy to process and if we can use it to take place of the much thinner scintillator

needed in the higher resolution X-ray imaging systems, we can greatly improve the

resolution without considering the influence of the defect of focus. Our method is

similar to light field imaging [3,4] but without any other additional facilities. In the

experiment, we first simulated the continuous fluorescencing process of the scintilla-

tor, and approximately got a composite point spread function model by using one

property that point spread function of a certain luminous plane of a microscopic sys-

tem follows Gaussian distribution. Subsequently, we simulated a blur projection

image resulted from a little thicker scintillator which is not matching with the mag-

nification scale of the optical lens. After that, we adopted POCS and total variation

algorithm to recover the blur image. The results in the experiment show that we can

effectively extend the depth of focus of the high-resolution X-ray imaging systems by

using this algorithm.
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Methods
Simulated imaging

In the high-resolution X-ray imaging system, the detector consists of thin scintillator

material, optical lens with magnification and low noise CCD camera (Figure 1). The

thickness of the scintillator should be matched with the depth of focus of the objective

lens, e.g., one objective with 20× magnification and resolution of 1 μm, its DOF is

about 5 μm while the thickness of the scintillator would be 5 μm or less. When the

scintillator is thicker than that, a point on some layer of the scintillator that is away

from the focal plane is focused before or behind the sensor plane. This point becomes

a circle called circle of confusion (CoC) in the sensor, just as shown in Figure 2. When

this circle is smaller than a pixel, it cannot be seen, and that is why depth of focus

exists. But when the thickness of the scintillator exceeds the depth of focus, all the cir-

cles of confusion from different planes will overlap and make the resultant image blur.

The size of CoC can be derived from the basic geometric relationship among image

plane, object plane and focal length, and this relationship can be expressed as Eq. (1).

1
D

+
1
F
=
1
f
. (1)

Here, D is object distance, F is the conjugate distance of D and f is the focal length.

The direction z is parallel to the optical axis. According to the imaging equation,

Figure 1 X-ray imaging system model employing transparent luminescent screen and optical
system.

Figure 2 Imaging model of high-resolution X-ray imaging system in which the thickness of the
employed scintillator is not matching with the objective lens. D: Object distance, F: Image plane
distance, d: Diameter of lens aperture, f: Focal length, CoC: Circle of Confusion, A(x,y,z):Object point, B(x’,y’,
z’):virtual imaging point.
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object plane at the distance of D1 is focused before the immediate plane. It becomes

CoC in the immediate plane. The diameter of the circle can be calculated by Eq. (2).

dCoC =

∣∣∣∣ DD1
· (D1 − f )
(D − f )

− 1

∣∣∣∣ · d. (2)

Here, d is the diameter of the aperture lens. When dCoC is bigger than the pixel size

of the image sensor, the resolution of the image captured will decrease.

In the usual optical lens systems, image blur can be considered as the degradation

model with a convolution filter h(x, y) and this model can be denoted by

g(x, y) = h(x, y) ∗ f (x, y) + n(x, y), (3)

where, h(x, y) is the impulse response or point spread function (PSF) which is usually

relative with CoC of the imaging system, n(x, y) is the additive noise and g(x, y) is the

blur image. PSF of the defocused lens can be either modeled by the geometrical or

physical optics [5]. The former ignores the effect of diffraction and it can be consid-

ered as uniform distribution when the aperture is circular. For the physical optics case,

diffraction and aberration is taken into consideration and the signal intensity in the

CoC is assumed to follow Gaussian distribution [6-8] as follow.

h(x, y) =
1

2πσ 2
e
−
x2 + y2

2σ 2 . (4)

Here, the spread parameter s is proportional to the radius of the CoC [6-8]. Because

the radiuses of the CoC formed by different scintillator planes are not identical, the

response functions of different planes are not same, and because the divergence can

be neglected, the final blur image generated by the photons transmitting from all the

planes of the scintillator can be described as a form of integration as Eq. (5).

