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Abstract

Background: Magnetic resonance imaging (MRI) is corrupted by Rician noise, which
is image dependent and computed from both real and imaginary images. Rician
noise makes image-based quantitative measurement difficult. The non-local means
(NLM) filter has been proven to be effective against additive noise.

Methods: Considering the characteristics of both Rician noise and the NLM filter, this
study proposes a frame for a pre-smoothing NLM (PSNLM) filter combined with
image transformation. In the PSNLM frame, noisy MRI is first transformed into an
image in which noise can be treated as additive noise. Second, the transformed MRI
is pre-smoothed via a traditional denoising method. Third, the NLM filter is applied
to the transformed MRI, with weights that are computed from the pre-smoothed
image. Finally, inverse transformation is performed on the denoised MRI to obtain
the denoising results.

Results: To test the performance of the proposed method, both simulated and real
patient data are used, and various pre-smoothing (Gaussian, median, and anisotropic
filters) and image transformation [squared magnitude of the MRI, and forward and
inverse variance-stabilizing trans-formations (VST)] methods are used to reduce noise.
The performance of the proposed method is evaluated through visual inspection
and quantitative comparison of the peak signal-to-noise ratio of the simulated data.
The real data include Alzheimer’s disease patients and normal controls. For the real
patient data, the performance of the proposed method is evaluated by detecting
atrophy regions in the hippocampus and the parahippocampal gyrus.

Conclusions: The comparison of the experimental results demonstrates that using a
Gaussian pre-smoothing filter and VST produce the best results for the peak signal-
to-noise ratio (PSNR) and atrophy detection.
Background
Magnetic resonance imaging (MRI) images of the brain have an important role in diag-

nosing many neurological diseases, such as Parkinson’s disease, Alzheimer’s disease

(AD), brain tumors, and stroke. Analyzing MRI images can help surgeons make appro-

priate decisions. However, MRI noises degrade image quality, which negatively affects

image processing and analysis works, such as registration, segmentation, classification,

and visualization. To obtain reliable analysis results, removing MRI image noises is ne-

cessary before further image processing can be conducted.

The technique of removing noises from images is called “image denoising,” which is an

important image pre-processing step. Although many image denoising methods have
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been developed, denoising remains a challenge because these methods produce artifacts

and blurry images [1]. Most denoising methods still cannot provide desirable results [2].

The most commonly used noise model is the additive noise model, that is,

I ¼ I0 þ n ð1Þ

where noise n is independent and Gaussian distribution with zero-mean and known
standard deviation, I0 is the true signal, and I is the observed signal. Most denoising

methods have been developed by using the additive noise model. These methods are

classified into two major categories: spatial filtering and transform domain filtering

methods.

Spatial domain techniques directly deal with image pixels. A spatial image filter is an

image operation wherein each pixel or voxel value I(u) is transformed through a func-

tion of the intensities of the pixels or voxels within a neighborhood (u). Traditional

spatial image filters include Gaussian [3], median [4], Wiener [5], diffusion [6], and bi-

lateral filters. Gaussian and median filters remove noise in a small constant region and

blur images. An anisotropic diffusion filter preserves the edges of images, but erases

small features and generates a mask effect in uniform regions of the denoised images.

These denoising methods significantly remove noise but cause blurred images and add

artifacts to the images. A transform domain image filter transforms images from the

space domain into another domain, such as the frequency and wavelet domains [7],

and then processes images in the new domain. The wavelet thresholding method can

significantly reduce noise, but introduces characteristic artifacts. In this study, we

mainly focus on the spatial domain filter.

A non-local mean (NLM) algorithm has been proposed recently [8]. This algorithm

provides good edge-preserving results. Each pixel of the denoised image from the NLM

algorithm can represent the weighted average of all pixels in the noisy image by using a

Gaussian function as the smoothing function. The NLM filter has been proven to be an

effective denoising method, particularly against additive noise.

Many MRI denoising methods have been reported. Gaussian filter smoothing is a key

step in voxel-based morphometry (VBM) analysis [9]. A Wiener filter uses its neighbor-

hood to estimate its parameters [10]. An anisotropic filter combines local linear mini-

mum mean squared error (MSE) filters to remove MRI noise [11]. A trilinear filter

achieves edge-preserving results by integrating geometric, photometric, and local struc-

tural similarities [12]. Noise estimation methods in the wavelet domain are also used in

MRI denoising. MRI in the wavelet domain is decomposed into sub-bands at various

scales. Coefficients are processed with soft or hard thresholding to estimate signal com-

ponents [13]. The NLM filter is also used in MRI denoising [14,15].

