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Abstract

Background: Routine vascular surgery operations involve stitching of disconnected
human arteries with themselves or with artificial grafts (arterial anastomosis). This
study aims to extend current knowledge and provide better-substantiated
understanding of the mechanics of end-to-end anastomosis through the development
of an analytical model governing the dynamic behavior of the anastomotic region of
two initially separated arteries.

Methods: The formulation accounts for the arterial axial-circumferential deformation
coupling and suture-artery interaction. The proposed model captures the effects of the
most important parameters, including the geometric and mechanical properties of
artery and sutures, number of sutures, loading characteristics, longitudinal residual
stresses, and suture pre-tensioning.

Results: Closed-form expressions are derived for the system response in terms of
arterial radial displacement, anastomotic gap, suture tensile force, and embedding
stress due to suture-artery contact interaction. Explicit objective functionalities are
established to prevent failure at the anastomotic interface.

Conclusions: The mathematical formulation reveals useful interrelations among the
problem parameters, thus making the proposed model a valuable tool for the optimal
selection of materials and improved functionality of the sutures. By virtue of their
generality and directness of application, the findings of this study can ultimately form
the basis for the development of vascular anastomosis guidelines pertaining to the
prevention of post-surgery implications.

Keywords: End-to-end anastomosis, Anastomotic gap, Sutures, Arterial-wall stress,
Suture stress, Failure criteria
Background
Predictive medicine and therapeutic decision-making requires thorough understanding

of the human biological activities in order to develop a proper physical model and ob-

tain the optimal solution of the problem. Vascular surgery operations treat vascular

diseases, traffic-related and other serious injuries entailing violent artery damage.

Among the vascular disorders, atherosclerosis and aneurysms are the most frequently

encountered. During a typical arterial reconstruction, the diseased artery segment is re-

moved, and the healthy segments are stitched together, either directly or through the

insertion of an artificial graft (end-to-end anastomosis). In any case, the mechanical
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behavior of the anastomotic region is in principle comparable, on account of the fact

that modern grafts tend to exhibit similar geometric and stiffness characteristics with

those of arteries.

Several studies have examined the induced arterial-wall stresses in vascular anasto-

mosis models [1-7]. However, most of them limit their research to specific arterial

geometries, while others ignore the stress concentrations due to suture-artery inter-

action, or the important axial-circumferential deformation coupling in the artery re-

sponse. Moreover, most of the published studies rely solely on finite element analyses

rather than on analytical models of end-to-end and end-to-side anastomosis.

In particular, Ballyk et al. [1] studied an end-to-end and an end-to-side anastomosis

by use of finite-element analysis, with the sutures modeled as discrete points along the

suture line. The expected stress concentration of the stitching area resulted in excessive

values due to the point-like modelling approach as such. Leuprecht et al. [2] and

Perktold et al. [3] utilized three end-to-side anastomosis models, each one concerning

a different technique. Their finite-element analysis yielded the wall shear stresses and

maximum principal stresses for each case. In particular, the latter study modeled the

stitches in detail using three-dimensional elements for the junction. In another finite

element study, Cacho et al. [6] investigated the effect of the insertion angle and incision

length of coronary arterial bypass models, though without modelling explicitly the re-

sponse of individual stitches. More recently, Schiller et al. [7] studied an end-to-end

anastomosis by using a fluid–structure coupling algorithm, with the sutures simulated

as an anastomotic interface.

In addition to theoretical studies, which on one hand are limited and on the other

hand require numerical methods to calculate the response [8], several experimental

studies have been performed over the years (see for example [9-13]) to investigate the

compliance of the anastomotic region. Lyman et al. [9] found that vascular grafts

should have compliance approximately equal to that of the host artery, and that com-

pliance of synthetic grafts may decrease with time. Hasson et al. [10] investigated an

end-to-end anastomosis between isocompliant arterial grafts from dogs and found that

a para-anastomotic hypercompliant zone (PHZ), which promotes subintimal hyperpla-

sia (SIH), exists near the suturing region. The PHZ is also a zone of increased cyclic

stretch. The compliance at this region increases up to 50% compared to the compliance

away from the stitching region. In a later study, Hasson et al. [11] concluded that the

suture technique affects significantly the compliance of the anastomotic region. In par-

ticular, they showed that the PHZ phenomenon occurs more frequently for anastomosis

of the continuous stitching technique than the interrupted stitching technique. In

addition, they observed that increased longitudinal stress of the arterial vessel reduce

the compliance. This phenomenon can be justified from the fact that longitudinal pre-

stress affects the mechanical properties of dog arteries [14]. Ulrich et al. [13] investi-

gated an end-to-end anastomosis between pig aortic grafts and found that PHZ does

not exist for this case. They also suggested that the main factor affecting the anasto-

motic response is the suture line itself.

Evidently, little work has been published on the dynamic analysis of the stitched anas-

tomotic region. Indeed, related review articles clearly point out the lack of such ana-

lyses [15]. In addressing this need, this paper proposes a comprehensive analytical

model based on structural analysis, aiming to provide a better understanding of the
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dynamic response of end-to-end arterial anastomosis, with emphasis on the suture-

artery interaction and the axial-circumferential deformation coupling in the artery re-

sponse. This study seeks to extend current knowledge and provide practical suggestions

for the optimal selection of materials and improved functionality of the sutures in vas-

cular surgery operations.

Methods
This section presents the mathematical formulation governing the dynamic behavior of

end-to-end arterial anastomosis. The system response is described in terms of the ra-

dial displacement of artery, the anastomotic gap, the suture tensile force, and the em-

bedding stress due to suture-artery contact interaction. Based on these response

quantities, comprehensive objective functionalities are established in order to prevent

failure at the anastomotic interface.

Arterial model

From the mechanics point of view, the human arterial system can be idealized as a sys-

tem of cylindrical elastic pipes that transport blood under pressure provided from the

heart (dynamic loading). The arterial tissue is heterogeneous, consisting of three in-

homogeneous layers. Its mechanical properties depend on the artery location, age, dis-

ease, and other physiological states [16,17]. In general, the mechanical behavior of the

arterial tissue does not obey Hooke’s law [18,19], exhibiting anisotropic nonlinear be-

havior for finite deformations. Moreover, the response of biological tissues is affected

by the existence of residual stresses [20]. In this study, the arterial wall is assumed

homogeneous and its mechanical response linear elastic. The assumed elastic proper-

ties in the model incorporate in an average sense the tangential stiffness, the anisot-

ropy, the inhomogeneity, and the residual stresses of the artery walls.

In this study, the blood vessel is modeled as an elastic cylindrical pipe with wall thick-

ness h and radius R (Figure 1(a)). The mathematical formulation developed herein is

based on the following assumptions: (a) the arterial wall thickness is small compared to

the radius of the centerline of the ring therefore the radial stresses are not considered;

(b) the centerline of the ring in the undeformed state forms a full circle with radius R;
(c) the cross-section is axially symmetric and constant around the circle, implying that

the arterial wall has constant thickness; (d) no boundary constraints are applied on the

ring; (e) the effects of rotary inertia and shear deformation are neglected; (f ) the arterial

tissue consists of a single homogeneous layer and behaves as a simple orthotropic lin-

ear elastic material (the mechanical properties in the radial and circumferential direc-

tions −which are the same − differ from those in the longitudinal direction, ignoring

the Poisson effect in the orthotropy constitutive law); and (g) viscous effects are ig-

nored. The simplified orthotropic model adopted in this work utilizes two elastic con-

stants Eθ and EL which are the plane strain elastic moduli suggested by Schajer et al.