g(x, y) =

Z1∫
−Z0

f (x, y, z) ∗ h(x, y, z)dz =

Z1∫
−Z0

e−ξzf (x, y) ∗ h(x, y, z)dz, (5)

where, z0 refers to the distance from the focal plane in the scintillator to the scintilla-

tor’s left surface, z1 represents the distance from the focal plane to the right surface,

and ξ represents X-ray absorption coefficient. When assuming the image formed by

the photons which come from the focal plane and transmit through the optical lens to

be g0(x, y) = f (x, y)*h(x, y, 0) = f (x, y) ∗ δ(x, y) = f (x, y) , all other images formed by the

photons coming from other scintillator planes can be expressed as follow.

gz(x, y) = f (kx, ky)*h(kx, ky, z). (6)

Here, k is the scale factor and can be written as k =
F/
(D + z)
F/
D

=
D

D + z
. Now the

imaging formula of the final degraded blur image needed to be modifies as

g(x, y) =

Z1∫
−Z0

f (kx, ky, z) ∗ h(kx, ky, z)dz =

Z1∫
−Z0

e−ξzf (kx, ky) ∗ h(kx, ky, z)dz. (7)
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Its Fourier transformation can be described as

G(u, v) =

Z1∫
−Z0

e−ξz 1
k4

F(
z +D
D

u,
z +D
D

v)e−M2(u2+v2)z2dz, (8)

where, M2 = (ca
1
D
)2, a =

fd
D − f

and c is a constant which is relative with the system.

Now we can discretize G(u, v) and get G(m, n) as stated below.

G(m, n) =

Z1∫
−Z0

e−ξz 1
k4

F(
z +D
D

m�,
z +D
D

n�)e−M2�2(m2+n2)z2dz

=

Z1∫
−Z0

F(m� +
zm
D

�,n� +
zn
D

�)e−M2�2(m2+n2)z2−ξz 1
k4

dz

(9)

When λm ≤ zm
D

< λm + 1,λn ≤ zn
D

< λn + 1 , and lm, ln are integers, we can get the

approximate expression of F(m� +
zm
D

�,n� +
zn
D

�) by using bilinear interpolation or

nearest neighbor interpolation if z is quite small comparing with D. In our discussion,

we adopt bilinear interpolation for more accuracy and assume that z1 is 10 μm, -z0 is

-10 μm, D = 50 mm, sampling account of the blur image is 512*512, so

−0.1024 ≤ zn
D

≤ 0.1024, −0.1024 ≤ zn
D

≤ 0.1024, and G(m, n) can approximately be

transformed as

G(m,n) = F(m,n)�m,n + F(m,n + 1)�m,n+1 + F(m + 1,n)�m+1,n +

F(m + 1,n + 1)�m+1,n+1 + F(m - 1,n - 1)�m - 1,n - 1 + F(m - 1,n)�m - 1,n+

F(m,n - 1)�m,n - 1

(10)

where,
�m,n =

Z1∫
0

(1 − z(m + n)
D

+
z2mn
D2

)g(z)dz +

0∫
- Z0

(1 +
z(m + n)

D
+
z2mn
D2

)g(z)dz ,

�m+1,n =

Z1∫
0

(
zm
D

− z2mn
D2

)g(z)dz , �m+1,n =

Z1∫
0

(
zm
D

− z2mn
D2

)g(z)dz , �m+1,n+1 =

Z1∫
0

z2mn
D2

g(z)dz ,

�m - 1,n =

0∫
- Z0

(−zm
D

− z2mn
D2

)g(z)dz , �m - 1,n =

0∫
- Z0

(−zm
D

− z2mn
D2

)g(z)dz and

�m,n - 1 =

0∫
- Z0

(−zn
D

− z2mn
D2

)g(z)dz , and e−M2�2(m2+n2)z2−ξz 1
k4

= g(z) .

If we set ψ to be the inverse transform of function Ψ, the expression of the blur

image in spatial domain can be expressed as

g(k, l) = f (k, l)*ψm,n + (f (k, l)Wl
N) ∗ ψm,n+1 + (f (k, l)Wk

M) ∗ ψm+1,n+

(f (k, l)Wk
MW

l
N) ∗ ψm+1,n+1 + (f (k, l)W - k

M W−l
N ) ∗ ψm−1,n−1 +

(f (k, l)W−k
M ) ∗ ψm−1,n + (f (k, l)W−l

N ) ∗ ψm,n−1

(11)
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where,
Wl

N = e
−j
2π

N
l . For now, we set up a relationship between the image f(k, l)

generated by the luminous plane located on the focal plane and the blur image g(k, l).

