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Abstract

Background: The comprehension of human knee laxity and of the failures of
relevant surgical reconstructions of the anterior cruciate ligament (ACL) can be
enhanced by the knowledge of the laximetric status of the contralateral healthy knee
(CHK). Rarely this is available in patients, directly from the skeletal structures, and for
a number of the standard clinical tests. The general aim of this study was to measure
the extent to which laxity occurs immediately before surgery in the ACL deficient
knee (ADK) with respect to CHK, in a number of standard clinical evaluation tests.

Method: Thirty-two patients with ACL deficiency were analyzed at ADK and at CHK
by a navigation system immediately before reconstructions. Knee laxity was assessed
based on digitized anatomical references during the antero-posterior drawer,
Lachman, internal-external rotation, varus-valgus, and pivot-shift tests. Antero-posterior
laxity was normalized based on patient-specific length of the tibial plateau.

Results: In the drawer test, statistical significance (p < 0.05) was found for the larger
antero-posterior laxity in ADK than in CHK, on average, of 54% in the medial and 47%
in the lateral compartments, when measured in normalized translations. In the Lachman
test, these were about 106% and 68%. The pivot-shift test revealed a significant 70%
larger antero-posterior central laxity and a 32% larger rotational laxity. No statistically
relevant differences were observed in the other tests.

Conclusion: The first conclusion is that it is important to measure also the antero-posterior
and rotational laxity of the uninjured contralateral knee in assessing the laxity of
the injured knee. A second is that the Lachman test shows knee laxity better than
the AP drawer, and that the pivot-shift test was the only one able to reveal rotational
instability. The present original measurements and analyses contribute to the
knowledge of knee joint mechanics, with possible relevant applications in
biomedical and clinical research.

Keywords: Knee joint laxity, Knee instability tests, ACL-deficiency knee,
Contralateral healthy knee, Knee surgical navigation, Knee biomechanics
Introduction
Current surgical treatments for antero-posterior laxity and rotational instability of the

human knee, typically via reconstruction of the anterior cruciate ligament (ACL), allow

a satisfactory correction and an acceptable subjective sensation of joint stability [1].

However, secondary degenerative changes occur as in non-surgically treated ACL
© 2014 Imbert et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

mailto:leardini@ior.it
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Imbert et al. BioMedical Engineering OnLine 2014, 13:86 Page 2 of 16
http://www.biomedical-engineering-online.com/content/13/1/86
lesions [2], these being due to inadequate restoration of physiological knee mobility

and stability [3,4].

A number of tests are used to assess laxity and instability in biomechanical and clin-

ical settings [1,5,6], such as the antero-posterior drawer, the Lachman, the varus-valgus

stability, the internal-external rotation, and the pivot-shift. However, not all these tests

are usually performed, and rarely skeletal differences among patients are considered

[7]. Apparently, only the pivot-shift reproduces the combined rotational/translational

instability in the ACL-deficient knees (ADK). In more details, the result of this test is

positive when the lateral tibial plateau subluxates anteriorly with respect to the lateral

femoral condyle while applying tibial internal rotation plus a valgus stress with the knee

slightly flexed, although relevant grading relies on the examiner’s perception of instabil-

ity that occurs during this manoeuvre [8].

The most recent surgical techniques for ACL reconstruction involve placing the ACL

graft less vertically [9,10], or introducing an extra-articular reinforcement in addition to

the intra-articular reconstruction [9] for a possibly better rotational control. However,

non-physiological knee kinematics during activities have been reported also in patients

after successful ACL reconstruction, i.e. with a negative pivot-shift examination [11,12].

Further investigations of perturbed knee laxity in ADK are, therefore, necessary to compre-

hend fully the biomechanical changes occurring after ACL injury. Particularly, in subjects

with ADK the quantification of joint laxity also in the contralateral healthy knee (CHK)

would offer a suitable reference to assess these alterations [6,13]. For a reliable such ana-

lysis, skeletal-based measurements should be taken in-vivo in both knees, but this has been

reported only in a single study [14]. This work, however, was limited by the very small

sample size, i.e. 5 patients, most of whom with the contralateral knee not fully normal.

Modern surgical navigation systems [15] for surgical ACL reconstructions, by track-

ing intra-operatively the anatomically-based six-degrees-of-freedom of the femur and

tibia, can assist the surgeon in tunnel placement and in the assessment of joint kine-

matics and laxity in the ADK [16-18], but also in the CHK [18,19]. These navigation

systems give access also to intra-operative additional measurements, potentially very

relevant during ACL reconstruction surgery for quantification in laxity evaluation tests.

The general aim of this study was to determine the extent to which joint laxity is

found in the ADK immediately before surgery, and, particularly, how this laxity com-

pares with that at the CHK. More specific scopes were (a) the demonstration that the

knowledge of antero-posterior and rotational laxity in the CHK is important for the

comprehension of this laxity in the ADK, and (b) that there are tests able to reveal bet-

ter the degree of laxity and instability in the ADK. For these scopes, for the first time

knee joint motion was measured in a large cohort of 32 patients intra-operatively, i.e.

immediately before ACL reconstruction, by using skeletal trackers and a navigation sys-

tem. In this special condition, skeletal structures are accessible, for direct bone tracking

and for patient-specific skeletal-based normalization. The full series of clinical tests

used routinely to assess laxity were investigated. All these original measurements are

here reported, separately for each knee.

