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Abstract

Background: Left pulmonary artery sling (LPAS) is a rare but severe congenital
anomaly, in which the stenoses are formed in the trachea and/or main bronchi.
Multi-detector computed tomography (MDCT) provides useful anatomical images,
but does not offer functional information. The objective of the present study is to
quantitatively analyze the airflow in the trachea and main bronchi of LPAS subjects
through computational fluid dynamics (CFD) simulation.

Methods: Five subjects (four LPAS patients, one normal control) aging 6-19 months
are analyzed. The geometric model of the trachea and the two main bronchi is
extracted from the MDCT images. The inlet velocity is determined based on the body
weight and the inlet area. Both the geometric model and personalized inflow
conditions are imported into CFD software, ANSYS. The pressure drop, mass flow
ratio through two bronchi, wall pressure, flow velocity and wall shear stress (WSS) are
obtained, and compared to the normal control.

Results: Due to the tracheal and/or bronchial stenosis, the pressure drop for the
LPAS patients ranges 78.9 - 914.5 Pa, much higher than for the normal control
(0.7 Pa). The mass flow ratio through the two bronchi does not correlate with the
sectional area ratio if the anomalous left pulmonary artery compresses the trachea or
bronchi. It is suggested that the C-shaped trachea plays an important role on
facilitating the air flow into the left bronchus with the inertia force. For LPAS subjects,
the distributions of velocities, wall pressure and WSS are less regular than for the
normal control. At the stenotic site, high velocity, low wall pressure and high WSS
are observed.

Conclusions: Using geometric models extracted from CT images and the patient-
specified inlet boundary conditions, CFD simulation can provide vital quantitative flow
information for LPAS. Due to the stenosis, high pressure drops, inconsistent distributions
of velocities, wall pressure and WSS are observed. The C-shaped trachea may facilitate a
larger flow of air into the left bronchus under the inertial force, and decrease the
ventilation of the right lung. Quantitative and personalized information may help
understand the mechanism of LPAS and the correlations between stenosis and
dyspnea, and facilitate the structural and functional assessment of LPAS.
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Introduction
Left pulmonary artery sling (LPAS) is a rare congenital anomaly, where the left pul-

monary artery (LPA) starts from the proximal portion of right pulmonary artery; ini-

tially runs to the right, passes behind the right main bronchus, turns left and then

crosses between the trachea and esophagus, and finally reaches the hilum of the left

lung [1,2]. A schematic representation of LPAS is shown in Figure 1. The anomalous

LPA forms a “sling” around the distal trachea. Subjects with LPAS commonly present

with respiratory problems resulting from external trachea and main bronchus compres-

sion. Surgeries including left pulmonary re-implantation with simultaneous repair of

the tracheal stenosis are often carried out after diagnosis [3-5]. However, ideal surgery

strategy is still controversial for there is no absolute correlation between luminal area

of the stenosis and the prognosis of the disorder [3-5].

Multi-detector computed tomography (MDCT) has played an important role in the

structural evaluation of congenital anomalies of the tracheobronchial tree and the lung

[6]. The data however only gives information on the structural parameters of the lung,

but no functional and quantitative information on the airflow can be measured.

Based on patient-specified geometric models extracted from the CT data, computational

fluid dynamics (CFD) enables to reveal the nature of airflow in the trachea and bronchus

tree under both physiological and pathology conditions [7,8]. Brouns et al. [9] found that

the relationship between flow and pressure drop fits a power law, where the exponent is

found to be 1.77, 1.92 and 2.00 for the absence of tracheal stenosis, 60% and 85% constric-

tion, respectively. They suggested using the derived value for the exponent as a marker for

stenoses at a pre-critical stage. Luo and Liu [10] simulated the respiratory flow in the air-

ways up to 5 generations deep using a low Reynolds number (LRN) k −ω turbulent model.

Deun [11] also employed this model to realistic CT derived lung geometry, and found an

average pressure drop of 60.2 Pa for an inlet flow rate of 30 l/min. Freitas and Schroder

[12] studied the steady flow in the upper human airways with the trachea and the sixth

generation of the bronchial tree via a lattice-Boltzman method. In their work, the simula-

tion is validated by particle-image velocimetry experiments.
Figure 1 Example of the normal and left pulmonary artery sling vasculature and airways in the
posterior view (LPA – left pulmonary artery; RPA – right pulmonary artery; Ao – aorta; T – trachea;
L – left; R – right). (a) normal; (b) left pulmonary artery sling.
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Recently CFD simulations have been gradually accepted and adopted by the clinical

medical society. Cebral and Summer [13] performed CFD simulations for four patients

with Wegener’s granulomatosis using the tracheal and central bronchial models ob-

tained by virtual bronchoscopy reconstruction. Low pressure and high shear stress were

observed at the stenoses. Mihaescu et al. [14] investigated the flow in the pediatric air-

ways with subglottic stenoses. Ho et al. [15] used CFD to investigate the airflow in the

central airways before and after tracheobronchial stent implantation. They found that

the CFD simulation results correlated well with those of pulmonary function tests