[21], in the circumferential and the longitudinal directions respectively.

Response to general dynamic loading

Under the assumption of axial symmetry, the system undergoes in-plane extensional vi-

bration due to a uniformly-distributed wall pressure p(t). The differential equation gov-

erning the radial displacement u(t) of the vibrating arterial ring can be derived by



Figure 1 Idealized arterial system. (a) Arterial model, (b) typical element of circular ring.
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considering the equilibrium of forces acting on an element of the circular ring (Figure 1(b)).

The resulting equation is (see Appendix A1)

ρh
d2u tð Þ
dt

þ Eθh

R2 u tð Þ ¼ p tð Þ ð1Þ

where ρ denotes the density of the arterial tissue, h the wall thickness, R the radius of
the undeformed centerline of the ring, and Eθ the arterial Young’s modulus in the cir-

cumferential direction.

The first term in equation (1) represents the radial inertia force acting on element

abcd of the circular ring, while the second term represents the circumferential tensile

force developed on the element cross section assuming linear-elastic behavior.

Equation (1) is identical to the classical second-order differential equation governing

the response of an undamped single-degree-of-freedom system to arbitrary force. The

circular frequency of the system is readily obtained as

ωn ¼ 1
R

ffiffiffiffiffi
Eθ

ρ

s
ð2Þ

Response to pulse-type loading
A normal cardiac cycle consists of two major functional periods: systolic and diastolic.

Figure 2(a) shows the aortic pressure–time profile as proposed by Zhong et al. [22].



Figure 2 Blood pressure time-profiles. (a) Typical aortic pressure time-profile following Zhong et al. [22],
(b) arterial pulse time-history approximation. (100 mmHg = 13.33 kPa).
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The time interval 0 ≤ t ≤ ts represents the aortic systolic phase, during which the arterial

walls inflate due to the maximum overstress pressure. The time interval ts < t ≤ tcp rep-

resents the aortic diastolic phase.

During a vascular surgery operation the blood flow is interrupted. The first loading

cycle, immediately after the flow is restored, is approximated in this study by the load-

ing shown in Figure 2(b). In this case, the internal pressure is abruptly increased from

zero to the maximum systolic pressure. The assumed loading is expressed mathematic-

ally as

p tð Þ ¼
ps ; 0 ≤ t ≤ ts
ps−

ps − pd
tcp − ts

t − tsð Þ ; ts < t ≤ tcp

(
ð3Þ

where ps is the maximum systolic pressure, pd the diastolic pressure, ts the systolic-
phase duration, and tcp the total duration of the cardiac pulse.

The radius R is measured at zero blood pressure and in vivo length, implying the ar-

tery is in its pre-stressed state. During surgery, longitudinal residual stresses are re-

leased, forcing the artery to decrease its length and increase its diameter. When

subsequently the stitching takes place, the arterial diameter and length return to their

prior condition. The residual-stress effect is taken into account as an initial displace-

ment u(0) = u0 (and so the far-field stresses can be inserted), equal to the difference of

the increased radius (relieved from axial residual stresses) and radius R, and initial vel-

ocity _u 0ð Þ ¼ 0.
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The total response of the system as a function of time is obtained as (see Appendix A2)

u tð Þ ¼
u0 cos ωnt þ psR

2

Eθh
1− cos ωntð Þ; 0 ≤ t ≤ ts

u0 cos ωnt þ psR
2

Eθh
ps − pd
tcp − ts

ts − t þ sin ωn t − tsð Þ
ωn

� �
þ ps 1− cos ωntð Þ

� �
; ts < t ≤ tcp

8>>>><
>>>>:

ð4Þ

in which the first term (free-vibration response) is associated with the residual-stress ef-
fect and the second term is associated with the response to the assumed pulse-type

loading.

The static response of the system, which corresponds to the displacement caused

when the maximum pressure ps is applied statically, is identified as

ust ¼ psR
2=Eθh ð5Þ

Of particular interest is the maximum arterial displacement, which is associated with
the critical response of the anastomotic region. The maximum displacement occurs ei-

ther in the time interval 0 ≤ t ≤ ts or ts < t ≤ tcp, depending on the system natural period

Tn = 2π/ωn and the loading characteristics. The overall maximum displacement can be

calculated from the following expression (for |u0|/ust < 1): (see Appendix A3)

umax ¼ max
2psR

2

Eθh
− u0; u0 cos ωnt1 þ R2

Eθh
ps− pd
tcp− ts

ts−t1 þ sin ωn t1− tsð Þ
ωn

� �
þ ps 1− cos ωnt1ð Þ

� �� �

ð6Þ

where t1 is the time instant corresponding to the maximum response in the diastolic

phase, given by

t1 ¼ 1
ωn

cos−1A1 þ tan−1A2
	 
 ð7Þ

in which

A1 ¼
R2

Eθh
ps − pd
tcp − tsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

psR
2

Eθh
þ R2

Eθh
ps− pd
tcp− ts

sin ωnts
ωn

− u0
� �2

þ R2

Eθh
ps− pd
tcp− ts

sin ωnts
ωn

� �2r ð8Þ

A2 ¼
psR

2

Eθh
þ R2

Eθh
ps− pd
tcp− ts

sin ωnts
ωn

− u0
R2

Eθh
ps− pd
tcp− ts

sin ωnts
ωn














 ð9Þ

Figure 3 plots the normalized maximum deformation umax/ust as a function of the
ratio ts/Tn for different values of initial displacement, and for typical values of dia-

stolic pressure, maximum systolic pressure, and cardiac pulse duration (pd = 80 mmHg,

ps = 120 mmHg, tcp = 1 sec). In particular, Figure 3(a) plots the normalized response

for a typical cardiac pulse with fixed systolic-phase duration, ts = 0.35 sec, and varying

system natural period Tn. As can be seen in Figure 3(a), the response exhibits an as-

cending curved profile for low values of ts/Tn, reaching practically a plateau for high

values of ts/Tn. Τhe threshold value of ts/Tn that defines the boundary between the as-

cending part and the plateau depends on the loading characteristics. For the parame-

ters used in Figure 3(a), the threshold value of ts/Tn is approximately 0.4. Figure 3(b)



Figure 3 Normalized maximum displacement as a function of ts/Tn and the parameter u0/ust. Plots
for (a) ts = 0.35 sec, (b) Tn = 0.9 sec.
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plots the normalized response for fixed natural period Tn = 0.9 sec and varying

systolic-phase duration ts. The high value of natural period (Tn = 0.9 sec) implies se-

verely damaged artery walls, with the artery elasticity modulus practically tending to

zero.
Anastomosis model

A schematic of the end-to-end anastomosis model considered in this study is shown in

Figure 4(a). The proximal and distal artery segments are connected together with a

total of Ns stitches. Each artery segment has length L, radius R, and Young’s modulus

in the longitudinal direction EL. The stitches have radius rs, cross-sectional area As = πrs
2,

and Young’s modulus Es. The suture material is legitimately considered to be linear elastic

for elongations up to 20% [23]. The distance between stitching holes that are symmetric-

ally located across the separation plane is denoted by ls (with the assumption that 2L≫ ls).