Patients and methods
Thirty-two ACL reconstructions were analyzed in as many patients (Table 1) within a

year and a half timeframe by a single experienced surgeon. The inclusion criteria were:



Table 1 Original values of APL (in millimeters) and ARR (in degrees) in both sides and directions, reported together with the corresponding AP-tib values used
for normalization; these are reported for each patient analyzed and for all tests performed

Patient sex age AP-tib
(mm)

DRAWER TEST
LACHMAN

TEST ROTATION TEST AT 20° FLEXION ROTATION TEST AT 90° FLEXION VAR-VAL
TEST

PIVOT SHIFT
TEST

Medial
APL
(mm)

Lateral
APL
(mm)

Medial
APL
(mm)

Lateral
APL
(mm)

Medial
APL
(mm)

Lateral
APL
(mm)

Total
ARR
(Deg)

External
ARR
(Deg)

Internal
ARR
(Deg)

Medial
APL
(mm)

Lateral
APL
(mm)

Total
ARR
(Deg)

External
ARR
(Deg)

Internal
ARR
(Deg)

Varus
(Deg)

Valgus
(Deg)

Central
APL
(mm)

Total
ARR
(Deg)

#1 m 32 53
CHK 5 13 3 10 20 18 24 12 12 22 26 32 16 16 1 2 7 17

ADK 4 15 14 20 22 19 25 12 14 21 29 31 10 21 3 2 10 13

#2 m 27 55
CHK 1 7 4 7 11 16 19 9 10 13 23 27 15 12 1 1 5 12

ADK 5 15 14 19 17 17 21 6 15 22 27 30 12 17 2 2 12 17

#3 m 37 53
CHK 2 8 4 11 17 21 28 17 11 21 28 35 14 22 2 1 7 14

ADK 4 13 13 17 19 26 29 12 18 30 35 43 14 29 2 3 22 27

#4 m 23 54
CHK 4 7 5 12 16 21 25 14 11 23 27 37 26 11 1 1 8 16

ADK 6 14 9 22 26 25 33 14 19 26 29 37 14 23 3 3 10 21

#5 m 29 52
CHK 4 9 5 14 12 17 19 9 10 20 29 34 19 15 1 2 5 17

ADK 7 16 11 22 19 18 23 12 10 23 31 35 16 19 1 2 16 22

#6 m 20 52
CHK 5 12 8 13 13 15 16 9 8 20 23 29 10 18 2 1 8 16

ADK 6 14 10 23 16 17 18 6 13 20 26 30 12 18 1 3 15 23

#7 m 21 60
CHK 4 7 5 12 19 23 28 18 11 23 29 35 21 15 1 1 10 15

ADK 8 12 7 9 23 20 29 18 11 28 33 40 19 21 2 2 5 13

#8 m 23 60
CHK 3 9 7 11 15 13 18 10 9 22 25 32 14 17 2 2 7 15

ADK 6 12 14 23 18 13 19 8 11 25 31 39 22 17 2 2 17 25

#9 m 20 52
CHK 5 8 4 12 14 16 23 17 6 23 30 40 21 19 1 1 6 11

ADK 7 11 15 28 27 17 27 19 8 27 31 37 16 22 4 2 23 21

#10 m 39 65
CHK 4 10 7 14 15 19 22 10 12 19 27 31 11 19 2 1 7 14

ADK 6 15 15 18 18 19 22 7 15 25 31 37 22 15 2 2 11 21
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Table 1 Original values of APL (in millimeters) and ARR (in degrees) in both sides and directions, reported together with the corresponding AP-tib values used
for normalization; these are reported for each patient analyzed and for all tests performed (Continued)

