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Abstract

Background: In magnetic resonance electrical impedance tomography (MREIT), we
reconstruct conductivity images using magnetic flux density data induced by
externally injected currents. Since we extract magnetic flux density data from acquired
MR phase images, the amount of measurement noise increases in regions of weak MR
signals. Especially for local regions of MR signal void, there may occur excessive
amounts of noise to deteriorate the quality of reconstructed conductivity images. In
this paper, we propose a new conductivity image enhancement method as a
postprocessing technique to improve the image quality.

Methods: Within a magnetic flux density image, the amount of noise varies
depending on the position-dependent MR signal intensity. Using the MR magnitude
image which is always available in MREIT, we estimate noise levels of measured
magnetic flux density data in local regions. Based on the noise estimates, we adjust the
window size and weights of a spatial averaging filter, which is applied to reconstructed
conductivity images. Without relying on a partial differential equation, the new method
is fast and can be easily implemented.

Results: Applying the novel conductivity image enhancement method to
experimental data, we could improve the image quality to better distinguish local
regions with different conductivity contrasts. From phantom experiments, the
estimated conductivity values had 80% less variations inside regions of homogeneous
objects. Reconstructed conductivity images from upper and lower abdominal regions
of animals showed much less artifacts in local regions of weak MR signals.

Conclusion: We developed the fast and simple method to enhance the conductivity
image quality by adaptively adjusting the weights and window size of the spatial
averaging filter using MR magnitude images. Since the new method is implemented as
a postprocessing step, we suggest adopting it without or with other preprocessing
methods for application studies where conductivity contrast is of primary concern.
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Background
Electrical conductivity is a passive material property of a biological tissue or organ pro-
viding diagnostic information of its physiological function and pathological state [1,2]. In
magnetic resonance electrical impedance tomography (MREIT), we aim to visualize the
internal conductivity distribution of the human body by injecting electrical current and
measuring induced magnetic flux density data using an MRI scanner [3,4]. The MREIT
technique uses the z-component Bz of the magnetic flux density B = (Bx,By,Bz) to
recover conductivity and/or current density images [5-10].
In experimental MREIT studies of animal and human subjects [11-14], the quality of

reconstructed conductivity images highly depends on the noise level in measured Bz

data and the injection current amplitude. For a given current amplitude, we can improve
the image quality by reducing the noise level. If we reduce the current amplitude to
avoid adverse effects such as electrical stimulations of nerve and muscle, the range of Bz

decreases proportionally and the measured Bz data become more vulnerable to noise. In
order not to deteriorate the conductivity image quality, we should reduce the noise level
as well.
There have been numerous studies to minimize the noise level in measured Bz data

by optimizing the data collection method including pulse sequences, RF coils, shim-
ming, averaging, and so on. For example, the injected current nonlinear encoding (ICNE)
method was introduced to reduce the noise level in Bz data by extending the current
injection time without increasing the scan time [15]. Various multi-echo and multi-
coil techniques have been developed together with optimization methods to combine
multiple signals from multiple coils and echoes [16].
Once we acquire k-space data from a designed MREIT experiment, we should care-

fully process the data to suppress the noise and enhance the image quality. This requires
proper understanding of the noise characteristics. The noise standard deviation of Bz is
inversely proportional to the signal-to-noise ratio (SNR) of the MR magnitude image and
the current injection time when the magnitude image SNR is higher than about 3 [17,18].
Since the magnitude image SNR varies over the image, the noise level of Bz also varies. If
the magnitude image SNR is much lower, for example, less than 3, then we should expect
an excessive amount of noise in Bz. This may happen when we scan an animal or human
subject since there exist local regions of weak MR signal such as the lungs, gas-filled
organs, and outer layers of bones. In those regions with very low magnitude image SNRs,
there occur excessive amounts of noise in measured Bz data. It is, therefore, important to
properly suppress the noise effects in preprocessing or postprocessing steps.
There are several denoising methods to process the acquired Bz data [19-23]. These

methods use either a PDE-based approach or a localized data processing approach and
require a certain degree of manual adjustment of parameters. All of these methods are
applied tomeasured Bz data before conductivity image reconstructions as a preprocessing
step.
In this paper, we present a new method to suppress the noise effects in reconstructed

conductivity images as a postprocessing step. We suggest incorporating a prior infor-
mation from the MR magnitude image which is always available in MREIT. For current
density imaging using measured magnetic flux density data, Joy et al. suppressed noise
effects by setting some appropriate threshold in the MR magnitude image SNR [24]. A
similar approach based on the morphological enabled dipole inversion (MEDI) has been
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proposed in quantitative susceptibility map (QSM) to overcome the ill-posedness in its
inverse problem [25].
The proposed method enhances the quality of reconstructed conductivity images by

using an adaptively weighted spatial averaging filter. To determine the weights, we will
define a distance function with respect to the noise standard deviation in measured Bz

data. Since the noise is inversely proportional to the MR magnitude image, we will incor-
porate the magnitude image in the spatial filtering process. After describing the details
of the proposed method, we will show how it performs with experimental data from a
conductivity phantom and also animal subjects.