The noise in the MRI images is modeled according to the coil number in the imaging

system. In the single coil system, the noisy distribution in MRI images can be modeled

as a Rician distribution [16], which assumes that the real part and imaginary part of the

MRI image is an uncorrelated Gaussian distribution with a zero mean and equal vari-

ance. While in the multi-coil system (parallel MRI), the magnitude of noises follows a

non-central Chi distribution [17] with a sum-of-squares (SoS) reconstruction. The

noise in the MRI images acquired from the generalized auto calibrating partially paral-

lel acquisition (GRAPPA) reconstruction [18] can be modeled by the non-central Chi

distribution. Actually, the Rician distribution is a special case of the nonCentral Chi
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distribution. To apply the additive noise model, the nonCentral Chi distribution should be

transformed into the Gaussian distribution in the transformed space. Therefore, the

above-mentioned denoising methods can be applied to the transformed data. After inverse

transformation of the denoising data, the noise is removed from the MRI images. Many

mthods have been proposed to deal with the problem, such as the local moment distribu-

tion based method [19], nonlocal maximum likelihood (NLML) estimation [20], and the

effective variance of noise from the composite magnitude signal of MR data [20].

In this study, we focus on the single coil system which produces noises with Rician

distribution. To remove noise and apply the additive noise model, Rician noise should

be transformed into an independent Gaussian noise. The squared magnitude correction

is widely used for MRI denoising [13]. The standard deviation of noise is estimated

from a dark uniform background. Recently, a forward and inverse variance-stabilizing

transformation (VST) [21] has been proposed for the Rician distribution. The forward

VST removes the dependency of the noise variance on the observed image, and the in-

verse VST compensates the bias in the filtered image.

A frame for a pre-smoothing NLM (PSNLM) filter is proposed in the study. MRI

noise is first transformed into additive noise and then smoothed by a traditional denois-

ing filter (Gaussian, median, or anisotropic). Next, the weight of the NLM algorithm is

calculated from the smooth image, and noise is removed by the NLM filter. Finally, in-

verse transformation is used to obtain accurate results. Squared magnitude transforma-

tions, as well as forward and inverse variance-stabilizing transformations (VST) [21],

are adopted to transform noise in the proposed method.

Methods
The proposed method includes four steps: (1) transformation of noisy MRI, (2) pre-

smoothing of the transformed MRI, (3) noise removal by the NLM filter, and (4) un-

biased correction (inverse transformation) of the denoised image. The block diagram is

shown in Figure 1.

MRI Model

MRI images are widely used in medical applications because they prevent the formation

of phase artifacts by discarding phase information. MRI is computed from both real

and imaginary images, which are assumed to contain Gaussian distribution noises with

zero means [14]. Thus, noise is image dependent, which follows a Rician distribution,

and makes removing noises difficult. A complex MRI is represented as follows:

z ¼ zreal þ jzimaginary ¼ rcosθþ n1ð Þ þ j rsinθþ n2ð Þ ð2Þ

where z is the complex MRI; zreal and zimaginary are the real and imaginary components,

respectively, which are independently corrupted by Gaussian white noises n1 and n2, re-

spectively, with zero mean and standard deviation σ; and r and θ are the magnitude

and phase of the original MRI, respectively.
Figure 1 Block diagram of the proposed method.
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A measured noisy MRI can be represented as follows:

zj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcosθþ n1ð Þ2 þ rsinθþ n2ð Þ2

q
ð3Þ

The measured MRI magnitude |z| is under Rician distribution and is represented as
follows:

P z r; σÞ ¼ z
σ2

e−
z2þR2

2σ2 I0
zr
σ2

� �����
ð4Þ

where I0 denotes the modified Bessel function of order zero.
Estimating noise from the measured magnitude |z| of MRI is difficult. The most com-

monly used method is to square the magnitude of MRI. Recently, VST is proposed for

Rician noise processing.

The squared magnitude method

Based on Eq. (2), the expectation of |z|2 is given as follows:

E zj j2� � ¼ E rcosθþ n1ð Þ2 þ rsinθþ n2ð Þ2� � ¼ μ2r þ 2σ2 ð5Þ

This equation indicates that the squared magnitude MRI has a 2σ2 noise bias and is
image independent. For an original brain MRI, the background is an empty region with

zero intensity. Thus, σ in the background region can be estimated as follows:

σ ¼
ffiffiffi
μ

2

r
ð6Þ

where μ is the mean intensity of the squared magnitude MRI in the background region.
|z|2 can be filtered by using any noise removal method Φ. According to Eq. (4), the un-

biased Iu is estimated as follows:

Iu ¼ Φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zj j2� 	

−2σ2
q

if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zj j2−2σ2

q
≥0

0 otherwise

(
ð7Þ

Background of the brain

The background of the brain can be estimated by using any segmentation method. In

this study, the Otsu method [22], which is an automatic image segmentation technique,

is adopted to extract the background region. This algorithm assumes that two classes

of pixels or bi-modal histogram (e.g., foreground and background) are found in the

image and exhaustively searches for the threshold that maximizes inter-class variance

[22,23]. The process includes median filtering, Otsu segmentation, morphological close

operation, and filling the holes in the image.