#11 m 28 49
CHK 4 7 3 9 12 19 23 16 7 23 35 42 20 22 1 1 7 12

ADK 8 17 11 14 20 20 25 11 14 30 40 47 31 16 1 3 12 23

#12 m 37 54
CHK 4 9 6 9 15 19 23 11 13 18 25 31 23 8 0 2 11 19

ADK 9 19 13 23 18 19 23 9 14 24 32 34 19 15 1 2 20 26

#13 f 46 35
CHK 3 3 15 13 21 20 25 19 6 27 33 43 19 24 4 2 8 16

ADK 7 11 9 22 25 21 30 12 18 26 37 49 29 20 6 3 7 17

#14 m 25 49
CHK 7 7 12 14 38 29 37 3 34 41 39 45 11 34 3 3 3 24

ADK 8 18 18 22 41 34 38 17 21 34 39 38 21 16 5 4 11 18

#15 m 32 36
CHK 5 10 9 19 16 21 23 12 11 19 27 31 23 9 3 3 8 11

ADK 8 15 12 18 13 23 25 12 12 21 28 35 14 21 2 3 12 20

#16 f 19 36
CHK 6 13 7 10 26 27 41 20 20 30 37 52 19 33 1 2 9 22

ADK 5 22 15 22 22 27 38 23 15 27 29 43 25 7 3 2 18 26

#17 m 33 55
CHK 5 13 6 15 18 17 22 11 10 28 34 39 21 19 1 2 6 18

ADK 8 17 12 18 26 16 24 15 9 29 33 39 20 20 3 3 10 15

#18 m 33 42
CHK 2 9 5 12 10 16 18 12 6 15 29 29 12 17 3 2 8 18

ADK 7 15 18 25 21 18 25 17 8 24 33 35 19 16 2 2 26 18

#19 m 16 44
CHK 8 13 6 13 10 14 15 10 6 22 30 37 27 10 1 2 10 18

ADK 5 15 10 20 19 16 21 8 13 28 31 38 12 25 2 2 15 24

#20 m 22 53
CHK 7 16 4 13 16 14 16 10 6 25 30 33 18 15 0 1 14 12

ADK 5 16 14 23 22 25 24 13 11 25 32 33 9 24 1 2 13 20

#21 f 36 46
CHK 5 11 3 15 13 24 30 17 13 17 30 42 28 13 2 2 18 17

ADK 7 12 12 29 25 24 34 25 9 24 33 43 20 23 2 3 24 28

#22 m 46 56
CHK 5 12 7 7 19 25 25 10 15 25 28 33 20 14 1 1 11 15

ADK 9 12 14 27 22 22 25 14 11 23 28 29 12 18 1 2 26 20
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Table 1 Original values of APL (in millimeters) and ARR (in degrees) in both sides and directions, reported together with the corresponding AP-tib values used
for normalization; these are reported for each patient analyzed and for all tests performed (Continued)

#23 m 20 60
CHK 4 9 5 10 17 21 27 11 16 24 36 45 25 20 1 1 9 19

ADK 6 14 15 24 29 23 35 11 24 30 35 45 27 18 3 2 18 28

#24 m 48 56
CHK 3 13 6 18 19 19 22 8 14 19 28 32 19 13 1 1 9 14

ADK 5 14 12 25 22 20 24 13 11 20 28 29 16 13 2 2 12 16

#25 m 19 53
CHK 4 8 6 13 15 16 23 10 12 20 25 33 11 21 1 1 7 19

ADK 7 16 11 24 26 20 29 15 14 31 36 45 28 17 2 2 11 22

#26 m 21 58
CHK 5 8 11 21 24 23 32 14 18 32 36 49 31 18 1 1 9 17

ADK 10 17 14 19 20 27 28 20 8 29 33 42 3 38 1 2 16 25

#27 m 38 49
CHK 3 12 3 12 11 17 21 11 10 19 32 39 19 20 2 1 10 15

ADK 5 16 12 20 18 20 26 15 11 25 35 41 21 20 1 2 14 17

#28 m 23 58
CHK 5 14 3 16 17 22 27 17 10 25 32 43 26 17 1 1 16 20

ADK 7 14 8 23 27 20 30 13 17 31 34 43 19 23 1 2 10 22

#29 m 36 49
CHK 6 21 8 17 20 21 28 17 11 32 39 49 21 28 1 1 7 15

ADK 11 16 19 27 29 20 30 18 12 34 38 49 26 23 1 3 14 25

#30 m 46 48
CHK 2 15 8 12 16 14 21 13 9 26 35 45 17 28 2 1 10 16

ADK 7 20 17 22 23 15 24 9 15 32 38 52 31 22 2 2 20 21

#31 m 35 49
CHK 5 11 3 9 11 13 18 15 4 23 31 40 25 15 1 2 15 26

ADK 6 17 13 26 19 10 14 9 5 25 32 39 19 20 2 2 20 32

#32 m 19 53
CHK 3 7 3 16 13 23 25 12 13 17 31 37 23 14 1 1 6 11

ADK 5 13 9 15 20 23 28 12 16 25 37 42 19 23 2 3 8 21
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a) isolated ACL rupture, i.e. no varus-valgus laxity, meniscal lesion or cartilage damage

evidenced by a questionnaire, physical examination and MRI, and b) uninjured contra-

lateral knee, as assessed by a questionnaire and physical examination. A clinical assess-

ment was also performed by using the International Knee Documentation Committee

(IKDC) scoring system [20]. In the ADK, all patients had joint instability (IKDC score:

C or D), with no clinical or radiological evidence of any other ligamentous lesion, de-

generative change or meniscus lesion. In all patients the CHK was stable with no major

ligament injuries or degenerative changes (IKDC score: A or B).

All patients were asked before surgery to allow intra-operative data collection from

both the ADK and CHK, according to an established technique [14] suitably adapted,

and provided written informed consent as approved by the local Ethics Committee. No

surgical complications occurred. No persistent pain was reported then by the patients.