Methods
Noise in magnetic flux density data

We inject current into an imaging object, of which timing is synchronized with a chosen
MR pulse sequence. The usual current injection period is from the end of the exciting
RF pulse to the beginning of the readout gradient. One may choose different current
injection times and patterns depending on designed pulse sequences. For example, the
ICNE-multi-echo pulse sequence extends the duration of current injection until the end
of multiple read-out gradients.
The externally injected current produces an internal magnetic flux density distribu-

tion and its z-component Bz in a voxel results in an extra phase in the MR phase image.
To remove systematic phase artifacts, we sequentially inject positive I+ and negative I−

current pulses to obtain the following k-space data:

S±(kx, ky) =
∫

�

M(x, y)eiδ(x,y)e±iγBz(x,y)Tcei2π(kxx+kyy)dxdy (1)

where M is the MR magnitude image, δ is any systematic phase artifact, γ = 26.75 ×
107rad/T · s is the gyromagnetic ratio of the proton, and � is a field-of-view (FOV). Here,
the superscript of S± denotes a brief notation for S+ and S−.
We extract the magnetic flux density Bz by

Bz(x, y) = 1
2γTc

arg
(

�+(x, y)
�−(x, y)

)
(2)

where �± = Meiδe±iγBzTc .
The noise standard deviation of the measured magnetic flux density Bz is inversely pro-

portional to the current injection time Tc and the SNR of the MR magnitude image ϒ as

sdBz = 1
2γTcϒ

(3)

for ϒ > 2.8 [17,18]. If we reduce the current amplitude I±, the range of Bz decreases
proportionally. To reduce the noise standard deviation, we have to increase the current
injection time Tc and the SNRϒ simultaneously. However, this is not possiblemainly due
to the T2 or T∗

2 decay of the MR signal.

Conductivity image reconstruction

The externally injected current I induces distributions of voltage u, current density J =
(Jx, Jy, Jz), and magnetic flux density B = (Bx,By,Bz) inside the imaging object � with its
boundary ∂�. The voltage satisfies the following partial differential equation:
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{
∇ · (σ (r)∇u(r)) = 0 in �

−σ∇u · n = g on ∂�
(4)

where r = (x, y, z), n is the outward unit normal vector on ∂�, and g denotes the
Neumann boundary data subject to the injection current. From the Biot-Savart law, the
magnetic flux density Bz is related with the current density J = −σ∇u as

Bz(r) = μ0
4π

∫
�

(y − y′)Jx(r′) − (x − x′)Jy(r′)
|r − r′|3 dr′ (5)

where μ0 is the magnetic permeability of the free space.
There exists numerous image reconstruction algorithms to visualize the conductivity

σ or the current density J in the imaging object from measured Bz data [5,9,16,26]. In
this paper, we adopted the transversal J-substitution algorithm [27] since it differenti-
ates the noisy Bz data once and does not propagate the noise effects from one region to
another. We first assume the imaging object with a homogeneous conductivity distribu-
tion σH . Solving (4) with σH in place of σ , we can compute the voltage, current density,
and magnetic flux density, which are denoted as uH , JH , and BH

z , respectively.
In MREIT experiments, we measure two Bz data subject to two orthogonal injec-

tion currents. Denoting them as Bz,1 and Bz,2, the transversal J-substitution algorithm
produces an image of the conductivity σ as

σ(r) = σH(r) − 1
μ0

2∑
n=1

∇̃⊥(Bz,n(r)−BHz,n(r))·∇̃uHn (r)
2∑

n=1
〈∇̃uHn (r),∇̃uHn (r)〉

(6)

where ∇̃⊥f :=
(

∂f
∂y ,− ∂f

∂x

)
for a given scalar function f and 〈·, ·〉 denotes the scalar inner

product. We used the computed values of two magnetic flux densities BH
z,1 and BH

z,2 cor-
responding to two computed voltages uH1 and uH2 , respectively, for the homogeneous case
of σH . Note that the noisy data of Bz,1 and Bz,2 may deteriorate the quality of the recon-
structed image of σ . More details about the image reconstruction algorithm are described
in [27].