Different stitching patterns are considered, resulting in different suture loading. Figure 4(e)

depicts the interrupted stitching scheme, whereas Figure 4(f) depicts the continuous (run-

ning) stitching scheme. The particular loading condition associated with each stitching

scheme is accounted for in the analysis by means of a participation factor a. The inter-

rupted stitching scheme corresponds to a maximum participation factor a = 2, whereas

the continuous stitching scheme (with diagonal at 45° angle), corresponds to participation

factor a = 1.707. The participation factor is derived from the local equilibrium of forces at

the suture line that passes without friction through the stitch hole. The participation



Figure 4 End-to-end anastomosis analysis between isocompliant blood vessels. (a) Anastomosis
model (at-rest state); the artery is clamped at the far ends and no pressure is transmitted at this stage since
the artery is emptied from the blood, (b) unrestrained deformed state of artery (without sutures); the blood
volume is conserved, (c) deformed state of anastomotic region due to dynamic loading, (d) forces acting
on end-element of artery segment, (e) interrupted stitching scheme, (f) continuous stitching scheme.

Roussis et al. BioMedical Engineering OnLine 2015, 14:1 Page 8 of 26
http://www.biomedical-engineering-online.com/content/14/1/1
factor indicates the alignment of the stitches along the longitudinal direction (the

remaining part (2 − a) indicates that the system is in torsion with limited relevance to the

present problem). Moreover, the stitching holes and the suture are considered to have al-

most equal diameters. Therefore, the suture segment penetrating the arterial wall is almost

undeformable, due to friction forces developed between the arterial wall and the suture.

The model also considers the pre-tensioning of stitches [24], denoted herein by the force

f 0s . This is the force exerted by the surgeon in tying the knot of the suture.

Objective functionalities

The interaction of sutures with the arterial tissue may lead to post-surgery complica-

tions. The undesirable conditions can be described in three failure scenarios: suture

failure, arterial-wall tearing, and thrombosis (due to blood leaking) at the anastomotic

interface. Suture failure is caused when the maximum tensile force of the suture, fs, ex-

ceeds the suture strength or leads to slip or relaxation of the knots that bind the

stitches together [25]. Note that it is possible that suture failure may occur due to su-

ture gradual deterioration with time [26]. Arterial-wall rupture or injury may be caused

when the embedding stresses, σs, due to suture-artery contact interaction (at the stitch-

ing holes) exceed the limit value of artery-wall shear strength. Thrombosis may be

caused if the distance between the edges of the two anastomosed artery segments, xnet,

exceeds the typical size of a few red blood cells, leading to internal bleeding.
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In order to avoid failure altogether, the following objective functionalities must be

satisfied:

max f s < ultimate axial strength of suture=knot f s;u
� �

ð10Þ

max σs < ultimate shear strength of arterial tissue σs;u=2
	 
 ð11Þ

max xnet < 3 x red blood cell diameter 3drbcð Þ ð12Þ

In addition to the above objective functionalities, the following geometric constraint
must be satisfied to assure adequate stitching spacing:

πR ≥ 4Nsrs ð13Þ

It should be noted that mechanical changes to the arterial walls and sutures may
occur over a time span of several weeks after surgery. In particular, the wall thickness

of the sutured artery may decrease with time, as is the case of the inflammatory re-

sponse after surgery. Moreover, the elastic properties and strength of the artery may

change with time due to chemical change of the suture and its interaction with the ar-

teries [26]. Such long-term implications lead to lower values of the elastic and strength

properties of the arterial walls and suture materials.

Suture-artery interaction

On account of the fact that blood is an incompressible fluid, the radial and longitudinal

modes of arterial response are coupled. Under the applied blood pressure, the artery dis-

tends radially by u(t), and, in order for the blood volume to be maintained, its axial length

is decreased from L to l, resulting in the formation of a gap xg (Figure 4(b)). Conservation

of the blood volume means that the cylindrical volume V(a) =V(b) (Figures 4(a,b)). Then,

the decreased anastomosis length at any time t is given by

l tð Þ ¼ LR2

Rþ u tð Þð Þ2 ð14Þ

The separation distance l(t) given by equation (14) implies the following solid–fluid
interaction procedure: (a) the blood volume fills the two parts of the anastomosis after

completing the stitching, and (b) pressure is applied leading to contraction along the

length of the initially emptied artery.

The gap developed in the unrestrained (without sutures) state of the artery (Figure 4(b)),

is then determined as the difference between the initial length of the artery (2L) and the

length of the unrestrained deformed state (2l):

xg tð Þ ¼ 2L 1−
R2

Rþ u tð Þð Þ2
" #

ð15Þ

Therefore, the resulting net gap developed in the restrained (with sutures) anasto-
motic region (Figure 4(c)) can be derived from

xnet tð Þ ¼ xg tð Þ−2Δl tð Þ ð16Þ

where Δl is the tensile deformation due to the stitching stiffness.
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The tensile forces developed in the suture and arterial tissue (Figure 4(d)) are given

respectively by

f s tð Þ ¼ AsEsεs tð Þ þ f 0s ¼
AsEs

ls
xnet tð Þ þ f 0s ð17Þ

FL tð Þ ¼ ELAL tð ÞεL tð Þ ¼ 2πhEL Rþ u tð Þð ÞΔl tð Þ
l tð Þ ð18Þ

where εs is the suture strain, εL is the strain of one artery segment, and AL is the cross-

sectional area of the artery.

The tensile deformation Δl can be derived from equilibrium of forces in the axial dir-

ection, FL(t) = aNsfs(t), yielding (see Appendix A4)

Δl tð Þ ¼
aNsLR2 AsEsL 1− R2

Rþu tð Þð Þ2
h i

þ f 0s
2 ls

n o
πELlsh Rþ u tð Þð Þ3 þ aNsAsEsLR2

ð19Þ

Substituting equations (15) and (19) into equation (16), we obtain the net gap be-
tween the anastomosed artery segments as

xnet tð Þ ¼
2πLELlsh Rþ u tð Þð Þ Rþ u tð Þð Þ2−R2

� �
−f 0s aNsLR2ls

πELlsh Rþ u tð Þð Þ3 þ aNsAsEsLR2
; for FL tð Þ > aNs f

0
s

0 ; for FL tð Þ ≤ aNs f
0
s

8><
>:

ð20Þ

Note that a gap across the anastomotic interface will be formed only if the tension

developed in the arterial tissue exceeds the total suture pre-tension.