If the skulls of T1, T2, and PD are clear, then the mask of the brain is easily seg-

mented as well as the background that uses the process. An example is shown in

Figures 2, 3 and 4. Figure 2(a) shows the original T1-weighted MRI; Figure 2(b) shows

the T1-weighted MRI with Rician noise; Figure 2(c) presents the result of median filtering;

Figure 2(d) provides the result of the morphological close operation; and Figure 2(e) pre-

sents the result after the holes are filled. Figure 3(a) shows the original T2-weighted MRI;

Figure 3(b) shows the T2-weighted MRI with Rician noise; Figure 3(c) presents the result

of median filtering; Figure 3(d) provides the result of the morphological close operation;



Figure 2 An example of extracting background from T1-weighted MRI. (a) the original T1 weight MRI,
(b) the MRI with Rician noise, (c) the result of the median filtering, (d) the result of the morphological close
operation, and (e) the result of the brain region.
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and Figure 3(e) presents the result after the holes are filled. Figure 4(a) shows the original

PD-weighted MRI; Figure 4(b) shows the PD-weighted MRI with Rician noise; Figure 4(c)

presents the result of median filtering; Figure 4(d) provides the result of the morpho-

logical close operation; and Figure 4(e) presents the result after the holes are filled. In

these figures, the bright area is the brain region, whereas the dark area is the background.

In many cases, the skull is clear only in the T1-weighted MRI, and its intensities in the

T2- and PD-weighted MRIs are close to the background. Figure 5 shows the T1-, T2-, and

PD-weighted MRIs of a patient with meningioma. Figure 5(a) shows the T2-weighted

MRI; Figure 5(b) shows the PD-weighted MRI; and Figure 5(c) shows the T1-weighted

MRI. In such situations, the brain region and the background are easily segmented for the

T1-weighted image, as shown in Figure 5(d) to (f). Figure 5(d) presents the result of me-

dian filtering; Figure 5(e) provides the result of the morphological close operation; and

Figure 5(f ) presents the final result. To obtain the background of the corresponding

T2- and PD-weighted MRIs, we align the T1-weighted MRI to the T2-and PD-

weighted MRIs, and transform the background of the T1-weighted MRI into the T2-

and PD-weighted spaces. The transformed background can be used as the background

of the T2- and PD-weighted MRIs. Given that the images belong to the same person,

aligning them is easy. The images are multi-modal; therefore, a rigid registration with

mutual information is selected to align the images [24].
The method of variance-stabilization

This method involves the optimal forward and inverse VSTs for Rician noise. Forward

transformations (f ) treat MRI noise as an additive noise with a unitary variance. Thus,

noise can be removed by using the NLM filter. Denoising MRI can be achieved through

inverse transformation (I).
Figure 3 An example of extracting background from T2-weighted MRI. (a) the original T2 weight MRI,
(b) the MRI with Rician noise, (c) the result of the median filtering, (d) the result of the morphological close
operation, and (e) the result of the brain region.



Figure 4 An example of extracting background from PD-weighted MRI. (a) the original PD weight
MRI, (b) the MRI with Rician noise, (c) the result of the median filtering, (d) the result of the morphological
close operation, and (e) the result of the brain region.
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Forward transformations can be represented as follows:

f zð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
z2

σ2
−
1
2

r
þ a ð8Þ

where a is a constant a ¼ f zð Þ− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 =σ2−0:5

p
. The details can be found in [16]. In
max max

this study, σ is obtained from the background through Eq. (5), as described in the above

section.

A denoising method Φ is then applied to f(z) to obtain a noise removal image D.

D ¼ Φ f zð Þð Þ ð9Þ

Inverse transformation is then applied to D to obtain unbiased estimation Iu as
follows:
Figure 5 Images of a patient with meningiomais, T2- and PD- weighted MRI are registered to T1
weighted MRI, which is clear and easy to extract background. The background region of T1 weighted
MRI is also the background region of registered T2- and PD- weighted MRI. (a) T2 weight MRI, (b) PD weight
MRI, and (c) T1 weight MRI, (d) the result of the median filtering for T1 weight MRI, (e) the result of the
corresponding morphological close operation, and (f) the final result of the background (dark region).
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Iu ¼ I Dð Þ≈ σ D−að Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D−að Þ2

q
þ 0:5

ð10Þ

NLM filter

For a 3D image measuring Nx ×Ny ×Nz in the NLM filter, the estimated intensity NLM

(|z|(i, j, k)) of voxel (i,j,k) is the weighted average of all voxel intensities in the noisy

image |z|, which is defined as follows:

NLM zj j i; j; kð Þð Þ ¼
XNx−1

l¼0

XNy−1

m¼0

XNz−1

n¼0

w i; j; k; l;m; nð Þ zj j l;m; nð Þ ð11Þ

where NLM(|z|(i, j, k)) is the intensity of the denoised image at position (i,j,k) through
the NLM filter, |z|(l,m, n) is the intensity of the noisy image at (i,j,k), and w(i, j, k, l,m, n)

is the weighting coefficient that is defined as follows:

w i; j; k; l;m; nð Þ ¼ 1
Z i; j; kð Þ e

−
Ga zj j Ni;j;kð Þ− zj j Nl;m;nð Þk k2

h2 ð12Þ

XNx−1XNy−1XNz−1

where 0≤w i; j; k; l;m; nð Þ≤1;

l¼0 m¼0 n¼0
w i; j; k; l;m; nð Þ ¼ 1; h is the filtering

degree. Ni,j,k and Nl,m,n are the blocks centered at voxels (i,j,k) and (l,m,n), respectively,

with both blocks measuring nx × ny × nz; Ga is a Gaussian weighting function with zero

mean and standard deviation, where a is typically set to one; and Z(i, j, k) is a normaliz-

ing constant that is defined as follows:

Z i; j; kð Þ ¼
XNx−1

l¼0

XNy−1

m¼0

XNz−1

n¼0

e

−
Ga zj j Ni;j ;kð Þ− zj j Nl ;m ;nð Þ2

h2

ð13Þ

According to the Eq. (10)-(12), to modify each noisy voxel |z|(i, j, k), its neighborhood

|z|(Ni,j,k) is compared with other noisy voxel’s neighborhood |z|(Nl,m,n) in the entire

image. It needs huge computation. Considering the computational efficiency, usually

the search window is selected to be a much smaller than the size of the entire image

and is sx × sy × sz.

The Pre-smooth Non-local Means Filter (PSNLM)

Before using the NLM filter, MRI |z| is first transformed into It via forward transformation

f (squared magnitude or variance stabilization). Subsequently, It is smoothed by a trad-

itional filter S (Gaussian, median, or anisotropic) to become Is . When the NLM filter is

used to remove noise, the weight and normalizing constant are calculated from Is as

follows:

It ¼ f zj jð Þ; Is ¼ S Itð Þ ð14Þ

w i; j; k; l;m; nð Þ ¼ 1
Z i; j; kð Þ e

−
Ga Is Ni;j;kð Þ−Is Nl;m;nð Þk k

h2

2

ð15Þ
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Z i; j; kð Þ ¼
XNx−1

l¼0

XNy−1

m¼0

XNz−1

n¼0
e
−
Ga Is Ni;j;kð Þ−Is Nl;m;nð Þk k2

h2 ð16Þ

An unbiased estimation is obtained through inverse transformation of the PSNLM re-
sult. PSNLM1 and PSNLM2 are used to represent squared magnitude and VST,

respectively.

PSNLM1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PSNLM Isj j2� 	

−2σ2
q

if PSNLM Isj j2� 	
−2σ2≥0

0 otherwise

(
ð17Þ

PSNLM2 ¼
σ PSNLM

ffiffiffiffiffiffiffiffiffiffi
Is2

σ2 −
1
2

q
þ a


 �
−a


 �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PSNLM

ffiffiffiffiffiffiffiffiffiffi
Is2

σ2 −
1
2

q
þ a


 �
−a


 �2
s

þ 0:5

ð18Þ

The summary of PSNLM is listed in Table 1.

Evaluation

For the simulated data, the results are measured quantitatively by the peak signal-to-

noise ratio (PSNR), which is a commonly used objective metrics, and visual inspection.

PSNR is defined as follows [25]:

PSNR ¼ 10 log10
C2

MSE
ð19Þ

where C is the maximum intensity in which the image can be given. MSE between the

final denoised image and the original image is defined as follows:

MSE ¼ 1
Nx � Ny � Nz

XNx−1

i¼0

XNy−1

j¼0

XNz−1

k¼0
PSNLM1 i; j; kð Þ−r i; j; kð Þð Þ2 ð20Þ

MSE ¼ 1
Nx � Ny � Nz

XNx−1

i¼0

XNy−1

j¼0

XNz−1

k¼0
PSNLM2 i; j; kð Þ−r i; j; kð Þð Þ2 ð21Þ

where PSNLM1(i, j, k) and PSNLM2(i, j, k) are the voxels of PSNLM1 and PSNLM2, re-
spectively, at position (i, j, k); and r(i, j, k) is the original MRI at position (i, j, k). A large

PSNR indicates good results.
Table 1 Summary of the PSENLM

PSENLM1 PSENLM2

(1) Extract background (1) Transform noisy image by the forward
variance-stabilization transformation

(2) Compute the noise variance σ2 according Eq. (5) (2) Smooth the transformed image

(3) Compute the squared magitude of noisy image (3) Compute the weigh term from the
smoothed image

(4) Smooth the squared magitude of noisy image (4) Obtained final result by the inverse
variance-stabilization transforming of the
NLM denoising result

(5) Compute the weigh term from the smoothed image

(6) Correct bias by subtracting 2σ2 from the NLM denoising result.
The final result is obtained by squared root of the bias correction
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For real patient data, the performance of the proposed method in detecting brain at-

rophy among patients with AD is evaluated by using VBM [9,26]. In VBM studies, all

individual brain images are spatially normalized onto template space through a registra-

tion algorithm. Based on the estimated deformation field, each brain morphometry in-

formation can be measured by using a Jacobian map, which reflects regional volumetric

changes that are compared with the template image. Subsequently, voxel-wise group

analysis is performed by using SPM software to detect brain atrophy [27].