Adaptively weighted spatial averaging

To determine a neighborhood of a pixel, we define the following distance function:

D(r, s) := |M(r) − M(s)|
h(r) , s ∈ Br(η(r)) (7)

whereM(r) is the MR magnitude image, Br(η(r)) is a neighborhood of the point r with a
radius η(r), and h(r) is a function of the noise level in measured Bz data. For each pixel s
in the neighborhood of the pixel r, that is, s ∈ Br(η(r)), we define the following weighting
factor wr(s):

wr(s) := 1
ζ r

e−D(r,s) (8)

where ζr := ∑
s e−D(r,s) is a normalization constant ensuring that

∑
s wr(s) = 1. We

perform the adaptive spatial averaging of the reconstructed conductivity values as the
following weighted sum:

σw(r) =
∑

s∈Br(η(r))
wr(s)σ (s). (9)
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For the pixel at r, the distance D(r, s) measures the similarity of M(r) and M(s) in the
surrounding region of r. Since the noise standard deviation of Bz is inversely proportional
to the magnitude image SNR, the weights are in effect adjusted by the noise level in mea-
sured Bz data. In (7), two parameters of η(r) and h(r) regulate the extent of the spatial
averaging filter. We now design the denominator h(r) and the radius η(r) in (7) as

h(r) ∝ sdBz (r) and η(r) ∝ sdBz (r). (10)

We can choose the proportionality parameters of h(r) and η(r) in (10) depending on
the quality of the reconstructed conductivity image to be filtered.
The designed distance functionD(r, s) preserves the conductivity value where the noise

level of Bz is low. To determine the characteristics of the weighting factor wr(s), we
decompose the weighted conductivity σw(r) to the true conductivity σt(r) and the noise
term:

σw(r) =
∑

s∈Br(η(r))
wr(s)σ (s) =

∑
s∈Br(η(r))

wr(s) (σt(s) + Nr(s)) (11)

where σt(s) and Nr(s) denote the noiseless true conductivity and the noise term at s,
respectively. The weighted conductivity σw(r) and the true conductivity σt(r) satisfy the
following relation:

|σw(r) − σt(r)| = 1
ζr

∣∣∣∣∣ ∑
s∈Br(η(r))

e−D(r,s) (σt(s) − σt(r) + Nr(s))
∣∣∣∣∣

≤ E1(r) + E2(r)
(12)

where

E1(r) = 1
ζr

∣∣∣∣∣∣
∑

s∈Br(η(r))
e−D(r,s)(σt(s) − σt(r))

∣∣∣∣∣∣ (13)

and

E2(r) = 1
ζr

∣∣∣∣∣∣
∑

s∈Br(η(r))
e−D(r,s)Nr(s)

∣∣∣∣∣∣ . (14)

For a small amount of noise, both h(r) and η(r) are small and, therefore, the relation (12)
implies that both E1(r) and E2(r) are small. This means that the method does no harm to
the conductivity image when the noise level is low.
For a large amount of noise, the first error term E1(r) becomes small if there was no

significant variations of the conductivity values within the neighboring region Br(η(r)) of
the pixel at r. This is true only when the pixels with similar magnitude image values also
have similar conductivity values. We will discuss implications of this restriction later. The
second error term E2(r) is considerably reduced by the spatial averaging of the random
noise.

Imaging experiments

Phantom imaging

To evaluate the performance of the proposed method, we scanned a cylindrical phantom
with four carbon-hydrogel electrodes (HUREV Co. Ltd, Korea). The phantom was filled
with 0.4 S/m saline and included three cylindrical objects. The first (D1) was a TX-151
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object (1.5 S/m), the second (D2) was an agar object (0.1 S/m), and the third (D3) was a
TX-151 object (1.5 S/m) wrapped with an agar object (0.3 S/m) as shown in Figure 1(a).
We placed the phantom inside the bore of our 3 T MRI scanner (Magnum 3, Medinus
Co. Ltd., Korea). Using a custom-designed MREIT current source [28], we injected 10
mA currents in the horizontally and vertically directions. The parameters of the spin-
echo-based imaging sequence were as follows: repetition time TR = 1200 ms, echo time
TE = 15 ms, number of echoesNE = 5, field of view (FOV) was 240× 240 mm2, number
of excitations (NEX) was 1, imaging matrix was 128 × 128, and total imaging time was
10.24min. Figure 1(b) shows the injected current pulses synchronized with RF pulses. We
combined the acquired multiple echoes to optimize the SNR in measured Bz data [16].
Figure 1(c) shows the measured Bz image subject to the vertical current injection.

