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Abstract

Background: Structured illumination microscopy has been extensively used in
biological imaging due to its low cost and easy implementation. However, the lack
of quantitative imaging capability limits its application in absolute irradiance
measurements.

Method: We have developed a quantitative structured illumination microscopy
image processing algorithm (QSIM) as a plugin for the widely used ImageJ software.
QSIM can work with the raw images acquired by a traditional structured illumination
microscope and can quantitatively measure photon numbers, with noise estimates
for both wide-field images and sectioned images.

Results and conclusion: We demonstrated the quantitative image processing
capability of QSIM by imaging a mouse kidney section in 3D. The results show
that QSIM can transform structured illumination microscopy from qualitative to
quantitative, which is essential for demanding fluorescence imaging applications.

Keywords: Structured illumination microscopy, Quantitative imaging, 3D imaging,
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Background
Structured illumination microscopy (SIM), a three-dimensional (3D) optical imaging tech-

nique, has been widely used in biomedical research because of its relatively low cost and

easy implementation [1-4]. Currently, SIM is commercially available as an add-on module

(e.g., Zeiss Apotome) for most wide-field optical microscopes, enabling acquisition of high

resolution sectioned images, much as a scanning confocal microscope does [5,6].

To acquire a sectioned depth layer, SIM normally captures three images I1, I2, I3 with

2π/3 phase shifted sinusoid illumination patterns, and computes the sectioned image as [1]

I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1−I2ð Þ2 þ I1−I3ð Þ2 þ I2−I3ð Þ2

q
ð1Þ

However, this demodulation algorithm has been criticized as non-quantitative

because it lacked a means of converting the raw detected signal into photon counts.

For a shot-noise-limited imaging system, e.g., a confocal microscope, imaging a

uniform illuminated field, the detected photons Nd simply equal

Nd ¼ �I 2=σ2 ð2Þ
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where I is the mean of the intensity grey level distribution and σ is its standard

deviation [7]. Equation 2 is valid because in a shot-noise-limited imaging system the

image noise σ obeys a Poisson distribution. For SIM, however, the calculation of Nd

cannot follow the same approach because the out-of-focus light is removed after being

detected. In fact, the image noise σ in SIM is attributed to three sources – photon noise

from the sectioned depth layer, photon noise from the out-of-focus depth layers, and

noise caused by nonlinear demodulation (Eq. 1).

The lack of quantification limits SIM’s application in absolute irradiance measure-

ments [8,9]. To overcome this problem, we recently proposed a quantitative SIM image

reconstruction algorithm [10]. By calibrating the camera’s gain and estimating the

modulation contrast in the detected images, the number of detected photons from a

single sectioned depth layer can be derived. This gives SIM the same quantitative

capability to measure photons as a confocal microscope. To make our algorithm easily

available to the biological research community, here we present QSIM, a free open-

source plugin for the widely used ImageJ software (http://rsb.info.nih.gov/ij/). QSIM

integrates system calibration and image processing in one software package. By

performing two simple calibration experiments prior to SIM imaging (Implementation),

QSIM is able to calculate photons and noise maps for both reconstructed sectioned

and wide-field images.
Implementation
The image processing flowchart of QSIM is shown in Figure 1. To employ QSIM in

quantitative SIM image processing, two calibration experiments are required, involving

camera gain measurement and image contrast modulation measurement. The under-

pinning principle of QSIM calibration is detailed in [10]. Here we focus on its practical

implementation on a microscopic imaging system and procedures to acquire the

calibration data for the software.
Calibration experiment 1: camera gain measurement

Step 1: Set up Koehler illumination on the microscope sample stage.

Step 2: Choose the camera gain settings and digitization level that will be used in

SIM imaging experiments.

Step 3: Image a uniformly illuminated field with a microscope objective. Increase the

illumination intensity step by step from zero to the level where the camera is almost

saturated. The number of illumination steps should be larger than five. At each illumin-

ation level, capture two empty field images with the same integration time.
Calibration experiment 2: illumination modulation contrast measurement

Step 1: Prepare an evenly-distributed fluorescent microsphere sample. Choose fluores-

cence microspheres with mean diameters less than the targeted sectioning thickness.

Uniformly suspend the fluorescence microspheres by vortex mixing and sonicating the

suspension. Deposit the suspension onto a microscope slide and seal it by a coverslip.

Step 2: Image the microsphere slide with SIM, and save the raw images (unprocessed

with grid patterns). A separate measurement is required for each objective and grid

http://rsb.info.nih.gov/ij/


Figure 1 QSIM image processing flowchart.
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combination because the modulation contrast is specific to the microscope’s objective

and illumination grid’s frequency.