Experiment data

The experiment data include both simulated and real patient data. The 3D-simulated

MRI images that are used in the experiments are downloaded from the BrainWeb data-

base [2]. The simulated T1-, T2-, and PD-weighted MRI images without noise are

downloaded. The size of each image is 181 × 217 × 181 and the intensity is 256 bins.

Rician noise is simulated according to Eq. (2), with n1 ~ N(0, σ), n2 ~ N(0, σ), θ = 0, and

r is a an image without noise, which can be taken as the ground truth. Various levels of

noise (percent %) are added to the three MRI images.

σ ¼ percent%� t ð22Þ

where t is the intensity of the brightest tissue, which is 150, 250, and 255 for T1-, T2-,
and PD-weighted MRI images, respectively, with 256 bins. The noisy image is given as

follows:

zj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ σ � randn size rð Þð Þð Þ2 þ σ � randn size rð Þð Þð Þ2

q
ð23Þ

In this case, randn(size(r)) produces data with the same size as the ground truth

image, and the mean and standard deviation of the data are 0 and 1, respectively. The

real patient data that are used in this study are downloaded from the Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI) database [27], which includes many T1-weighted

MRI images of AD patients and normal controls (NC). To test the performance of the

proposed method, 20 NCs and 20 AD patients with T1-weighted MRI images of the

baseline are randomly selected from the database.

Results and discussion
The experimental results are obtained from both simulated and real patient data.

Simulated data

For the simulated data, several noise levels, namely, 9%, 13%, 17%, and 21% are added

into T1-, T2-, and PD-weighted MRI images. Examples of T1-, T2-, and PD-weighted

MRI images with 17% noise are shown in Figures 6, 7 and 8, respectively. Figure 6(a)

shows the original T1-weighted MRI image, whereas Figure 6(b) shows the correspond-

ing noisy MRI image. Figure 7(a) shows the original T2-weighted MRI image, whereas

Figure 7(b) shows the corresponding noisy T2-weighted MRI image. Figure 8(a) shows

the original PD-weighted MRI image, whereas Figure 8(b) shows the corresponding

noisy MRI image. In this study, squared magnitude and VST are used to transform

noisy MRI image into additive noise. Figure 6(c) shows the squared magnitude noisy

T1-weighted MRI image, whereas Figure 6(d) shows the forward VST of the noisy T1-



Figure 6 An example of T1 image: (a) original T1 weighted MRI, (b) 17% noisy T1 weighted MRI,
(c) squared magnitude of the noisy T1 weighted MRI, (d) the forward variance-stabilization
transformation of the noisy T1 weighted MRI.
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weighted MRI image. Figure 6(c) shows the squared magnitude noisy T2-weighted MRI

image, whereas Figure 7(d) shows the forward VST of the noisy T2-weighted MRI

image. Figure 8(c) shows the squared magnitude noisy PD-weighted MRI image,

whereas Figure 8(d) shows the forward VST of the noisy PD-weighted MRI image.

Moreover, several filters are used to pre-smooth images. In this study, common fil-

ters, such as Gaussian, median, and anisotropic filters, are used to pre-smooth MRI

images. The NLM algorithm has three parameters: patch size, search window size

sx × sy × sz, and filtering degree h. In many NLM-based MRI denoising cases, patch size is

set as 5 × 5 × 5, and search window size is set as 11 × 11 × 11 for MRI images with a

voxel size of 1 × 1 × 1 mm3 [13]. Thus, the same parameters are used in this study. h is

typically set as proportional to the noise level of the image. In our experiments, differ-

ent h values are tested, and we selected the h value that produces the largest PSNR. For

comparison, the PSNR of different methods are calculated. These methods include the

original NLM algorithm, unbiased correction (UNLM) by the squared magnitude, as

well as VST, PSNLM1, and PSNLM2 with Gaussian, median, and anisotrpic filters,

respectively.
Comparison of PSNR

Figures 9, 10 and 11 show the comparisons of the experiment results with PSNR.

Figure 9 shows the PSNR of the T1-weighted MRI image at different noise levels.

Figure 9(a) includes the PSNR of the original NLM, UNLM with squared magnitude,
Figure 7 An example of T2 image: (a) original T2 weighted MRI, (b) 17% noisy T2 weighted MRI,
(c) squared magnitude of the noisy T2 weighted MRI, (d) the forward variance-stabilization
transformation of the noisy T1 weighted MRI.



Figure 8 An example of PD image: (a) original PD weighted MRI, (b) 17% noisy PD weighted MRI,
(c) squared magnitude of the noisy PD weighted MRI, (d) the forward variance-stabilization
transformation of the noisy PD weighted MRI.
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and PSNLM1 with Gaussian, median, and anisotropic filters. The curve of the PSNLM1

with a Gaussian filter is at the top. Figure 9(b) includes the PSNR of the original NLM,

UNLM with VST, and PSNLM2 with Gaussian, median, and anisotropic filters. The

curve of the PSNLM2 with a Gaussian filter is also at the top. The PSNR of the original

NLM algorithm are at the bottom of both figures. The PSNR curves of the UNLM and

PSNLM with median and anisotropic filters are between that of the PSNLM with a

Gaussian filter and NLM. The proposed method can improve the denoising results.