During surgery, an image-free passive-optical surgical navigation system for ACL re-

construction (Praxim, La Tronche, France; Figure 1) was used, but only for the neces-

sary intra-operative measurements, i.e. not to assist surgery. For these systems and

interventions the accuracy reported is 1° and 1 mm [18,21]. The system provides in

real-time knee flexion-extension, varus-valgus, and internal-external rotation, i.e. the

axial rotation, by means of bone trackers implanted in the femur and tibia [18,21].

Relevant bone tracking accuracy is within 1 mm and 1°, as reported in a previous paper

testing the same navigation system using robotic machines [19]. The system consists of

three marker clusters, used for bone tracking, and a workstation, equipped with a pro-

cessing unit with dedicated software, a monitor, and a localizer, functioning as infrared

light emitter and receiver. A reference frame is embedded in the localizer and in all

clusters. A pointer-like cluster was used to digitize the anatomical landmarks necessary

to define the patient-specific geometrical model of the knee and its reference frames.

The CHK was analyzed first. Steinmann pins were inserted into the distal femur and

proximal tibia, corresponding clusters were mounted, the navigation system was initial-

ized, and the pose of the knee in full extension and in neutral internal-external rotation

according to surgeon’s examination was recorded. The following anatomical landmarks

were digitized percutaneously by the pointer after careful external palpation (Figure 2):

the medial and lateral epicondyles, the medial and lateral malleoli, the most prominent

part of the tibial tuberosity, and the most medial and lateral points of the ridge respect-

ively of the tibial plateau. The tibial anatomical reference frame was defined with the

origin in the midpoint between the latter landmarks, a proximo-distal axis as the line

passing through the origin and the ankle center, i.e. the midpoint between the two

malleoli, and a mid-sagittal plane was defined as the mean plane, on a least-square

approach, of the trajectories of the origin and of the ankle center during an imposed

cycle of knee flexion and extension [21]. The medio-lateral axis was the orthogonal to

the sagittal plane, the antero-posterior axis the orthogonal to the other two axes [21].

The femur anatomical reference frame was made to coincide with that of the tibia in

knee full extension, and then tracked by the femoral cluster; the origin was defined in

the midpoint between the two epicondyles [21]. The following tests were then per-

formed [5] on CHK: the antero-posterior (AP) drawer, the Lachman, the internal-

external rotation at 20° and 90° knee flexion, the varus-valgus stability at knee full

extension, and the pivot-shift. Then, the clusters were moved from the CHK to

the ADK, and the same procedures replicated. Navigation instruments were then



Figure 1 Measurement set-up while performing the tests in surgery. Bone pins are fixed onto the
femur/tibia; cluster compounds of three passive reflecting markers are mounted onto these pins; both
clusters communicate with the localizer (not visible); relevant data are shown on the monitor.
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removed and the ACL reconstruction was performed using the traditional, i.e. not

navigated, surgical procedure.

The antero-posterior laxity (APL) was defined as the range, expressed in mm, of antero-

posterior translation of a point of the femur in the tibial transverse plane. The axial rota-

tion range (ARR), expressed in degrees, was also defined. During test executions in the

CHK and the ADK, these parameters were stored from the navigation system (Table 1).

In particular: 1) the APL in medial and lateral compartments, respectively of the medial

and lateral epicondyles, obtained both during the drawer and the Lachman tests, and also

during the internal-external rotation test at both 20° and 90° knee flexion; 2) the total

ARR and corresponding internal and external sub-ranges obtained during the rotation test

at 20° and 90° knee flexion; 3) the range of varus and valgus motion obtained during the

varus-valgus stability test; 4) the total ARR and the central APL, i.e. of the origin of the

femoral reference frame, obtained during the pivot-shift test.

From the digitized landmarks the antero-posterior tibial dimension (AP-tib) was cal-

culated for each knee, based on the distance between the centre of the tibial plateau

and the digitized tibial tuberosity once projected on the tibial transverse plane, and on

a length-to-width ratio taken in a previous anatomical study [7]. To consider possible

differences associated to skeletal size variations, APL data were then normalized, i.e. re-

ported in percentage of the corresponding AP-tib (%AP-tib).

Data were analyzed in terms of mean values and standard deviations. All possible

differences between CHK and ADK, between tests, and between compartments, were

sought by t-test or paired t-test where appropriate. Furthermore, the Pearson prod-

uct–moment correlation coefficient (R) was also used to derive correlations between

variables, and here reported in its squared form (R2), i.e. the coefficient of determin-

ation. Corresponding p-values were reported for assessing significance, this being ac-

cepted at p < 0.05. The patient population size analyzed in this study meets the



Figure 2 Diagram with the anatomical landmarks used for defining the reference frames, those
digitized directly (in grey) and those calculated as mid points (black). The tibial anatomical reference
frame with its three axes is also depicted.
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criteria for achieving all these differences with 80% statistical power and an α-level of

0.05. All calculations were made in MatLab® software package (The MathWorks, Inc.,

Natick, MA-USA).