M∑
i=0

N∑
j=0

wi,j,k,lf (i, j) =g(k, l). (12)

Here,

wi,j,k,l = ψm,n(k − i, l − j) +Wj
Nψm,n+1(k − i, l − j) +Wi

Mψm+1,n(k − i, l − j) + Wi
MW

j
Nψm+1,n+1(k − i, l − j)

+W−i
M W−j

N ψm−1,n−1(k − i, l − j) +W−i
M ψm−1,n(k − i, l − j) +W−j

N ψm,n−1(k − i, l − j)

and we will use this relationship to simulate the degraded blur image.

Recovery algorithm

When the pixel number of the detector is small, it is easy to invert the system of equa-

tions by conventional matrix theory. However, in practice there are usually as many as

tens of thousands of pixels in one detector, so it precludes any possibility to invert the

matrix directly. For solving the problems with large numbers of functions, there is an

attractive iterative method for solving them. That is called projection onto convex sets

algorithm, which was developed by Kaczmarz [9] and can be briefly described as follows.

�f (κ) = �f (κ−1) − (�f (κ−1) · �wi − p(i))
�wi · �wi

�wi. (13)

The vector �f (κ) in Eq. (13) is composed of all the variables

f (k)(1), f (k)(2), . . . , f (k)(M) that are generated by the kth iteration, and

�wi = (wi1,wi2, · · ·,wiM) is the weighting vector. In our model, we have a similar form

as described below.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�f (κ) = �f (κ−1) − (�f (κ−1) · �Wk,l − p(k, l))
�Wk,l · �Wk,l

�Wk,l

�f (κ) = (f (0, 0), f (0, 1), · · · , f (i, j), · · · )
�Wk,l = (w0,0,k,l,w0,1,k,l, · · · ,wi,j,k,l, · · · )

(14)

By using the POCS algorithm we can basically solve the equation sets. However,

since various types of noises and errors may exist during the imaging procedure, an

accurate unique solution to the system of equations may not exist. Rather we can only

obtain a near solution. Hence, the restored image is degenerated to some extent. In

order to improve the quality of the restored image, we adopt a compress-sensing algo-

rithm [10] based on the minimization of the image total variation (TV) during the

solution procedure. The TV algorithm is first developed for signal noise reduction, and

recently brought in CT reconstruction for insufficient data problems [11-13]. In this

paper we construct a TV expression similar to the one in CT reconstruction. Combin-

ing above iterative algorithm with the TV regularization, the new solution procedure

can be viewed as an optimization problem as stated below.⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min ||�f ||TV
M∑
i=0

N∑
j=0

wi,j,k,lf (i, j) =g(k, l)

f (i, j) ≥ 0

. (15)
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In Eq. (15), the vector �f represents an image and is composed of f(i, j) and the

expression ||�f ||TV means the l1 norm of the gradient of the image represented by �f .
The latter two parts of Eq. (15) are treated as data consistency constraint and positive

constraint, and the former part is a regularization term. The TV expression can be

described as

||�f ||TV =
∫∫ √

||∇f (x, y)||22 + ε2dxdy =
∫∫ √

(
∂f (x, y)

∂x
)
2

+ (
∂f (x, y)

∂y
)
2

+ ε2dxdy (16)

where ε is a small positive number. The minimization of TV of the image estimate

can be achieved using many optimization algorithms such as gradient descent or con-

jugate gradient method. In this paper we choose the gradient descent method to search

the minimization point that agrees with data consistency constraint. And the derivative

of ||�f ||TV can be expressed as an approximate discrete form as

∂||�f ||TV
∂f (i, j)