Pre-smoothing with a Gaussian filter achieves the best results. Figure 9(c) shows the

PSNR curves of the PSNLM2 and PSNLM1with a Gaussian filter. The PSNR of

PSNLM2 is larger than that of PSNLM1. This result indicates that the proposed

method with VST and a Gaussian filter performs the best. Figure 9(d) shows that the

PSNR of the UNLM with VST is larger than that of the UNLM with the squared mag-

nitude. Thus, VST is the better choice between the two.

Figures 10 and 11 show the PSNR of the PD- and T2-weighted MRI images with dif-

ferent noise levels. The results are similar to that of the T1-weighted MRI image. The
Figure 9 T1 weighted MRI: (a) PSNR of the original NLM, UNLM with squared magnitude, and
PSNLM1 with Gaussian, median, and anisotropic filters, (b) PSNR of the original NLM, UNLM with
VST, and PSNLM2 with Gaussian, median, and anisotropic filters. (c) PSNR of PSNLM with Gaussian
filter, and (d) PSNR of ULM with VST and squared magnitude.



Figure 10 PD weighted MRI, (a) PSNR of the original NLM, UNLM with squared magnitude, and
PSNLM1 with Gaussian, median, and anisotropic filters, (b) PSNR of the original NLM, UNLM with
VST, and PSNLM2 with Gaussian, median, and anisotropic filters. (c) PSNR of PSNLM with Gaussian
filter, and (d) PSNR of ULM with VST and squared magnitude.
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PSNR curves with a Gaussian filter are at the top, as shown in Figure 10(a) and (b)

for the PD-weighted MRI images and Figure 11(a) and (b) for the T2-weighted MRI

images. Figures 10(c) and 11(c) show the PSNR of the PSNLM1 and PSNLM2 with a

Gaussian filter for the PD- and T2-weighted MRI images. The two curves are ex-

tremely close in Figure 10(c). The PSNR of PSNLM2 is slightly larger than that of

PSNLM1. In Figure 11(c), the PSNR of PSNLM2 is larger than that of PSNLM1.

Figures 10(d) and 11(d) show the PSNR of the UNLM with VST and with the squared

magnitude, respectively. The curves are extremely close at a low noise level for the

PD-weighted MRI image [Figure 10(d)] and at a high noise level for the T2-weighted

MRI image.
Figure 11 T2 weighted MRI, (a) PSNR of the original NLM, UNLM with squared magnitude, and
PSNLM1 with Gaussian, median, and anisotropic filters, (b) PSNR of the original NLM, UNLM with
VST, and PSNLM2 with Gaussian, median, and anisotropic filters. (c) PSNR of PSNLM with Gaussian
filter, and (d) PSNR of ULM with VST and squared magnitude.
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Comparison by visual inspection

Figure 12 shows the enlarged regions of the experimental results on the T1-weighted MRI

image. Figure 12(a) shows an enlarged region of the original MRI, and Figure 12(b)

shows noisy MRI with 17% Rician noise. Figure 12(c) presents the result of the ori-

ginal NLM. The edges are obviously blurred. Figure 12(d) and (h) present the results

of the UNLM with the squared magnitude and VST, respectively. Figure 12(h) is

clearer than Figure 12(d). Although both results are better than that of the original

NLM algorithm, the images are still blurred. Figure 12(e) to (g) present the results of

the PSNLM1 with median, Gaussian, and anisotropic filters, respectively, whereas

Figure 12(i) to (k) present the results of the PSNLM2 with median, Gaussian, and an-

isotropic filters, respectively. All results are significantly improved compared with

Figure 12(d) and (h). However, some artifacts are observed in Figure 12(e),(g),(i), and

(k). Figure 12(f ) and (j) show that the results are extremely close to and similar to
Figure 12 Comparison of experiment results on T1-weighted MRI. (a) original MRI, (b) noisy MRI with
17% Rician noise, (c) results of the original NLM filter, (d) results of the UNLM with squared magnitude
transformation, (e) results of the PSNLM1 with median filter, (f) results of the PSNLM1 with Gaussian filter,
(g) results of the PSNLM1 with anisotropic filter, (h) results of the UNLM with VST, (i) results of the PSNLM2 with
median filter, (j) results of the PSNLM2 with Gaussian filter, (k) results of the PSNLM2 with anisotropic filter.
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those of the original image. Nevertheless, the result in Figure 12(j) is slightly better than

those in the other figures. Figure 13 is another enlarged region of the experimental results

on the T1-weighted MRI image. Comparably, there are some artifacts in Figure 13(e),(f),

(g) and (i), Figure 13(c),(d) and (h) are slight blurred, while Figure 13(j) and (k) are

clearer than the others. It is obvious that the results of PSNLM2 with Gaussian and

median filters are better than the other methods.