Results
General demographic statistical analysis showed, as expected, a smaller antero-

posterior tibial dimension in females than in males (R2 = 0.328, p = 0.001). In females,

also total (R2 = 0.213, p = 0.008) and external (R2 = 0.270, p = 0.002) ARR, and corre-

sponding lateral APL (R2 = 0.131, p = 0.042), were larger. Furthermore, a significant

inverse correlation, though moderate (R = 0.585), was observed between the antero-

posterior tibial dimension and the range of varus-valgus (R2 = 0.342, p < 0.001).
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Here below, for each of the clinical tests performed and also for couples of tests,

intra-subjects comparisons are first reported, i.e. ADK versus CHK; then inter-tests

comparisons, and medial versus lateral compartment and internal versus external rota-

tion comparisons are also discussed.

AP drawer and lachman tests

Significantly larger APL was found in ADK than in CHK (Figure 3; Table 2). Particu-

larly, in the AP drawer, this was, on average, of about 54% in the medial and 47% in the

lateral compartments, the mean over the two compartments being 51%. In the Lach-

man test, these were much larger, i.e. 106%, 68% and 87%, respectively.

By comparing these two tests and also looking separately at the two knees, signifi-

cantly larger APL was found in Lachman test than in AP drawer. Particularly, this was,

on average, of about 43% in the medial and 25% in the lateral compartments in the

CHK, the mean over the two compartments being 34%; these values in the ADK were

respectively 91%, 43% and 67%.

Significantly larger APL was found in the lateral than in the medial compartment; the

percentage difference for the CHK was, on average, 137% in the AP drawer test and

107% in the Lachman test, whereas for the ADK these were 126% and 69%.

Internal-external rotation tests at 20° and 90° knee flexion

In both tests no relevant differences were observed in laxity between the CHK and the

ADK (Figure 4; Table 3) in terms of ARR values and the lateral APL; only in the test at

20° a significantly larger medial APL was observed in ADK than in CHK, this being of

about 9%.

By comparing these two tests, significantly larger values for the medial and lateral

APL, and total and corresponding internal and external ARR were found at 90° flexion

than at 20° flexion. Particularly, in the CHK these five values were of about 38%, 58%,

57%, 58% and 55% respectively. This was observed also in the ADK, corresponding

values being 20%, 59%, 48%, 52% and 41%.

The lateral APL was significantly larger than the medial APL only in the rotation test

at 90° flexion, this being of about 32% in the CHK and 24% in the ADK.

Neither in the CHK nor in the ADK were significant differences observed between

internal and external ARR.

Varus-valgus stability test

This test revealed that the ADK was only slightly more unstable than the CHK. In

CHK, the mean varus and valgus ranges were respectively 1.4° and 1.5° (Figure 5). In

ADK, these were 2.1° and 2.4°. Particularly, significantly larger values were found in

ADK than in CHK of about 50% (R2 = 0.101; p = 0.011) and 70% (R2 = 0.380; p < 0.001),

respectively. In both knees, no significant difference (p = 0.870) was observed between

the varus and the valgus ranges.

Pivot-shift test

In the CHK, the mean range of the central APL was 17.6% AP-tib, the total ARR was

16.3° (Figure 6). In the ADK, this test was positive in all patients, and these values were,

respectively, 29.9% AP-tib and 21.5°. Particularly, the values in the ADK were



Figure 3 Box-plots from the Drawer (top) and Lachman (bottom) tests. The range of APL is shown for
the medial (left) and lateral (right) compartments, both for the CHK and ADK. In each plot, the boxes have
lines at the lower, median, and upper quartile values over the whole patient cohort; the whisker lines
extending from each end of the box show the extent of the rest of the data; values for any outliers are
reported beyond the ends of the whiskers.
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significantly larger than in CHK, these being of about 70% (R2 = 0.280; p < 0.001), and

32% (R2 = 0.297; p < 0.001), respectively.

Discussion
The first finding for the present study (scope a) was that it is important to measure the

antero-posterior and rotational laxity of the uninjured contralateral knee in assessing

the laxity of the injured knee. Both knees are routinely examined by orthopaedic sur-

geons when assessing patients with knee injury, but this is a qualitative procedure. Our

conclusion is corroborated by a quantitative comparative analysis of reliable skeletal



Table 2 Mean values of APL, expressed as percentage of AP-tib, reported for the two
tests, and for the medial and lateral compartments of both knees.

CHK ADK R2CHK→ADK;;
pCHK→ADKMean ± SD R2med→lat;; pmed→lat Mean ± SD R2med→lat;; pmed→lat

APL
[% AP-tib]

AP drawer

medial 8.7 ± 3.7 R2 = 0.495;
p < 0.001

13.4 ± 4.0 R2 = 0.635;
p < 0.001

R2 = 0.273;
p < 0.001

lateral 20.6 ± 7.8 30.3 ± 8.3 R2 = 0.275;
p < 0.001

Lachman

medial 12.4 ± 8.3 R2 = 0.395;
p < 0.001

25.6 ± 7.4 R2 = 0.458;
p < 0.001

R2 = 0.423;
p < 0.001

lateral 25.7 ± 8.4 43.2 ± 11.6 R2 = 0.439;
p < 0.001

R2AP drawer→Lachman; pAP drawer→Lachman

medial R2 = 0.100; p = 0.025 R2 = 0.521; p < 0.001

lateral R2 = 0.100; p = 0.015 R2 = 0.298; p < 0.001

For all possible couples of these values, R2 and p are also reported, in Italic.
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measurements obtained in a large number of operations and also with dimensional

normalization. A large part of the laxity in ADK can be due to that in the CHK: about

two/thirds in the AP drawer, about half in the Lachman (Table 2). The importance of

the comparison between CHK and ADK is therefore highlighted, thus supporting fur-

ther the recommendation that the assessment of knee instability and laxity should be
Figure 4 Box-plots (same graphical representation as in Figure 4) from the two rotation tests, at
20° (top) and 90° (bottom) knee flexions. Ranges of medial and lateral APL, and total, internal and
external ARR are reported both for the unaffected (CHK) and affected (ADK) knees.