Animal imaging

The animals were laboratory beagles (2–3 years old, weighing 8–15 kg) without having
any known disease. To prevent dribbling, we injected 0.1 mg/kg of atrophine sulfate. Ten
minutes later, we anesthetized the dog with intramuscular injection of 0.2 ml/kg Tile-
tamine and Zolazepam (Zoletil 50, Virbac, France). Twenty minutes later, we sacrificed
it with an intravenous injection of 80 mg/kg KCL (Entobar, Hanrim Pharmacy, Korea).
After clipping the hair, we attached four carbon-hydrogel electrodes (HUREV Co. Ltd.,
Korea) around the imaging area. The size of each electrode was 80 × 80 × 6 mm3. The
procedure was approved by the Institutional Animal Care and Use Committee (IACUC).
We injected currents in two mutually orthogonal directions between two pairs of elec-
trodes facing each other. The injection current amplitude ranged from 5 to 10 mA. We
adopted the ICNE pulse sequence. The imaging parameters were as follows: repetition
time TR = 1200 ms, echo time TE = 30 ms, FOV was 280 × 280 mm2, slice thickness
was 4 mm, number of slice was 8, NEX was 6, imaging matrix was 128 × 128, and total
imaging time was 60 min. Figure 2 shows two data sets we used in the paper.

Results
Figure 3(a) shows the MR magnitude image at the middle slice of the phantom. We seg-
mented three regions of D1 (TX-151), D2 (agar), and D3 (TX-151 wrapped with agar).
Depending on the noise level in measured Bz data, we determined the denominator h in
(7) to compute the distance function D(r, s). Figure 3(b) shows the denominator h in (7).
Figure 3(c) shows the reconstructed conductivity image using the algorithm in (6). Due to

(c)(b)(a)
-0.6

0.6
nT

Figure 1 Experimental set-up and measuredmagnetic flux density image. (a) Phantom with three
objects with different conductivity values. (b) Injection current pulses synchronized with RF pulses.
(c)Measured magnetic flux density Bz image subject to vertical current injection.
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(c)(b)(a)
-10

10
nT

-10

10
nT

(d)

Figure 2 MRmagnitude andmagnetic flux density images for animal experiments. (a) and (b) are MR
magnitude and Bz images, respectively, of the upper abdominal region of the first beagle. (c) and (d) are MR
magnitude and Bz images, respectively, of the lower abdominal region of the second beagle.

the short T2 relaxation time of the objects, the reconstructed conductivity values of the
objects show strong noise defects. Figure 3(d) shows the filtered conductivity image using
the proposed method. In the noisy regions of Di, i = 1, 2, 3, the values of the denomina-
tor h were relatively large to produce smaller distance values in (7). Since the values of η

were also large in Di, more pixels in the neighboring region were included in the spatial
averaging with relatively larger weights.
We may quantify the effects of the filtering method by computing the amount of con-

ductivity changes in a homogeneous region. We defined the following variance function
to estimate how the reconstructed conductivity values varied in each region of interest
(ROI):

VDi(σ ) := 1
|Di|

(∫
Di

|∇σ |2 dr
)1/2

for i = 1, 2, 3 (15)

where |Di| denotes the volume of the ROI Di. Table 1 shows that the proposed method
significantly improved the image quality.
Figure 4(a) is the image of the denominator h in (7) for the upper abdominal region in

Figure 2(a). The areas marked by the arrows have large values of h since their MR magni-
tude image SNRs were low. The averagemagnitude intensity in themarked areas was 3.78,
where the intensity of the entire image ranged from 0 to 30. Since the noise level of Bz is
inversely proportional to the MR magnitude intensity, the recovered conductivity values
of the marked regions included a relatively large amount of noise. Figure 4(b) shows the
reconstructed conductivity image without using any filtering method and we can observe
severe noise effects in those regions.

(a) (d)(c)
0

0.8

0

0.3

(b)

agarTX151

D

D3

D21

S/m

Figure 3 Experiment results for the phantom. (a)MR magnitude image of the phantom in Figure 1.
(b) Computed values of the denominator h in (7). (c) Conductivity image without using any filtering.
(d) Conductivity image after applying the adaptively weighted spatial averaging filter.
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Table 1 Variance of the reconstructed conductivity values in the ROIs using the variance
function in (15)

VD1 (σ ) VD2 (σ ) VD3 (σ )

Before filtering 25.4 15.7 18.4

After filtering 3.39 3.89 4.81

To compare the proposed method with a conventional denoising technique, we used
the following reaction-diffusion iteration step [29]:⎧⎪⎨