Upon calculating the anastomotic gap xnet, the suture tensile force fs developed in

each stitch can be readily obtained from equation (17). In addition, embedding stresses

σs are developed because of suture-artery contact interaction at the stitching holes. The

embedding stress induced on the arterial wall is approximated [27] by

σs tð Þ ¼ af s tð Þ
2rsh

ð21Þ

It is worth noting that, although based on a linear-elastic model, the system response
depends on a considerable number of parameters. In particular, the solution contains

as many as seventeen input parameters (L, R, Ns, h, Eθ, EL, ps, pd, ts, tcp, ρ, u0, ls, Es, rs,

a, f 0s ) related to the geometric and mechanical properties of sutures and arterial walls,

the number of sutures, the loading characteristics, the longitudinal residual stresses,

and suture pre-tensioning.

For completeness, the general solution of an artery/graft end-to-end anastomosis is

presented in Appendix B.

Results and discussion
The three response quantities of interest, the anastomotic gap xnet, the suture tensile

force fs, and the embedding stress σs, are directly connected to the aforementioned
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failure modes. On normalizing by 2 L, ELh
2 and EL respectively, equations (20), (17)

and (21) become

xnet tð Þ
2L

¼
1þ u tð Þ

R

� �
1þ u tð Þ

R

� �2

−1

" #
−

af 0s
2πELrsh

Ns
rs
R

1þ u tð Þ
R

� �3

þ a
Es

EL
Ns

As

πRh
L
ls

; for FL tð Þ > aNs f
0
s

0 ; for FL tð Þ ≤ aNs f
0
s

8>>>>>><
>>>>>>:

ð22Þ

f s tð Þ
ELh

2 ¼

2πa
Es

EL

rs
h

1þ u tð Þ
R

� �
1þ u tð Þ

R

� �2

−1

" #
þ af 0s
ELrsh

ls
L

1þ u tð Þ
R

� �3

a 1þ u tð Þ
R

� �3 h
rs

ls
L
þ a

Es

EL
Ns

rs
R

" # ; for FL tð Þ > aNs f
0
s

af 0s
ELhrs

� �
rs
ah

� �
; for FL tð Þ ≤ aNs f

0
s

8>>>>>>>>><
>>>>>>>>>:

ð23Þ

σs tð Þ
EL

¼

πa
Es

EL
1þ u tð Þ

R

� �
1þ u tð Þ

R

� �2

−1

" #
þ af 0s
2ELrsh

h
rs

ls
L

1þ u tð Þ
R

� �3

1þ u tð Þ
R

� �3 h
rs

ls
L
þ a

Es

EL
Ns

rs
R

; for FL tð Þ > aNs f
0
s

af 0s
2ELrsh

; for FL tð Þ ≤ aNs f
0
s

8>>>>>>>><
>>>>>>>>:

ð24Þ

From equations (22), (23), (24), we observe that the seventeen input parameters of

the problem can be reduced into five dimensionless parameters, namely aEs/EL, L/ls,

Nsrs/R, rs/h, af
0
s =rshEL. The normalized response quantities for parameter values varied

within the physiological range are presented graphically in Figures 5, 6, 7, 8 and 9.

The normalized anastomotic gap xnet/2L depends on the product of four dimension-

less parameters, namely aEs/EL, L/ls, Nsrs/R, rs/h, abbreviated herein as P4, and suture

pre-tension parameter af 0s =rshEL . However, utilizing plausible range of parameter
Figure 5 Normalized anastomotic gap versus normalized radial displacement. Plots for different
values of product P4 ¼ a Es

EL
Ns

As
πRh

L
ls
and for f 0s ¼ 0.



Figure 6 Normalized anastomotic gap versus normalized radial displacement. (a) Plots for different
values of parameter aEs/EL and for Ns = 20, As/hR = 0.05, 2L/ls = 100, f 0s ¼ 0, (b) Plots for different values of

parameter aEs/EL and for Ns = 12, As/hR = 0.005, 2L/ls = 50, f 0s ¼ 0, (c) Plots for different values of parameter

2L/ls and for Ns = 20, As/hR = 0.05, aEs/EL = 3000, f 0s ¼ 0, (d) Plots for different values of parameter 2L/ls and

for Ns = 12, As/hR = 0.005, aEs/EL = 1000, f 0s ¼ 0.

Figure 7 Normalized anastomotic gap versus normalized radial displacement. (a) Plots for different
values of parameter As/hR and for Ns = 20, aEs/EL = 3000, 2L/ls = 100, f 0s ¼ 0, (b) Plots for different values of

parameter As/hR and for Ns = 12, aEs/EL = 1000, 2L/ls = 50, f 0s ¼ 0, (c) Plots for different values of parameter

Ns and for aEs/EL = 3000, As/hR = 0.05, 2L/ls = 70, f 0s ¼ 0, (d) Plots for different values of parameter Ns and for

aEs/EL = 1000, As/hR = 0.005, 2L/ls = 50, f 0s ¼ 0.
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Figure 8 Normalized tensile force in each stitch versus normalized radial displacement. (a) Plots for
different values of parameters 2L/ls and Ns (b) Plots for different values of parameters aEs/EL and Ns. (f

0
s ¼ 0).
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values, we observe that the contribution of rs/h is relatively small. Figure 5 plots the

normalized gap as a function of the normalized radial displacement u/R, for different

values of the product P4, assuming zero suture pre-tension.

Although Figure 5 presents the variation of the anastomotic gap in a mathematically

complete way, we opted to provide this information in Figures 6 and 7 in a more elab-

orate and practically appealing manner, in terms of the design parameters aEs/EL, L/ls,

As/hR, Ns, in order to provide simpler and useful graphs for the optimal selection of

materials and improved functionality of sutures. In particular, Figures 6 and 7 highlight

the influence of the variation of the suture stiffness (Figures 6(a,b)), the stitch length

(Figures 6(c,d)), the suture cross-section area (Figures 7(a,b)), and the number of

stitches (Figures 7(c,d)) on the anastomotic gap, for two different sets of parameters.

The results suggest that increasing the value of any of the design parameters yields a

decreased anastomotic gap. In particular, the most influential parameter in drastically

reducing the anastomotic gap is the number of utilized stitches, Ns, as can be seen from

Figures 7(c,d).
Figure 9 Normalized embedding stress versus normalized radial displacement. Plots for different
values of parameter aEs/EL, Ns and for f 0s ¼ 0.
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Figure 8 plots the normalized tensile force in each stitch (suture strain) as a function

of the normalized radial displacement for different values of parameters 2L/ls, aEs/EL

and Ns (assuming f 0s ¼ 0). It can be observed that the normalized suture tensile force is

decreased as the number of stitches is increased, whereas the ratio of suture-to-artery

elastic modulus and the normalized stitch length do not affect significantly the tensile

force developed in each stitch. The latter is also true for the suture radius as suggested

by equation (23).

Figure 9 plots the normalized embedding stress due to suture-artery contact inter-

action as a function of the normalized radial displacement for different values of pa-

rameters aEs/EL and Ns. It can be seen from Figure 9 that in order to reduce the

embedding stress, the number of stitches must be increased, whereas the parameter

aEs/EL plays an insignificant role. Moreover, the embedding stress becomes smaller

with increasing suture radius, as can be seen from equation (24).