Table 3 Mean values of ARR, expressed in degrees, and APL, expressed as percentage of AP-tib, for the Internal-External rotation tests; these are reported for the
medial and lateral compartments of both knees, and for the two joint positions.

CHK ADK R2CHK→ADK;; pCHK→ADK

Mean ± SD R2intra→extra;; pintra→extra Mean ± SD R2intra→extra; ;pintra→extra

ARR [deg] 20° Knee Flexion

intra 11.4 ± 5.5 R2 = 0.012; p = 0.293 13.2 ± 4.0 R2 = 0.001; p = 0.932 R2 = 0.035; p = 0.139

extra 12.6 ± 3.8 13.3 ± 4.6 R2 = 0.006; p = 0.538

tot 23.9 ± 5.8 26.4 ± 5.5 R2 = 0.051; p = 0.073

90° Knee Flexion

intra 18.0 ± 6.3 R2 = 0.017; p = 0.301 20.0 ± 5.3 R2 = 0.013; p = 0.374 R2 = 0.030; p = 0.172

extra 19.5 ± 5.4 18.7 ± 6.7 R2 = 0.005; p = 0.567

tot 37.5 ± 6.5 39.0 ± 6.1 R2 = 0.014; p = 0.345

R220°→90°; p20°→90°

intra R2 = 0.246; p < 0.001 R2 = 0.350; p < 0.001

extra R2 = 0.359; p < 0.001 R2 = 0.184; p = 0.001

tot R2 = 0.560; p < 0.001 R2 = 0.551; p < 0.001

CHK ADK R2CHK→ADK;; pCHK→ADK

Mean ± SD R2med→lat;; pmed→lat Mean ± SD R2med→lat;; pmed→lat

APL [% AP-tib] 20° Knee Flexion

medial 33.3 ± 14.2 R2 = 0.039; p = 0.117 44.1 ± 12.8 R2 = 0.017; p = 0.311 R2 = 0.150; p < 0.001

lateral 38.5 ± 12.0 41.1 ± 13.0 R2 = 0.011; p = 0.407

90° Knee Flexion

medial 46.0 ± 15.1 R2 = 0.194; p < 0.001 52.7 ± 11.4 R2 = 0.197; p < 0.001 R2 = 0.060; p = 0.052

lateral 60.9 ± 15.8 65.4 ± 14.4 R2 = 0.022; p = 0.246

R220°→90°; p20°→90°

medial R2 = 0.163; p < 0.001 R2 = 0.101; p = 0.008

lateral R2 = 0.398; p < 0.001 R2 = 0.446; p < 0.001

For all possible couples of these values, R2 and p are also reported, in Italic.
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Figure 5 Box-plots (same graphical representation as in Figure 3) from the varus-valgus stability
test. Ranges of varus and valgus knee rotations are reported for both for the unaffected (CHK) and affected
(ADK) knees.
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performed first within the same subject. The present ADK-to-CHK difference contrib-

uted also to reducing considerably the inter-patient variability.

A second finding (scope b) was that the pivot-shift was the only test able to reveal a

significantly different rotational instability. The results from the present intra-operative

measurements also confirmed that the expected higher translational instability in the

ADK compared to that in the CHK may vary between the six tests performed, and that

APL is associated to a higher rotational instability only in the pivot-shift. This test,
Figure 6 Box-plots (same graphical representation as in Figure 3) from the pivot-shift test. Ranges
of central APL and total ARR are reported for both for the unaffected (CHK) and affected (ADK) knees.
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therefore, must be considered the most suitable for revealing these differences, as pre-

viously suggested [18,22]. For all tests, the antero-posterior laxity in CHK was higher in

the lateral than in the medial compartment, and this was more marked in the ADK.

In addition, by considering only mean values over the two compartments, in the

ADK the APL was about 67% (mean between 91% and 43%) larger in the Lachman test

than in the AP drawer. With the knowledge of the CHK, the ADK to CHK differences

can be calculated: APL was here found larger in ADK by 51% in the AP drawer and

87% in the Lachman test, i.e. 73% larger in the Lachman than in the AP drawer. In

other words, Lachman is more revealing than AP drawer with the knowledge of CHK

(73%) rather than the ADK alone (67%), i.e. a 6% difference.