⎪⎩
vn+1(x, y) = vn(x, y) + α∇̃ ·

(
∇̃vn∣∣∣∇̃vn

∣∣∣
)

− β(vn − f )

v0(x, y) = f (x, y)
(16)

where f is the reconstructed conductivity image shown in Figure 4(b). Figure 4(c) shows
the denoised conductivity image using the iterationmethod (16).We can see that the iter-
ationmethod blurred the entire image. Figure 4(d) is the conductivity image after applying
the adaptively weighted spatial averaging filter. We can see that the proposed method
enhanced the conductivity image in the marked regions without affecting other regions.
For the blurred image in Figure 4(c), we used the following parameters: iteration number =
200, α = 0.1, and fidelity term β = 0.01. These parameters were chosen to make the vari-
ance of the conductivity values in the marked regions of the image in Figure 4(c) to be
equal to that of the image in 4(d).
Figure 5 shows similar results for the lower abdominal region shown in Figure 2(c).

The average magnitude intensity of the marked regions was 1.97 for this case and the
measured Bz data were noisier than the case in Figure 4. Comparing two filtered conduc-
tivity images in 5(c) and (d), we can see that the method proposed in this paper is clearly
advantageous.

Discussion and conclusion
For animal or human subjects, their internal structures are heterogenous and there often
exist local regions of weak MR signals. This makes the noise level in measured magnetic
flux density data vary significantly for different pixels. Since we use the data to reconstruct
conductivity images, noise effects are conveyed to the conductivity images with spatially
varying image quality. Conventional filtering methods without considering this property,
therefore, unnecessarily blur the entire conductivity image.

(d)(c)(b)
0

0.3

0.7

2
S/m

(a)

Figure 4 Experiment results for the upper abdominal region. (a) Computed values of the denominator h
in (7) for the upper abdominal region in Figure 2(a). (b) Conductivity image without using any filtering.
(c) Filtered conductivity image by the iteration method in (16). (d) Conductivity image after applying the
adaptively weighted spatial averaging filter.
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0

0.3

0.7

2
S/m

(b) (c) (d)(a)

Figure 5 Experiment results for the lower abdominal region. (a) Computed values of the denominator h
in (7) for the lower abdominal region in Figure 2(c) and (d). (b) Conductivity image without using the
filtering. (c) Filtered conductivity image by the iteration method in (16). (d) Conductivity image after
applying the adaptively weighted spatial averaging filter.

In this paper, we proposed a fast and simple method to enhance the conductivity
image quality by utilizing the MR magnitude image. Noting that the noise level in mea-
sured magnetic flux density data is inversely proportional to the pixel value of the MR
magnitude image, we could adaptively adjust the weights and window size of the spa-
tial averaging filter. In designing the filter, we used two parameters of η(r) and h(r) in
(7) to regulate the extent of the spatial averaging filter. Since we set their values to be
proportional to the noise level in measured Bz data, the proposed method adaptively
changes the extent of the spatial averaging depending on the noise level at each pixel. It
is important to properly choose the proportionality constants for η(r) and h(r) in (10).
Though we heuristically chose the constants in this paper, we plan to rigorously inves-
tigate their effects on the filtered image and develop an automatic method to determine
them.
Since the spatial averaging is performed on neighboring pixels with similar MR mag-

nitude image values, it may remove any useful conductivity contrast among those pixels.
Using the proposed method, we can apply the spatial averaging to local regions of severe
noise where we can not trust reconstructed conductivity values. We can, therefore, sup-
press noise for the price of reduced image resolution within local regions with large
amounts of noise. The proposed method negligibly influences the conductivity image in
other regions with enough SNR.
For the phantom image in Figure 3, we found that the spatial averaging recovered the

correct conductivity values in the noisy regions since there was no conductivity contrast
within each region. For the animal images in Figures 4 and 5, it was difficult to assert that
the recovered conductivity values of the noisy regions were correct since there could have
been some conductivity contrast among those pixels with similar MR magnitude image
values. In application studies, we may analyze both unfiltered and filtered conductivity
images if quantitative conductivity values of noisy regions are of primary concern.
While the existing denoising methods inMREIT are applied tomeasured Bz data before

conductivity image reconstructions [19-23], the new method proposed in this paper is
a postprocessing method, which can be applied to reconstructed conductivity images.
Without requiring any image segmentation, one can easily implement the method with-
out or with chosen preprocessing steps. We suggest adopting the proposed method in
future experimental MREIT studies where conductivity contrast is of primary concern to
extract diagnostic information.
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