(PFTs), indicating that CFD has the potential of being a clinical prognosis tool for the

tracheobronchial stenosis. Mimouni-Benabu et al. [16] evaluated congenital tracheal

stenosis and suggested CFD as a new objective tool for surgical decision-making. Shih

et al. [17] reported the significant decrease of pressure drop, from 77.23 to 7.05 Pa after

stent implantation for a 30.0 L/min airflow rate. Chen et al. [18] simulated the airflow

in the trachea before and after the vascular ring surgery for 12 patients, and found that

the pressure drop after surgery decreased significantly. More importantly, the accuracy

and feasibility of CFD have been validated by hyperpolarized 3He magnetic resonance

phase-contrast velocimetry [19], and SPECT/CT [20].

Meanwhile, the fluid-structure interaction (FSI) method has been applied to investigate

the trachea and bifurcations including both realistic synthetic models and models extracted

from CT images. Koombua and Pidaparti [21] analyzed the flow in the idealistic bronchial

tree with 3, 4 and 5 generations; they observed that the tissue flexibility influenced the vel-

ocity, wall pressure, and wall shear stress about 2%, 7%, and 6%, respectively. Wall and

Rabczuk [22] compared CFD and FSI simulations for the flow in the lower airways ex-

tracted from CT images, and found that the flow patterns are quite different although the

changes of the cross section are small (about 2%). Xia et al. [23] investigated the flow in a

section of the third and fourth generation bronchioles and found the peak wall shear stress

for compliant airway wall was five times higher than that for rigid wall shear. Malve et al.

[24] studied the tracheal deformability after the endotracheal stent implantation using a FSI

method, and proposed CFD as a way to evaluate the predisposition of the stent to migrate.

It can be seen that CFD based on patient-specified geometric models extracted from CT

imagery can combine structural and functional assessment of the airways. However, there

are not many reports on CFD for LPAS patients, especially for the infantile patients. In

this study we extract the trachea and main bronchi from the CT images, export to com-

mercial available CFD software (ANSYS Fluent 14.5, ANSYS Inc., Pennsylvania, USA), and

calculated the velocity, wall pressure and shear stress for four LPAS patients and one nor-

mal control. The objective is to quantitatively analyze the airflow and explore the new pa-

rameters of the inspiration function for the planning of a treatment strategy for patients

suffering from LPAS.
Material and methods
Patients and CT data

CT images of four LPAS patients (three female, one male) and one healthy control (male)

scanned from 2012 to 2013 are selected out of a database of Shengjing Hospital, China

Medical University (Shenyang, China) for a retrospective study. The age of the five sub-

jects ranges from 6 to 19 months. Scanning parameters include a tube potential in the
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range 80-120 kVp, slice thickness 0.5-2.0 mm, and pixel spacing 0.254-0.420 mm. All im-

ages are reconstructed in a 512 × 512 matrix. Details on the subjects and CT acquisition

parameters are listed in Table 1. In the remainder, the healthy normal control will be indi-

cated as A(H), and the other four LPAS patients are presented as B, C, D and E.
CFD procedures and boundary conditions

The CT images are imported into an image processing platform, Mimics 11.0 (Materialise,

Leuven, Belgium). The trachea and main bronchi are extracted by a simple threshold seg-

mentation algorithm combined with split and merge operations. After smoothing, the

geometric model is transferred to a finite element module for surface meshing, and then

is exported in Standard Tessellation Language (STL) format.

The STL mesh is transferred to a solid model through SolidWorks 11.0 (SolidWorks

Corp., Massachusetts, USA) and read into ANSYS Fluent 14.5 (ANSYS Inc., Pennsylvania,

USA). Tetrahedron elements and a patch independent algorithm are used during the

meshing process. The base size of the mesh is 0.2 mm, but the final size is determined

through mesh-independent evaluation with a tolerance of < 0.3%. Mesh quality is evalu-

ated by the skewness as done by de Rochefort et al. [20]. For all cases, the maximum

skewness ranges from 0.72 to 0.78, fulfilling the recommendation given by ANSYS. De-

pending on the size of the model, 400,000 to 1,400,000 elements are included.