To our knowledge, only one previous study has performed similar joint laxity mea-

sures in-vivo, directly in skeletal structures, and with the comparison between affected

and unaffected knees [14]. In that study, only five subjects were assessed (two of which

with an unstable meniscus lesion in the unaffected knee) during the antero-posterior

drawer and the internal-external rotation test at every 15° knee flexion step, between

15° and 90°. The present results compare well with those reported in another in-vivo

study [23], though knees treated for a meniscal tear or with acute ACL injury were ana-

lyzed there. Knee laxity data were reported also from in-vitro studies, but the mechan-

ical response to dynamic loading in specimens can be highly affected by altered

viscoelastic properties [24]. In addition, ACL lesions are difficult to simulate in-vitro,

because the typical complex conditions which occur after traumatic ruptures cannot be

reproduced [25].

The present study is not free from limitations. Although the surgical navigation sys-

tem was shown to be accurate enough for single point digitization [19], inaccuracies in

anatomical landmark identification might affect relevant reference frame definitions

and skeletal size quantifications. The application of force and torque in the laxity tests

during surgery is operator dependant, and although these were performed by a single

surgeon, this application might have been different over patients. However, intra-

surgeon repeatability for these tests was reported to be good [26]. It turned out that

four patients (#7, #13, #20 and #32; Table 1) showed joint laxity difference between

ADK and CHK not significant during the Lachman, drawer and pivot-shift test, and as

such indication for ACL reconstruction is questionable. However, corresponding partial

ligament rupture in the ADK was clearly confirmed by surgical examination.

Conclusions
The present study offers an original contribution to the understanding of laxity and in-

stability at the human knee joint. Measurements were taken with the least possible invasive

technique and over a larger number of knee joint laxity tests. The large number of patients

analyzed, despite the strict selection criteria, together with normalization for the joint

translations also allowed a reliable statistical analysis to be performed, for more robust final

findings. The first conclusion is that it is important to measure the antero-posterior and ro-

tational laxity of the uninjured contralateral knee in assessing the laxity of the injured knee.

The second is that the Lachman test shows knee laxity better than the AP drawer, and that

the pivot-shift test was the only one able to reveal rotational instability.

With these findings, and the support of the current standard surgical navigation sys-

tems, the diagnostic evaluation of knee instability can be refined even during surgery.
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The present original measurements and analyses, here provided for each knee, can con-

tribute to the knowledge of knee joint mechanics, with possible relevant applications in

biomedical and clinical research. In particular, the present observations highlight fur-

ther the importance of a careful and more accurate analysis of the healthy knee in

ACL-deficiency, which shall encourage the design of more accurate non-invasive

methods for knee laxity quantitative assessment.

Ethics statement

The data here analyzed are gathered from a series of measurements which are taken

usually in the operating room during surgical navigation based ACL reconstructions,

and are therefore approved by the institutional scientific review board (Clinique Notre

Dame de la Merci, Saint-Raphaël, France). Informed consent was signed by each pa-

tient, after explanation of the possible benefits and risks associated to the additional

surgical procedures.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
PI conceived the investigation, performed the surgeries, collected all original data, and drafted the manuscript. CB
carried out all the necessary calculations and statistical analyses and contributed significantly into the writing of the
manuscript. AL designed this specific study, supervised calculations, and wrote the final manuscript. All authors read
and approved the manuscript.

Author details
1Department of Knee Surgery, Clinique Notre Dame de la Merci, Saint-Raphaël, France. 2Movement Analysis
Laboratory, Centro di Ricerca Codivilla-Putti, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.

Received: 20 February 2014 Accepted: 11 June 2014
Published: 24 June 2014

References

1. Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ: Relationships between objective assessment of

ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament
reconstruction. Am J Sports Med 2004, 32:629–634.

2. Oiestad BE, Engebretsen L, Storheim K, Risberg MA: Knee osteoarthritis after anterior cruciate ligament injury:
a systematic review. Am J Sports Med 2009, 37:1434–1443.

3. Haughom B, Schairer W, Souza RB, Carpenter D, Ma CB, Li X: Abnormal tibiofemoral kinematics following ACL
reconstruction are associated with early cartilage matrix degeneration measured by MRI T1rho. Knee 2012,
19:482–487.

4. Amis AA, Bull AM, Lie DT: Biomechanics of rotational instability and anatomic anterior cruciate ligament
reconstruction. Oper Tech Orthop 2005, 15:29–35.

5. Herrington L, Fowler E: A systematic literature review to investigate if we identify those patients who can
cope with anterior cruciate ligament deficiency. Knee 2006, 13:260–265.

6. Kopf S, Kauert R, Halfpaap J, Jung T, Becker R: A new quantitative method for pivot shift grading. Knee Surg
Sports Traumatol Arthrosc 2012, 20:718–723.

7. Dargel J, Feiser J, Gotter M, Pennig D, Koebke J: Side differences in the anatomy of human knee joints. Knee
Surg Sports Traumatol Arthrosc 2009, 17:1368–1376.