Figure 14 presents the results on the PD-weighted MRI image with 17% Rician noise.

Figure 14(a) shows an enlarged region of the original MRI image, and Figure 14(b)

shows the noisy MRI image. Figure 14(c) presents the result of the original NLM.

Figure 14(d) and (h) present the results of the UNLM with the squared magnitude and

VST, respectively. Figure 14(e) to (g) present the results of the PSNLM1 with median,

Gaussian, and anisotropic filters, respectively. Figure 14(i) to (k) present the results of

the PSNLM2 with median, Gaussian, and anisotropic filters, respectively. It is obvious

that Figure 14(c), (d) and (h) are blurred, while the pre-smooth technique significantly

improves the result, as can be seen in Figure 14(j).
Figure 13 Comparison of experiment results on T1-weighted MRI. (a) original MRI, (b) noisy MRI with
17% Rician noise, (c) results of the original NLM filter, (d) results of the UNLM with squared magnitude
transformation, (e) results of the PSNLM1 with median filter, (f) results of the PSNLM1 with Gaussian filter,
(g) results of the PSNLM1 with anisotropic filter, (h) results of the UNLM with VST, (i) results of the
PSNLM2 with median filter, (j) results of the PSNLM2 with Gaussian filter, (k) results of the PSNLM2
with anisotropic filter.



Figure 14 Comparison of experiment results on PD-weighted MRI. (a) original MRI, (b) noisy MRI with
17% Rician noise, (c) results of the original NLM filter, (d) results of the UNLM with squared magnitude
transformation, (e) results of the PSNLM1 with median filter, (f) results of the PSNLM1 with Gaussian filter,
(g) results of the PSNLM1 with anisotropic filter, (h) results of the UNLM with VST, (i) results of the PSNLM2 with
median filter, (j) results of the PSNLM2 with Gaussian filter, (k) results of the PSNLM2 with anisotropic filter.
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Figure 15 is another enlarged region of the experiment results on the PD-weighted

MRI image. It is obvious that Figure 15(c),(d) and (h) are, to some extent, blurred.

While the proposed pre-smooth technique greatly improves the result, as can be seen

in Figure 15(j).

Figure 16 presents the results on the T2-weighted MRI image with 17% Rician noise.

Figure 16(a) shows an enlarged region of the original MRI image, and Figure 16(b)

shows the noisy MRI image. Figure 10(c) presents the result of the original NLM.

Figure 16(d) and (h) present the results of the UNLM with the squared magnitude and

VST, respectively. Figure 16(e) to (g) present the results of the PSNLM1 with median,

Gaussian, and anisotropic filters, respectively. Figure 16(i) to (k) present the results of

the PSNLM2 with median, Gaussian, and anisotropic filters, respectively. The result

presented in Figure 16(c) exhibits the worst performance, and also, considerable noise

occurs in Figure 16(d) and (h). Serious artifacts are observed in Figure 16(e),(i) and (g).

Figure 16(f ) and (k) are more blur than Figure 16(j). Figure 17 shows another enlarged

region of the experiment results on the T2-weighted MRI image. The results are similar

to those in Figure 16. And we can confirm that Figure 17(j) is the best.



Figure 15 Comparison of experiment results on PD-weighted MRI. (a) original MRI, (b) noisy MRI with
17% Rician noise, (c) results of the original NLM filter, (d) results of the UNLM with squared magnitude
transformation, (e) results of the PSNLM1 with median filter, (f) results of the PSNLM1 with Gaussian filter,
(g) results of the PSNLM1 with anisotropic filter, (h) results of the UNLM with VST, (i) results of the
PSNLM2 with median filter, (j) results of the PSNLM2 with Gaussian filter, (k) results of the PSNLM2
with anisotropic filter.
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Real patient data

The brains of AD patients are atrophic, particularly at the hippocampus and the para-

hippocampal gyrus. Atrophy in these regions can be used as an early biomarker of AD

[28]. To test atrophy degree in the brain, all AD and NC data are first denoised and

then normalized to the Automated Anatomical Labeling template [29], which is a

digital human brain atlas with labeled regions. These regions indicate brain structures.