=
f (i, j) − f (i − 1, j)√

(f (i, j) − f (i − 1, j))2 + (f (i − 1, j + 1) − f (i − 1, j))2 + ε2
+

f (i, j) − f (i, j − 1)√
(f (i + 1, j − 1) − f (i, j − 1))2 + (f (i, j) − f (i, j − 1))2 + ε2

−

f (i + 1, j) + f (i, j + 1) − 2f (i, j)√
(f (i + 1, j) − f (i, j))2 + (f (i, j + 1) − f (i, j))2 + ε2

. (17)

Here, we have specified all the parameters needed in the solution procedure. The

solution procedure contains two phases: one is POCS and the other is TV gradient

descent. The two phases are alternately executed iteratively. The POCS phase enforces

the data consistency and the TV gradient descent phase reduces the TV of the inter-

mediate image from the POCS phase.

Experiment and result
The simulated pattern (Figure 3) is 512*512 pixels in dimensions, and the pixel size is

1 μm. This pattern is composed of five parts and the finest feature size on it is 1 μm.

The left top and the right bottom part contain a series of line pairs with different

pitches from 1 μm to 128 μm. The left bottom part is a grid with pitch of 5 μm, and

this grid together with the right middle Siemens star can be used to test the algo-

rithm’s performance on the complicated objects. The right top part contains line pairs

with gradually varied grayscale ranging from 10 to 190. This part can be used to test

the performance on the recovery of low contrast images. The specific parameters of

the involved optical system are given in table 1. The focal length f is 40 mm. The

object distance D is 50 mm and the image distance is 200 mm. The pixel size of detec-

tor is 1 μm, so the limited resolution of the optical system is 2 μm and the proper

thickness of the scintillator should be about 1 μm. But the scintillator chosed in the

experiment is 20 μm thick, and hence the resolution will greatly degrade. Given the

parameters of the optical lens and the relationship between the degraded blur image

and the original high-resolution image, we can approximately simulate a blur image

caused by inappropriate thickness of scintillator and defect of focus. In the experiment,

we assumed that the scintillator material was CsI and X-ray energy was 60 kV.
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In order to testify the effectiveness of the recovery algorithm, the complicated pat-

tern shown in Figure 3 was used as the wanted high-resolution image to simulate the

degraded blur image (Figure 4). After the blur image preparation, we first demon-

strated the performance of the proposed recovery algorithm on the recovery of the

noise-free degraded blur image. Further, Poisson noise was added to the degraded blur

image to study the robustness of this algorithm. To evaluate the resolution of the

restored image, modulation transfer function (MTF) [14] was brought in the experi-

ment. And besides, quantifications based on signal to noise ratio (NSR) and peak signal

to noise ratio (PNSR) were used to evaluate the quality of the restored image.

Ideal projection data without noise

We first tested the performance of the proposed algorithm on an ideal model, that is, a

noise-free degraded projection image. The blur image together with some magnified parts

of it is shown in Figure 4(a). From the blur image, we obtained a clear image (Figure 4(b))

by using the recovery algorithm proposed above. The MTF curve in Figure 5(a) shows

that the spatial resolution of the blur image is only about 160 lp/mm according to 10%

MTF. And the MTF in Figure 5(b) indicates that the recovery algorithm has perfect per-

formance on the noise-free model, and it can make the optical system achieve a somewhat

limited resolution.

Table 1 Parameters of the simulated Optical System

Parameter Value

f(Focal length) 40 mm

D(object distance) 50 mm

F(Sensor plane/image distance) 200 mm

d(Diameter of aperture) 25 mm

SPS(Sensor Pixel size) 0.001 mm

Figure 3 The simulated resolution pattern which is used to test the effectiveness of the proposed
algorithm.