8. Lane CG, Warren R, Pearle AD: The pivot shift. J Am Acad Orthop Surg 2008, 16:679–688.
9. Marcacci M, Zaffagnini S, Marcheggiani Muccioli GM, Neri MP, Bondi A, Nitri M, Bonanzinga T, Grassi A: Arthroscopic

intra- and extra-articular anterior cruciate ligament reconstruction with gracilis and semitendinosus tendons:
a review. Curr Rev Musculoskelet Med 2011, 4:73–77.

10. Carmont MR, Scheffler S, Spalding T, Brown J, Sutton PM: Anatomical single bundle anterior cruciate ligament
reconstruction. Curr Rev Musculoskelet Med 2011, 4:65–72.

11. Scanlan SF, Chaudhari AM, Dyrby CO, Andriacchi TP: Differences in tibial rotation during walking in ACL
reconstructed and healthy contralateral knees. J Biomech 2010, 43:1817–1822.

12. Tashman S, Kolowich P, Collon D, Anderson K, Anderst W: Dynamic function of the ACL-reconstructed knee
during running. Clin Orthop Relat Res 2007, 454:66–73.

13. Ishibashi Y, Tsuda E, Fukuda A, Tsukada H, Toh S: Intraoperative biomechanical evaluation of anatomic anterior
cruciate ligament reconstruction using a navigation system: comparison of hamstring tendon and bone-patellar
tendon-bone graft. Am J Sports Med 2008, 36:1903–1912.

14. Miura K, Ishibashi Y, Tsuda E, Fukuda A, Tsukada H, Toh S: Intraoperative comparison of knee laxity between
anterior cruciate ligament-reconstructed knee and contralateral stable knee using navigation system.
Arthroscopy 2010, 26:1203–1211.



Imbert et al. BioMedical Engineering OnLine 2014, 13:86 Page 16 of 16
http://www.biomedical-engineering-online.com/content/13/1/86
15. Siston RA, Giori NJ, Goodman SB, Delp SL: Surgical navigation for total knee arthroplasty: a perspective. J Biomech
2007, 40:728–735.

16. Muller-Alsbach UW, Staubli AE: Computer aided ACL reconstruction. Injury 2004, 35(Suppl 1):S-7.
17. Jalliard R, Lavallee S, Dessenne V: Computer assisted reconstruction of the anterior cruciate ligament. Clin

Orthop Relat Res 1998, 354:57–64.
18. Kendoff D, Citak M, Voos J, Pearle AD: Surgical navigation in knee ligament reconstruction. Clin Sports Med

2009, 28:41–50.
19. Pearle AD, Solomon DJ, Wanich T, Moreau-Gaudry A, Granchi CC, Wickiewicz TL, Granchi CC, Wickiewicz TL, Warren RF:

Reliability of navigated knee stability examination: a cadaveric evaluation. Am J Sports Med 2007, 35:1315–1320.
20. Hefti F, Muller W, Jakob RP, Staubli HU: Evaluation of knee ligament injuries with the IKDC form. Knee Surg

Sports Traumatol Arthrosc 1993, 1:226–234.
21. Colombet P, Robinson J, Christel P, Franceschi JP, Djian P: Using navigation to measure rotation kinematics

during ACL reconstruction. Clin Orthop Relat Res 2007, 454:59–65.
22. Hoshino Y, Kuroda R, Nagamune K, Araki D, Kubo S, Yamaguchi M, Kurosaka M: Optimal measurement of clinical

rotational test for evaluating anterior cruciate ligament insufficiency. Knee Surg Sports Traumatol Arthrosc 2012,
20:1323–1330.

23. Song EK, Seon JK, Park SJ, Hur CI, Lee DS: In vivo laxity of stable versus anterior cruciate ligament-injured knees
using a navigation system: a comparative study. Knee Surg Sports Traumatol Arthrosc 2009, 17:941–945.

24. van Dommelen JA, Jolandan MM, Ivarsson BJ, Millington SA, Raut M, Kerrigan JR, Crandall JR, Diduch DR:
Nonlinear viscoelastic behavior of human knee ligaments subjected to complex loading histories. Ann Biomed
Eng 2006, 34:1008–1018.

25. Monaco E, Ferretti A, Labianca L, Maestri B, Speranza A, Kelly MJ, D'Arrigo C: Navigated knee kinematics after
cutting of the ACL and its secondary restraint. Knee Surg Sports Traumatol Arthrosc 2012, 20:870–877.

26. Martelli S, Zaffagnini S, Bignozzi S, Lopomo N, Marcacci M: Description and validation of a navigation system for
intra-operative evaluation of knee laxity. Comput Aided Surg 2007, 12:181–188.
doi:10.1186/1475-925X-13-86
Cite this article as: Imbert et al.: Human knee laxity in ACL-deficient and physiological contralateral joints:
intra-operative measurements using a navigation system. BioMedical Engineering OnLine 2014 13:86.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Method
	Results
	Conclusion

	Introduction
	Patients and methods
	Results
	AP drawer and lachman tests
	Internal-external rotation tests at 20° and 90° knee flexion
	Varus-valgus stability test
	Pivot-shift test

	Discussion
	Conclusions
	Ethics statement

	Competing interests
	Authors’ contributions
	Author details
	References