It should be noted that, for a typical anastomosis scheme (with parameters within the

physiological range) and for FL tð Þ≤ aNsf
0
s , when the value of pre-tension f 0s exceeds a

certain value (derived from af 0s =2rsh > σs:u=2) the arterial wall is likely to fail. On the

other hand, for lower values of pre-tension and for FL tð Þ > aNsf
0
s , the application of

suture pre-tension can result in reducing the anastomotic gap (equation (22)), while

not affecting considerably the embedding stress (equation (23)) and suture tensile force

(equation (24)).

Design considerations

For design purposes the peak values of response are considered. For the general case

where FL tð Þ > aNsf
0
s , the failure scenarios discussed previously can be prevented by re-

casting the inequalities (10), (11), (12) in the form:

Ns >
πELh Rþ umaxð Þ

af s;uLR
2 2L Rþ umaxð Þ2−R2

� �
−
ls f s;u− f 0s
� �
AsEs

Rþ umaxð Þ2
8<
:

9=
;≡N1 ð25Þ

Ns >
2πEL Rþ umaxð Þ

aσ s;ursLR2 aL Rþ umaxð Þ2−R2
� �

−
ls hσ s;u−

af 0s
rs

� �
2πrsEs

Rþ umaxð Þ2
8<
:

9=
;≡N2

ð26Þ

Ns >
πELhls Rþ umaxð Þ 2L Rþ umaxð Þ2−R2

� �
−3drbc Rþ umaxð Þ2� �

3drbcaAsEsLR2 þ f 0s aLR
2ls

≡N3 ð27Þ

where umax stands for the maximum radial displacement of artery, drbc is the red blood

cell diameter (approximately equal to 7 μm), and fs,u, σs,u are known from the suture

strength and the tensile strength of the arterial wall, respectively. The right-hand side

of inequalities (25) to (27) denotes the minimum number of stitches required to pre-

vent suture failure, arterial-wall tearing, and development of excessive gap, respectively.

Obviously, the final selection will be the maximum of N1, N2, N3. However, the number
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of stitches should not violate the geometric constraint of equation (13), which practic-

ally can be stated as

Ns ≤
πR
4rs

≡N4 ð28Þ

Therefore, the final selection of number of stitches should be bounded by

max N1;N2;N3f g < Ns ≤ N4 ð29Þ

Failure to satisfy inequality (29) means that the material selection and geometric

parameter must be rethought. Typical values related to suture materials indicate that

N1 <N2 or N3, although deteriorated stitches as well as the presence of sutures knots

can change this.

When the suture strength is larger than the knot strength, the stitches will fail on the

knot region, otherwise the failure will occur elsewhere. Experiments on the mechanical

properties of different suture materials were performed by Brouwers et al. [25]. Table 1

reports values for the tensile strength of plain sutures and the tensile strength range for

seven knots under dynamic loading. Moreover, the arterial longitudinal strength was

found to be between 1–3 MPa, based on dynamic biaxial tension tests on human aortic

tissues [19].

Note that, for the particular case where FL tð Þ≤ aNsf
0
s , the derived inequalities (25) to

(27) are not valid. In this case, the potential failure is not dependent on the number of

sutures Ns, but rather on whether the pre-tension exceeds either the suture strength or

artery strength.

Numerical example

To illustrate the applicability of the proposed analytical model, a design example is pre-

sented, in which the minimum number of stitches required to prevent suture failure,

arterial-wall tearing, and development of excessive anastomotic gap, is calculated for a

given set of typical artery and suture parameters (Table 2). More values for the mech-

anical properties of human ascending thoracic aorta can be found in the study of

Gozna et al. [28].

Based on these parameter values, the maximum arterial response, occurring during

the systolic phase, is calculated as umax = 0.997 mm. The maximum circumferential

strain εθ,max = umax/R = 16.6% is within the validity range of the small-deformation as-

sumption. Based on inequality (29), the optimal selection of the number of stitches for

this example is Ns = 17. For the selected value of the design parameter Ns, the response
Table 1 Tensile strength of untied and tied fiber (Based on Brouwers et al. [25])

Suture material Diameter (mm) Suture strength (N) Knot strength (N)

Plain catgut 0.36 25.5 23.7 - 29.6

Maxon 0.31 34.5 22.1 - 46.1

PDS 0.3 27.2 12.4 - 36.5

Prolene 0.26 16.7 6.2 - 26.7

Dexon 0.24 29.1 24.1 - 39.4

Mersilene 0.26 28.3 20.5 - 37.8

Vicryl 0.29 34.6 14.1 - 38.8



Table 2 Parameters used in numerical example

Parameter Value

Artery

Length, L (cm) 3

Radius, R (cm) 0.6

Thickness, h (cm) 0.11

Arterial tissue density, ρ (kg m−3) 1160

Initial displacement, u0 = (2/3)ust (mm) 0.499

Circumferential Young’s modulus, Eθ (kPa) 700

Longitudinal Young’s modulus, EL (kPa) 400

Tissue strength, σs,u (MPa) 3

Red blood cell diameter, drbc (μm) 7

Suturing (Continuous, Prolene)

Length, ls (cm) 0.2

Radius, rs (mm) 0.13

Young’s modulus, Es (GPa) 1.5

Participation factor, a 1.7

Suture pre-tension, f 0s (N) 0

Suture strength, fs,u (N) 16.7

Loading

Systolic pressure, ps (mmHg) 120

Diastolic pressure, pd (mmHg) 80

Systolic duration, ts (sec) 0.35

Cardiac pulse duration, tcp (sec) 1
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quantities of interest are derived as: suture force fs = 0.24 N (< 16.7 N ≡ fs,u), embed-

ding stress σs = 1.43 MPa (< 1.5 MPa ≡ σs,u/2), and anastomotic gap xnet = 6.02 μm

(< 21 μm ≡ 3drbc). As expected, by virtue of satisfying simultaneously the objective func-

tionalities given by equations (10), (11), (12), all response quantities fall within the

accepted range of values, preventing any of the aforementioned failure scenarios. Never-

theless, the calculated embedding stress is marginally acceptable, and the slightest increase

of its value may lead to arterial-wall tearing. That is, despite the fact that the suture can

withstand tensile force up to 16.7 N, any suture pre-tension f 0s > hrsσ s;u=a ¼ 0:24 N ap-

plied by the surgeon in tying the knot may cause arterial injury.