Li et al. BioMedical Engineering OnLine 2015, 14(Suppl 1):S15
http://www.biomedical-engineering-online.com/content/14/S1/S15

Page 8 of 14



Projection data with noise

From the experiment and analysis above, we can conclude that the proposed algorithm

can perfectly recover the blur noise-free projection data. In the following experiment,

we want to test whether this method is available under noisy condition. The noise hav-

ing impact against recovery quality results from CCD camera. And the three primary

sources of noise in a CCD imaging system are photon noise, dark noise, and read

noise. Usually the involved CCD in the high-resolution X-ray imaging system is usually

equipped with refrigeration unit to greatly reduce dark noise and utilizes design

enhancement to reduce read noise, and besides, in practice the camera integration

time is often increased to collect more photons and make photon noise exceed both

dark noise and read noise, so the photon noise can be assumed the primary noise. The

Figure 4 Comparison between the blur image and the result images from the proposed method:
(a) simulated obscure image and its some parts with magnification, (b) recovery image and some
parts of it with magnification.
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photon noise results from the inherent statistical variation in the arrival rate of

photons incident on the CCD and the magnitude of signal containing it follows the

Poisson statistical distribution of photons incident on the CCD at a given location. So

in the experiment, we added Poisson noise to the noise-free blur projection image and

we assumed the maximum transmitting photon number was 106. From the recovery

image in Figure 6(a) and the MTF curve in Figure 6(b), we can conclude that this algo-

rithm can also recover the noisy blur image and achieve a somewhat limited resolution.

But the only shortage is that this algorithm can not perfectly recover the low contrast

parts (shown in part 3 of Figure 6(a)), and the quality of restored image depends on

the signal to noise ratio of the degraded blur image.

Quantification based evaluation

In addition to the visualization based evaluation above, we performed measurements of

local SNR and PNSR to quantitatively evaluate the quality of the recovery image. The

local SNR is defined as

SNR = 20*log(
u
σ
).

And, PNSR is computed as

PSNR = 10*log10(
2552

MSE
).

Here, MSE represents the Mean Square Error between the true image and the recov-

ery image. In the experiment, several different levels of Poisson noise were added to

the noise-free degraded blur image. From the recovery image in Figure 7(a) we can see

that when the incident photon number reaches to 2.5 × 106, the corresponding Poisson

Figure 5 Resolution comparison between the blur image and the result images from the proposed
method: (a) MTF’s for the optical system with 20 μm thick scintillator, (b) MTF’s for the recovery
image.
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noise has nearly no impact against the quality of the recovery image. And from the

local SNR and global PSNR curves for different noise level shown in Figure 7(b) (c),

we can quantitatively determine how the noise level impacts the recovery image qual-

ity, so the curves can help us in practice to determine which noise level is suitable

according to the quality requirement.

Discussion
In this paper we simulated a luminous model of the scintillator which is thicker than

the matching thickness. And based on this model, we developed a debluring algorithm

to recover the blur image caused by defect of focus. From the analysis of MTF curves

in the experiment, we demonstrated that the recovery algorithm can recover the blur

image almost by a hundred percent and achieve a somewhat limited resolution. When

the noise in real application is taken into consideration, this algorithm can also recover

the blur image quite well, but the quality of the recovery image depends on the SNR

level of the projection blur image acquired from CCD camera. That is to say, if we

want to get a more accurate recovery image, we need higher SNR level of projection

Figure 6 The recovery image and its MTF curve when Poisson noise was added to the projection
blur image: (a) recovery image from noisy projection data and some parts of it with magnification,
(b) MTF’s for the recovery image in (a).
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blur image. The stimulation in 3.3 can help us to choose which noise level is appropri-

ate in a specific system. Of course, some techniques such as ML-EM algorithm, pena-

lized weighted least-squares algorithm [15] which are respectively developed in PET

and CT reconstruction may be modified here to suppress the noise and to improve the

Figure 7 Quantitative quality evaluation of the recovery image for different levels of Poisson noise:
(a) recovery image when incident photons number is 2.5 × 106, (b) local SNR in the region
encompassed by the square of (a) for different levels of noise, (c) PSNR for different levels of noise.
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quality of the recovery image. And this modification is worthy for further study and

discussion.

Conclusion
The results in the experiment indicated that the proposed method could effectively

extend the depth of high-resolution X-ray imaging system. And if we want to get a

recovery image of higher quality, we should control the noise level of the degraded

blur image. In order to put this algorithm in practice, we should also know the system

constant c and calibrate the scintillator to make it to be perpendicular to the primary

optical axis, and these are our future work.
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