Given that the Jacobian map of the deformation field includes information on the local

properties of the deformation field that can be used to detect volume changes, Jacobian

logarithms are calculated such that the expansion and compression of the brain are

scaled equally [30]. Log-Jacobians are calculated at each voxel in the volume to produce

a map of the local expansion and compression of the brain. The Jacobian maps are

smoothed by using smoothing kernels that measure 6 mm full-width at half-maximum

for each of the 40 samples. By using SPM software [23], paired t-test is performed on

the Jacobian maps of the AD and NC groups. An equal p value (p = 0.05) is used to

compare the t-score obtained by the different denoising methods. The ratios of the



Figure 16 Comparison of experiment results on T2-weighted MRI. (a) original MRI, (b) noisy MRI with
17% Rician noise, (c) results of the original NLM filter, (d) results of the UNLM with squared magnitude
transformation, (e) results of the PSNLM1 with median filter, (f) results of the PSNLM1 with Gaussian filter,
(g) results of the PSNLM1 with anisotropic filter, (h) results of the UNLM with VST, (i) results of the PSNLM2 with
median filter, (j) results of the PSNLM2 with Gaussian filter, (k) results of the PSNLM2 with anisotropic filter.
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detected atrophy region to the region of the hippocampus and the parahippocampal

gyrus are listed in Table 2. The minimum ratio is 9.93, which is obtained from the ori-

ginal image. The maximum ratio is 58.69, which is obtained from the image denoised

by the PSNLM2 with a Gaussian filter. The ratio of image denoising by the NLM filter

is 55.98, which is only larger than that of the original image. This result indicates that

image denoising significantly increases the ratios of the detected atrophy region to

the region of the hippocampus and the parahippocampal gyrus. The transformation

of Rician noise into additive noise can further increase the ratios. The PSNLM2 with

a Gaussian filter is the best method for detecting atrophy regions.

Moreover, the proposed method is compared with other recently developed

methods, including Rician image denoising, linear minimum mean square error

(LMMSE) estimator [31] and total variation minimization (TV) [32]. A series of 2D

T1 weighted MRI knee images are utilized to illustrate the performance of the pro-

posed method. The image size is 383×420. Table 3 lists the results of the IMMSE, TV

and PSNLM2, it can be seen that the noise level of the Rician noise is from 2% to



Figure 17 Comparison of experiment results on T2-weighted MRI. (a) original MRI, (b) noisy MRI with
17% Rician noise, (c) results of the original NLM filter, (d) results of the UNLM with squared magnitude
transformation, (e) results of the PSNLM1 with median filter, (f) results of the PSNLM1 with Gaussian filter,
(g) results of the PSNLM1 with anisotropic filter, (h) results of the UNLM with VST, (i) results of the PSNLM2 with
median filter, (j) results of the PSNLM2 with Gaussian filter, (k) results of the PSNLM2 with anisotropic filter.

Table 2 The ratios of the detecting atrophy region and the region of hippocampus and
parahippocampal gyrus

1 2 3 4 5 6 7 8 9 10

9.93 55.98 57.66 58.55 56.03 57.74 57.52 57.09 58.69 57.76

1. Original image.
2. Image denoising by the nlm.
3. Image denoising by the unlm with squared magnitude transformation.
4. Image denoising by the unlm with VST.
5. Image denoising by the PSNLM1 with anisotropic filter.
6. Image denoising by the PSNLM1 with gaussian filter.
7. Image denoising by the PSNLM1 with median filter.
8. Image denoising by the PSNLM2 with anisotropic filter.
9. Image denoising by the PSNLM2 with gaussian filter.
10. Image denoising by the PSNLM2 with median filter.
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Table 3 The PSNR of noisy image, results of LMMSE, TV and PSNLM2

2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

Noisy 33.33 27.48 24.19 21.86 20.64 19.42 18.74 17.86 17.56 16.91

LMMSE 36.38 32.41 30.25 28.32 27.01 25.48 25.38 24.45 23.16 22.34

TV 36.87 33.19 30.30 28.53 27.21 25.63 25.18 24.69 23.36 22.40

PSNLM2 37.60 33.93 31.78 30.12 29.14 27.93 26.92 26.13 25.34 24.52

The larger PSNR indicate the better performance. The maximun PSNR is listed by symbol bold at each noise level.
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20%. While the proposed PSNLM2 method has the largest PSNR at each level of

noise.

Conclusion
In this study, a PSNLM frame combined with image transformation is proposed for

MRI denoising. After the Rician noise in MRI is transformed to the additive noise, the

NLM filter is applied to the transformed image with weights computed from the pre-

smooth image. The final denoising image is obtained from the inverse transformation

of the NLM denoising result. Experiments are performed on the simulated data of the

T1-, T2-, and PD-weighted MRI images that are downloaded from the BrainWeb data-

base and real data (T1-weighted MRI images) downloaded from ADNI. Many trad-

itional filters are tested as pre-smooth filters. In this paper, only the results using

Gaussian, median, and anisotropic filters are presented because others such as trilateral

filter and wavelet filter produce worse results. The proposed method is automatic and

robust since it improves the denoising results greatly in all the experiments. One chal-

lenge problem for the proposed method is that it is comparably time consuming, which

costs about 15 minutes on the image size 181×217×181 with 10 threads on the Dell

server. The reason is that the image transformation of the NLM takes heavy computa-

tion. Recently, many works have been proposed with respect to decrease the computa-

tion time of the NLM, such as the FFT transformation [33], which is about fifty times

faster than the original non-local algorithm and can reach the clinic application. The

experiment results indicate that using the Gaussian pre-smoothing filter and VST pro-

duces the best results for the peak signal-to-noise ratio (PSNR) and atropy detection.
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