Validation of the model

The present model is fully analytic and has been conceived to be simple with minimum

computational costs, and hence suitable for potential clinical application. The model

incorporates a plethora of the most important-to-the-surgeon parameters for the first

time, at the expense however of strong simplifying hypotheses. One main simplification

is the linearization of the mechanical response of the anastomosis walls. Moreover, an-

isotropy in the circumferential and longitudinal direction has been retained also in an

approximate way, ignoring Poisson effects. In addition, failure criteria based on octahe-

dral equivalent stresses may not be completely appropriate for describing the strength

of the arterial tissue. Finally, a limit-state analysis has been adopted for the failure

mechanism of arterial tissues subject to the loading condition imposed by the stitches.
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The aforementioned issues, important by themselves, do not change the holistic view

of the present paper. The linearization of all presented responses gives consistent

strains of the order of 20%. The use of more elaborate hyperelastic constitutive laws

does not change appreciably the central results of our work. Linear-elasticity estimates

can be adjusted by appropriate changes of the elastic moduli. Poisson effects can reduce

the stitching results by about 30%, thus ignoring the Poisson effects is not against

safety. Failure of the arterial walls is still an uncharted topic. It is most probable that

failure depends on energy criteria, and in this respect the shear stress used in this work

corresponds to a critical deviatoric energy. Finally, the limit-state analysis based on a

critical shear stress can be easily recast into a tearing criterion based on the almost-

uniaxial state of stress on the sides of the stitches (the linear-elasticity local model pre-

dicts a stress concentration factor of about two).

Although the literature contains several experimental studies dealing with the com-

pliance of the anastomotic region [9-13], we found that many parameters that seem to

affect the suture stressing are not reported (e.g. the number of stitches Ns). Our present

work indicates that more details regarding the suture material and suturing technique

should be reported, especially if the para-anastomotic hypercompliant zone (PHZ)

phenomenon needs to be addressed. Previous experimental studies of end-to-end anas-

tomosis between isocompliant arteries or grafts investigate the compliance of the anas-

tomotic region, whereas the main response quantities calculated in this study (xnet, fs, σs)

are not reported in experimental studies. Nevertheless, it is shown that the present study

provides a good estimation of the compliance value of the anastomotic region with respect

to the published experimental results.

Compliance (C) is the circumferential strain of the systolic phase in respect to the

strain of the diastolic phase εsd divided by the pressure difference:

C ¼ Ds −Dd

Dd ps − pdð Þ ¼
εsd

ps − pdð Þ ð30Þ

where Ds and Dd are the arterial diameters under systolic and diastolic pressure, re-

spectively. Hasson et al. [10,11] calculated the compliance of dog arterial grafts under

dynamic loading. The compliance away from the PHZ was 0.06% mmHg−1 for the first

study and 0.05% mmHg−1 for the later study. Ulrich et al. [13] calculated the compli-

ance of pig arterial grafts under dynamic loading as 0.075% mmHg−1. The calculated

compliance of our numerical example is 0.12% mmHg−1. Given that the mechanical

data and pressure profile data were not available for most of the experimental studies

and that our model is subjected to pulse loading of the first loading cycle (meaning that

the calculated displacements may be up to two times larger than the static or long-

term dynamic loading), our model constitutes a good approximation of the experimen-

tal results.

Of particular interest is the PHZ phenomenon. Hasson et al. [11] found that the PHZ

phenomenon occurs more frequently for anastomosis of the continuous stitching tech-

nique than the interrupted stitching technique. Figure 10(a) shows the schematic com-

pliance along the anastomotic region. The PHZ phenomenon (region 2) is pronounced

in the case of continuous stitches, whereas away from the anastomosis zone the com-

pliance is constant (region 1). From our study, the net gap xnet is increased by 15% in

the case of continuous stitching compared to the case of interrupted stitching. This



Figure 10 Schematic correlation of PHZ phenomenon to the stiffness of the arterial tissue.
(a) Compliance of the anastomotic region. The PHZ phenomenon (region 2) exists in the case of continuous
stitches, as was concluded by Hasson et al. [11]. Away from the anastomosis zone the compliance is constant
(region 1), (b) Circumferential stress-longitudinal strain relationship of a nonlinear hyperelastic material. In the
case of continuous stitching, the longitudinal stretch is lower than that of the discrete stitching. This results
to a lower tangential modulus (Eθ1 > Eθ2), implying a higher compliance at the PHZ.
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may justify the decreased longitudinal stretch Δl/L and lower tangent elastic modulus

Eθ1 > Eθ2 (Figure 10(b)) of the continuous stitching case. The decrease of tangent elastic

modulus results to higher compliance at the PHZ.

The experimental results suggest a decrease of stiffness by about 29% [11]. From the

numerical example presented in our study, the total longitudinal stretch away from the

suture line is 1.36. The longitudinal stretch at the PHZ is reduced by 29% compared to

the longitudinal stretch away from the anastomotic region. Taking a nonlinear constitu-

tive law according to Skalak et al. [29], the continuous stitching (stretch 1.27) decreases

the tangent modulus by 24% in comparison to the interrupted stitching (stretch 1.36),

indicating that the increase of compliance at the PHZ can be correlated to the decrease

of stiffness, as Hasson et al. [11] suggest.

In conclusion, the present model, even though simple and approximate, captures ad-

equately the essence of the phenomenon. More complex models can be important in

refining the present results, but on the other hand will require more material data that

may be difficult to obtain or assess their direct contribution.

Conclusions
Presented in this study is the mathematical formulation governing the dynamic behav-

ior of end-to-end arterial anastomosis, with emphasis on suture-artery interaction and
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the axial-circumferential deformation coupling in the artery response. Closed-form,

time-dependent expressions were derived for the system response, in terms of the ra-

dial displacement of artery (equation (4)), the anastomotic gap (equation (20)), the su-

ture tensile force (equation (17)), and the embedding stress due to suture-artery

contact interaction (equation (21)). It is worth noting that, although linear elastic, the

model is comprehensive in that it captures the effects of all pertinent parameters, in-

cluding the geometric and mechanical properties of sutures and arterial walls, the num-

ber of sutures, the loading characteristics, the longitudinal residual stresses, and suture

pre-tensioning. As a result, the response was obtained as a function of as many as

seventeen input parameters (L, R, Ns, h, Eθ, EL, ps, pd, ts, tcp, ρ, u0, ls, Es, rs, a, f 0s ).

Nevertheless, on normalizing appropriately the response quantities, the problem can be

described by only five dimensionless parameters (aEs/EL, L/ls, Nsrs/R, rs/h, af
0
s =rshEL).

Inherent in the analysis are limitations stemming from the underlying model assump-

tions (as discussed in section Methods). We are currently working on similar problems

where we gradually relax assumptions made regarding the artery cylindrical geometry,

the material linear constitutive relations, the arterial-wall homogeneity, and the kine-

matic conditions.

Findings obtained by the suture-tissue interaction analysis reveal the nonlinear de-

pendency of the system response on the radial extension of artery and highlight useful

interrelations among the problem parameters. In regard to the normalized anastomotic

gap, the results suggest that increasing the value of any of the design parameters, ex-

cluding f 0s , yields a decreased anastomotic gap. In particular, the most influential par-

ameter in drastically reducing the anastomotic gap is the number of utilized stitches,

Ns, as can be seen from Figures 7(c,d). The normalized suture tensile force is instead af-

fected only by the number of stitches. A higher number of utilized stitches results in a

smaller tensile force developed in each stitch (Figure 8). It has also been shown that

the normalized embedding stress is decreased as the number of stitches is increased,

whereas the influence of the ratio of suture-to-artery elastic modulus on the embedding

stress is insignificant (Figure 9).