For neonates, the tidal volume is estimated to range 5-7 mL/kg, and the respiratory

rate is set to be 30-50 breaths/min [25]. The inspiration/expiration ratio is usually 1:2

or 1:3. Here we set the tidal volume of 5 mL/kg, the respiratory rate of 50 breaths/min

and the inspiration/expiration ratio of 1:2 considering the patients are in respiratory

distress with different severities. Hence, the inhalation rate and inlet velocity can be de-

termined with known weight and inlet area, as shown in Table 2. It can be seen that

the average inlet velocity ranges 4.14-4.77 m/s, and the Reynolds Number (Re) is in the

range of 1542-1886 for subjects A(H), B, C and D. Because Re is less than 2000, a lam-

inar model is selected for the simulations. Subject E has a severe segmental tracheal

stenosis which makes the sectional area of the trachea as small as 6.00 mm2 (i.e., with a

diameter of 2.8 mm). Correspondingly the inlet velocity reaches value as high as

20.83 m/s, and Re can reach up to 3942. Even though it may not be very realistic in this

setting, the calculation is still done using the k − ε turbulence model. The inlet velocity

for subject E is decreased gradually to study the airflow alterations. The two main bron-

chi outlets are set at a constant pressure of 1.0 atm.

The wall of the airway is assumed to have a no-slip boundary. The air is assumed as a

Newtonian fluid with a constant density of 1.225 kg/m3 and viscosity of 1.8 × 10−5 kg/m-s,
Table 1 Subject and CT acquisition parameters

Subject Gender Age
(month)

Weight
(kg)

CT acquisition parameters

Tube potential (kVp) Slice thickness (mm) Pixel spacing (mm)

A(H) M 11 10.0 100 1.0 0.420 × 0.420

B F 6 7.7 100 1.0 0.386 × 0.386

C F 10 10.0 120 2.0 0.412 × 0.412

D M 9 9.0 100 0.5 0.344 × 0.344

E F 19 10.0 80 0.5 0.254 × 0.254



Table 2 Calculated inlet velocities and Re based on the patients’ weight, tidal volume
and inhalation time from the reference [25]

Subject Tidal volume
(mL)

Inhalation time
(s)

Inhalation rate
(mL/s)

Inlet area
(mm2)

Average velocity
(m/s)

Re

A(H) 50 0.4 125.0 29.18 4.28 1788

B 38.5 0.4 96.25 23.26 4.14 1542

C 50 0.4 125.0 26.21 4.77 1886

D 45 0.4 112.5 26.58 4.23 1686

E 50 0.4 125.0 6.00 20.83 3942
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respectively. These assumptions are reasonable as the pressure in the airway is rather low.

A solution-vector norm of <10−5 is taken as the convergence criterion, and the pressure-

velocity relation is considered to be coupled.

Results
Structural features, pressure drop and mass flow rate

The extracted models of the trachea and main bronchi are shown in Figure 2. Com-

pared to the normal control, the tracheas of the subjects with LPAS follow a C-shaped

curve due to the compression of the trachea by the LPA from the right-posterior side.

For subjects B, C and E, a segmental stenosis is found, but a local stenosis is found near

the tracheal distal end for subject D. Subject E is special due to the two big main bron-

chi and a narrow trachea.

Once the CFD simulations are done for all subjects, the average inlet pressure, outlet

sectional area, minimum sectional area and mass flow rates are calculated and summa-

rized in Table. 3. The pressure drop defined as

ΔP ¼ Pinlet− Poutlet1 þ Poutlet2ð Þ=2 ð1Þ
Figure 2 Tracheal models of the subjects studied (R – right, L – left; A – E: five subjects).
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is calculated to evaluate the flow resistance, where Poutlet1 and Poutlet2 are the pressure

at right and left bronchus, respectively. Both Poutlet1 and Poutlet2 are equal to zero as

they are set at a constant pressure of 1.0 atm. For the normal control, the pressure drop

is only 0.68 Pa, but for the LPAS patients, it reaches up to 78.90-914.50 Pa to maintain

normal physiology, explaining why dyspnea and stridor usually accompanying LPAS.

The ratios of the cross-sectional areas of the left and right main bronchi are repre-

sented by

RAL ¼ SAL= SAL þ SARð Þ ð2Þ
RAR ¼ SAR= SAL þ SARð Þ ð3Þ

where SAL and SAR are the cross-sectional area of left and right main bronchi,

respectively.

Correspondingly, the ratios of the minimum cross-sectional area of the left and right

main bronchi are given as

RMAL ¼ MSAL= MSAL þMSARð Þ ð4Þ
RMAR ¼ MSAR= MSAL þMSARð Þ ð5Þ

where MSAL and MSAR are the minimum sectional area of left and right main bronchi,

respectively. Moreover, the ratios of the flow rate are defined as

RFL ¼ FRL= FRL þ FRRð Þ ð6Þ
RFR ¼ FRR= FRL þ FRRð Þ ð7Þ

where FRL and FRR are the outlet flow rate for left and right main bronchi.