After these two sets of images (from experiment 1 and 2) are loaded, QSIM automatic-

ally calculates the camera gain g and illumination modulation contrast m, and saves the

results into a calibration file. This file can be used for processing SIM images acquired

with the same settings as the calibration experiment. QSIM has three modules: calibra-

tion, single 2D image processing, and 3D image processing. The screenshots of operating

these modules are shown in Figures 2, 3 and 4, respectively. Provided that each SIM phase

image has M ×N (rows × columns) pixels, for 2D image processing, QSIM requires a

single image—in which three SIM phase images are concatenated into an array of 3M ×N

pixels—as the data entry. For 3D image processing, QSIM requires a sequence of similarly

constructed SIM images, and each concatenated image must be captured at a different

depth. QSIM calculates four images—wide-field and sectioned fluorescent images and

their corresponding noise maps—as the data output at each depth layer. All these images

have M ×N pixels, and the pixel values are in the unit of photons.
Results and discussion
To demonstrate the advantages of QSIM in processing biological SIM images, we

imaged a mouse kidney section (~10 μm thick, Life technologies) on a Zeiss Axio



Figure 2 Screenshots of operating QSIM’s “Calibration” module.
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Figure 3 Screenshots of operating QSIM’s “Single 2D Image Processing” module.
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Imager Z1 microscope equipped with an Apotome module and an AxioCam MRM

monochromatic camera (1388 × 1040 pixels). The tissue sample was stained with a

fluorescent dye, Alexa Fluor 488 (495 nm excitation maximum, 519 nm emission

maximum), on convoluted tubules and illuminated by a HBO100 light source. The

fluorescence was collected by a Zeiss Plan-Apochromatic 20× objective with a numer-

ical aperture of 0.8. The acquisition of raw SIM images was accomplished by Zeiss

Apotome’s companion operating software, AxioVision.

The acquired raw SIM images were then loaded into ImageJ and processed by the

QSIM module. The QSIM-calculated wide-field image, sectioned image, and their noise

maps at a representative depth z = 4 μm are shown in Figure 5a-d, respectively. In

addition, we scanned the sample along the depth axis with a step size of 2 μm, and

show the corresponding sectioned images in Figure 5e. It is important to note that in

the QSIM-calculated images the pixels’ values are in units of photons, rather than in an



Figure 4 Screenshots of operating QSIM’s “3D Image Processing” module.
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arbitrary grey level unit as commonly seen in existing SIM image processing software,

such as AxioVision. This capability of measuring absolute irradiance is crucial for lever-

aging SIM in quantitative fluorescence imaging applications, such as fluorescence

resonance energy transfer [11], fluorescence correlation spectroscopy [12], and

quantum yield measurement experiments [13]. Moreover, QSIM calculated the noise

at each pixel for both the wide-field and sectioned images, again in units of photons.

The resultant noise maps (Figure 5c and d) thereby provide users with a tool to assess

the value of measured results.

To further evaluate the images calculated by QSIM, we calculated the histograms

of the measured photons and noise map for the sectioned image (Figure 6a) and

wide-field image (Figure 6b). The results indicate that, compared to the wide-field

image, the sectioned image has more “dark” pixels because SIM removes the



Figure 5 QSIM-calculated quantitative images. (a) Sectioned mouse kidney image at z = 4 μm. (b)
Wide-field image at z = 4 μm. (c) Corresponding noise map of sectioned image. (d) Corresponding noise
map of wide-field image. (e) Sectioned images at all depth layers. The image intensity values are in units
of photons.
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background and thereby increases the image contrast. In addition, the sectioned

image also has more “noisy” pixels, degrading the system’s performance from the

shot-noise limit. This is consistent with the fact that, although the out-of-focus light

is subtracted from the sectioned image, the added shot noise contributed by the

out-of-focus light cannot be eliminated. Instead, this noise is amplified by a factor

of
ffiffiffi
2

p
=m (m is the illumination modulation contrast at the sample plane) due to

SIM’s nonlinear demodulation [10].
Figure 6 Histograms of QSIM-calculated sectioned image and wide-field image. (a) Histogram of light
energy. (b) Histogram of noise.
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Conclusions
In summary, using QSIM software in conjunction with a traditional SIM hardware

provides a complete solution for the measuring photon count from a sectioned

depth layer. From the same SIM raw images, QSIM can provide additional quan-

titative information about the sample, not available from current commercially-

available SIM image processing software. QSIM is expected to facilitate the

conversion of SIM from being a qualitative imaging technique into a confocal-like,

quantitative imaging modality, and to make it accessible to a broad biomedical

research community.

Availability and requirements
Project name: Quantitative structured illumination microscopy.

Project home page: http://code.google.com/p/quantitative-sim/.

Operating systems: Windows 7 or 8, Mac OS X, and Linux.

Programming language: Java.

Compatible ImageJ versions: 1.49m or newer.

Licence: QSIM is distributed under the terms of the GNU General Public License 2.0.

The QSIM java code is freely available at http://code.google.com/p/quantitative-sim/.

Users need to compile this java code in ImageJ to generate a Java class file as instructed

in the companion Additional file 1.

Additional file

Additional file 1: Help file for QSIM.
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