It should be noted that, for a typical anastomosis scheme (with parameters within the

physiological range) and for FL tð Þ≤aNsf
0
s , when the value of pre-tension f 0s exceeds a cer-

tain value (derived from af 0s =2rsh > σs:u=2) the arterial wall is likely to fail. On the other

hand, for lower values of pre-tension and for FL tð Þ > aNsf
0
s , the application of suture

pre-tension can result in reducing the anastomotic gap (equation (22)), while not affecting

considerably the embedding stress (equation (23)) and suture tensile force (equation (24)).

In conclusion, the primary contribution of this study is the development of a funda-

mental analytical model that predicts the dynamic behavior of end-to-end arterial anas-

tomosis. Derived from first principles, thus characterized by generality, the proposed

model offers new and better-substantiated understanding of the mechanics of end-to-

end anastomosis scheme. The mathematical formulation reveals useful interrelations

among the problem parameters, thus making the proposed model a valuable tool for

the optimal selection of materials and improved functionality of sutures. The compre-

hensive failure criteria established in this study can ultimately form the basis for the

development of vascular anastomosis guidelines pertaining to the prevention of post-

surgery implications.
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Appendix A
A1: proof of equation (1)

By considering the equilibrium of the element of the circular ring with unit length

shown in Figure 1 we obtain

p tð ÞRdθ−N tð Þ sin dθ
2

� �
−N tð Þ sin dθ

2

� �
¼ m

d2u tð Þ
dt2

ða:1Þ

where m = ρRhdθ is the mass of the arterial element of unit length. From Hooke's law,
the axial force N is given by

N tð Þ ¼ Eθh
u tð Þ
R

ða:2Þ

On substituting the above expression in equation (a.1), and by considering small an-
gles (so that sin(dθ/2) ≈ dθ/2), we obtain

p tð ÞRdθ−Eθh
u tð Þ
R

dθ ¼ ρRhdθ
d2u tð Þ
dt2

ða:3Þ

By dividing by Rdθ we obtain the equation governing the radial displacement re-
sponse as

p tð Þ−Eθh
u tð Þ
R2 ¼ ρh

d2u tð Þ
dt2

ða:4Þ

A2: proof of equation (4)

The total response of the system to a pulse loading with nonzero initial conditions is

the sum of the response to the pulse loading up(t) and the response to free vibration uf
(t) due to initial conditions.

The response to free vibration with initial displacement uf(0) = u0 and initial velocity

_uf 0ð Þ ¼ 0 is given by

uf tð Þ ¼ u0 cos ωnt; 0 ≤ t ≤ tcp ða:5Þ

The response of the system to impulse force p(t) can be determined by using the
convolution (Duhamel) integral. A convolution integral is simply the integral of the

product of the external force p(τ) and the unit-impulse response function of the sys-

tem h(t − τ):

up tð Þ ¼
Zt

0

p τð Þh t−τð Þdτ ¼ 1
mωn

Zt
0

p τð Þ sin ωn t−τð Þ½ �dτ ða:6Þ

The response in the systolic phase (0 ≤ t ≤ ts), in which the system is subjected to con-
stant force p(τ) = ps, is calculated as

up
I tð Þ ¼ 1

mωn

Zt
0

ps sin ωn t−τð Þ½ �dτ ¼ psR
2

Eθh
1− cosωntð Þ; t ≤ ts ða:7Þ
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The response in the diastolic phase (ts ≤ t ≤ tcp), in which the system is subjected to

impulse force p(τ) = ps − (ps − pd)(τ − ts)/( tcp − ts), is derived from

upII tð Þ ¼ 1
mωn

Zt
t s

ps−
ps−pd
tcp−ts

τ−tsð Þ
� �

sin ωn t−τð Þ½ � dτ þ up
I tsð Þ cosωn t−tsð Þ

þ _up
I tsð Þ
ωn

sinωn t−tsð Þ; ts < t≤tcp

ða:8Þ

in which the first term concerns the force-vibration response associated with the dia-
stolic phase loading, and the last two terms concern the free-vibration response due to

initial conditions up
I (ts) and _up

I tsð Þ induced at the end of the systolic phase. On carrying

out the calculations, equation (a.8) simplifies to

up
II tð Þ ¼ psR

2

Eθh
ps−pd
tcp−ts

ts−t þ sinωn t−tsð Þ
ωn

� �
þ ps 1− cosωntð Þ

� �
; ts < t ≤ tcp ða:9Þ

The total displacement is then obtained as the sum of the pulse-loading response up

(t) and the free-vibration response uf(t):

u tð Þ ¼
u0 cosωnt þ psR

2

Eθh
1− cosωntð Þ; 0 ≤ t ≤ ts

u0 cosωnt þ psR
2

Eθh
ps−pd
tcp−ts

ts−t þ sinωn t−tsð Þ
ωn

� �
þ ps 1− cosωntð Þ

� �
; ts < t ≤ tcp

8>>>><
>>>>:

ða:10Þ

A3: proof of equations (6), (7), (8), (9)

The maximum displacement of the arterial system may occur either during the systolic

phase (0 ≤ t ≤ ts) or during the diastolic phase (ts < t ≤ tcp). The maximum displacement

of the systolic phase (for |u0|/ust < 1) occurs for cos ωnt = − 1. Therefore, by substituting

this expression into the first part of equation (4) the maximum displacement of the sys-

tolic phase uImax is obtained as

uImax ¼
2psR

2

Eθh
−u0 ða:11Þ

To calculate the time instant t1 corresponding to the maximum response of the dia-
stolic phase, the derivative of the displacement with respect to time is set equal to zero:

du tð Þ
dt

¼ psR
2

ωnEθh
ps−pd
tcp−ts

� �
þ sinωnt1

psR
2

Eθh
þ R2

Eθh
ps−pd
tcp−ts

sinωnts
ωn

−u0

� �

þ cosωnt1
R2

Eθh
ps−pd
tcp−ts

sinωnts
ωn

� �
¼ 0

ða:12Þ

which can be recast in the following form

B1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

2 þ B3
2

p
cos ωnt1− tan−1

B2

B3












� �
ða:13Þ
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where

2 � �

B1 ¼ −

psR
ωnEθh

ps−pd
tcp−ts

ða:14Þ

B2 ¼ psR
2

Eθh
þ R2

Eθh
ps−pd
tcp−ts

sinωnts
ωn

−u0 ða:15Þ

B3 ¼ R2

Eθh
ps−pd
tcp−ts

sinωnts
ωn

ða:16Þ

On solving for t1 we get the time instant corresponding to the maximum response of
the diastolic phase as

t1 ¼ 1
ωn

cos−1
B1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
2 þ B3

2
p þ tan−1

B2

B3












 !
¼ 1

ωn
cos−1A1 þ tan−1A2
	 
 ða:17Þ

The maximum displacement of the diastolic phase uII is calculated at t = t1 as
max

uIImax ¼ u0 cosωnt1 þ R2

Eθh
ps−pd
tcp−ts

ts−t1 þ sinωn t1−tsð Þ
ωn

� �
þ ps 1− cosωnt1ð Þ

� �
ða:18Þ

The overall maximum response is then obtained as

umax ¼ max uImax; u
II
max

� � ¼ max

2psR
2

Eθh
−u0; u0 cosωnt1þ

R2

Eθh
ps−pd
tcp−ts

ts−t1 þ sinωn t1−tsð Þ
ωn

� �
þ ps 1− cosωnt1ð Þ

� �
8>><
>>:

9>>=
>>;

ða:19Þ

A4: proof of equation (19)

The equilibrium of forces in the axial direction requires that

FL tð Þ ¼ aNs f s tð Þ ða:20Þ

Substituting equations (17) and (18) into equation (a.20), the equilibrium of forces in
the axial direction yields

2πhEL Rþ u tð Þð ÞΔl tð Þ
l tð Þ ¼ aNs

AsEs

ls
xnet tð Þ þ f 0s

� �
ða:21Þ

By combining equations (15) and (16), the net gap between the anastomosed artery

segments is derived as

xnet tð Þ ¼ 2L 1−
R2

Rþ u tð Þð Þ2
" #

−2Δl tð Þ ða:22Þ

Substituting equation (a.22) into equation (a.21), the equilibrium equation is

expressed in terms of Δl(t) as

2πhEL Rþ u tð Þð ÞΔl tð Þ
l tð Þ ¼ aNs

AsEs

ls
2L 1−

R2

Rþ u tð Þð Þ2
 !

−2Δl tð Þ
" #

þ f 0s

( )
ða:23Þ
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which can be readily solved for the tensile deformation:
Δl tð Þ ¼
aNsLR2 AsEsL 1− R2

Rþu tð Þð Þ2
h i

þ f 0s
2 ls

n o
πELlsh Rþ u tð Þð Þ3 þ aNsAsEsLR2

ða:24Þ

Appendix B: Solution of end-to-end anastomosis between artery and graft
material
This section presents the general solution of an end-to-end anastomosis between a host

artery and a graft, each one having different geometrical and mechanical properties.

The artery segment has length La, radius Ra, thickness ha, and Young’s modulus in the

longitudinal direction and circumferential direction ELa and Eθa, respectively, whereas

the graft has length Lg, radius Rg, thickness hg, and Young’s modulus in the longitudinal

direction and circumferential direction ELg and Eθg, respectively (Figure 11(a)). The

conservation of the blood volume requires that the artery initial length La decrease to

la and the graft initial length Lg decrease to lg (Figure 11(b)) according to:

la ¼ LaRa
2

Ra þ ua tð Þð Þ2 ðb:1Þ

lg ¼ LgRg
2

Rg þ ug tð Þ	 
2 ðb:2Þ
Figure 11 Artery-graft end-to-end anastomosis analysis. (a) Anastomosis model (at-rest state); the
artery and graft are clamped at the far ends and no pressure is transmitted at this stage since the artery is
emptied from the blood, (b) unrestrained deformed state (without sutures); the blood volume is conserved,
(c) deformed state of anastomotic region due to dynamic loading, (d) forces acting on end-element of
artery segment, (e) forces acting on end-element of graft segment.
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where ua and ug are the radial deformations of the artery and graft, respectively. Note

that the graft has not initial radial displacement due to residual stresses. The gap devel-

oped in the unrestrained (without sutures) state of the artery is determined as

xg tð Þ ¼ La þ Lg−la tð Þ−lg tð Þ ¼ La þ Lg−
LaRa

2

Ra þ ua tð Þð Þ2 −
LgRg

2

Rg þ ug tð Þ	 
2 ðb:3Þ

Therefore, the resulting net gap developed in the restrained (with sutures) anasto-

motic region can be derived from

xnet tð Þ ¼ xg tð Þ−Δla tð Þ−Δlg tð Þ ðb:4Þ

where Δla is the tensile deformation due to the artery/stitches interaction, and Δlg is

the tensile deformation due to the graft/stitches interaction (Figure 11(c)).

The tensile forces developed in the suture, arterial tissue, and graft are given respect-

ively by

f s tð Þ ¼ AsEsεs tð Þ þ f 0s ¼
AsEs

ls
xnet tð Þ þ f 0s ðb:5Þ

FLa tð Þ ¼ 2πhaELa Ra þ ua tð Þð ÞΔla tð Þ
la tð Þ ðb:6Þ

FLg tð Þ ¼ 2πhgELg Rg þ ug tð Þ	 
Δlg tð Þ
lg tð Þ ðb:7Þ

The unknown tensile deformations Δla and Δlg can be derived from equilibrium of
forces in the axial direction, FLa(t) = FLg(t) and FLa(t) = aNsfs(t) (Figure 11(d,e)), yielding

Δla tð Þ ¼
aNsf

0
s þ aNsAsEs La 1− Ra

2

Raþua tð Þð Þ2
h i

þ Lg 1− Rg
2

Rgþug tð Þð Þ2
� �� �

2πELaha
LaRa

2 Ra þ ua tð Þð Þ3 þ aNsAsEs
ls

1þ haELaLgRg
2 Raþua tð Þð Þ3

hgELgLaRa
2 Rgþug tð Þð Þ3

� � ðb:8Þ

Δlg tð Þ ¼ haELaLgRg
2 Ra þ ua tð Þð Þ3

hgELgLaRa
2 Rg þ ug tð Þ	 
3 Δla tð Þ ðb:9Þ

Substituting equations (b.3), (b.8) and (b.9) into equation (b.4), we obtain the net gap

between the anastomosed artery segments as

xnet tð Þ ¼
2πELaha Ra þ ua tð Þð Þ3 La 1−

Ra
2

Ra þ ua tð Þð Þ2
" #

þ Lg 1−
Rg

2

Rg þ ug tð Þ	 
2
" #( )

2πELaha Ra þ ua tð Þð Þ3 þ aNsAsEsLaRa
2

ls
1þ haELaLgRg

2 Ra þ ua tð Þð Þ3
hgELgLaRa

2 Rg þ ug tð Þ	 
3
" #

−

aNsf
0
s LaRa

2 1þ haELaLgRg
2 Ra þ ua tð Þð Þ3

hgELgLaRa
2 Rg þ ug tð Þ	 
3

" #

2πELaha Ra þ ua tð Þð Þ3 þ aNsAsEsLaRa
2

ls
1þ haELaLgRg

2 Ra þ ua tð Þð Þ3
hgELgLaRa

2 Rg þ ug tð Þ	 
3
" #

ðb:10Þ

Note that a gap across the anastomotic interface will be formed only if the tension

developed in the arterial tissue exceeds the total suture pre-tension. The suture tensile
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force fs developed in each stitch can be obtained from equation (17). The embedding

stresses induced on the arterial wall σsa and graft wall σsg must be compared to the

strength of the artery σsa,u and strength of the graft σsg,u respectively:

σsa tð Þ ¼ af s tð Þ
2rsha

< σsa;u=2 ðb:11Þ

σsg tð Þ ¼ af s tð Þ
2rshg

< σ sg;u=2 ðb:12Þ
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