Estimated values for RAL, RMAL and RFL are given in Figure 3 for comparison. It is

found that RAL is less than 50% (37.24 - 48.45%) for all subjects. For the normal control

A(H), RAL (46.69%) and RFL (46.72%) are almost equal. This results from the fact that

the the airflow in the two bronchi have nearly equal average velocity. For subject B, RFL

and RMAL are also equal. For subject C, a stenosis at the left main bronchus results in a

low RFL of 33.34%. For subjects D and E, however, there is no correlation between RFL

and RAL (or RMAL) as the trachea or bronchus is compressed. For subject D and E, RFL

is 85.98% and 76.51%, larger than 50% though RAL <50%, which means cross-sectional

area is not the only dominating parameter. The C-shaped curve of the trachea may play

an important role, and facilitate the airflow to the left bronchus by means of inertia.

This point will be discussed for subject E later. The found lack of correlation between
Table 3 Calculated inlet pressure, outlet pressure and mass flow rate

Subject Inlet
pressure

(Pa)

Outlet cross-
sectional area

(mm2)

Outlet minimum
cross-sectional area

(mm2)

Outlet mass flow
rate × 106 (kg/s)*

Outlet flow
velocity (m/s)

Left Right Left Right Left Right Left Right

A(H) 0.68 24.26 27.70 24.26 27.70 −71.54 −81.59 2.52 2.65

B 475.98 4.30 7.19 4.30 4.26 −44.31 −73.62 8.81 8.61

C 282.81 5.17 5.50 2.72 5.43 −51.04 −102.02 8.43 15.32

D 78.90 15.73 26.49 15.73 18.09 −118.51 −19.32 6.39 1.46

E 914.50 13.63 15.74 13.63 15.74 −216.03 66.32 14.14 3.44

*For mass flow rate, minus means flow-out and positive is flow-in.



Figure 3 The cross sectional area and mass flow rate of the left main bronchus.
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flow and sectional area indicates that CFD may provide a new functional evaluation for

LPAS, which normal structural imagery cannot offer.
Wall pressure, velocity and wall shear stress

Normal control

For the normal control (subject A(H)), the calculated results, including wall pressure,

velocity streamline, wall shear stress (WSS) and velocity profiles at both main bronchi

are shown in Figure 4. The wall pressure is distributed rather evenly, and attains a max-

imum point of about 16 Pa at the bifurcation due to the direct impact of the airflow.

Correspondingly no significant variation appears for the velocity and WSS. For the

bronchi, the high speed regions are at the bottom as shown in (d) and (e) of Figure 4.

As given in (c) of Figure 4, the WSS is also high at these places. The flow pattern at the

right bronchus agrees well with past numerical [10] and experimental results [20],

though the absolute velocities are dissimilar for the different geometric models.

Subject B, C and D

The wall pressure, velocity and WSS are patient-specified as shown in Figure 5, but

some generalizations can be made. Firstly, the distributions of the three parameters are

more variable and inconsistent than for the normal control. Secondly, the maximum

wall pressure appears at the inlet, which differs with the normal control. This is be-

cause the stenosis increases the flow resistance and inlet driven pressure. The values

(521, 332 and l08 Pa for subject B, C and D) are far higher than that of the normal con-

trol (16 Pa). Thirdly, the low wall pressure, high velocity and high WSS are all found at

the stenosis regardless whether the stenosis is at the trachea or the bronchi. The max-

imum velocities (28.8, 19.5 and 12.3 m/s for subject B, C and D) and wall shear stresses

(52.7, 19.9 and 11.1 Pa for subject B, C and D) are located at the stenosis, and their

values are higher than in the normal control (6.0 m/s and 4.3 Pa respectively), increas-

ing with the stenosis severity.



Figure 4 Calculated results for the normal control subject A(H). (a) wall pressure; (b) velocity
streamlines; (c) wall shear stress; (d) velocity profile at right main bronchus; (e) velocity profile at left
main bronchus.
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For subjects B-E, negative pressures of -103.5, -15.1, -8.16 and -518.9 Pa are found at

the stenosis.

Local features

Besides the global flow patterns, CFD simulations can also provide a detailed local vel-

ocity profiles. The results of subject D are shown in Figure 6 as an example. Totally five

cross sections are selected. Cross-sections CS1 and CS3 are before and after the sten-

osis, CS2 is located at the tracheal stenosis, and CS4 and CS5 are at the right and left

main bronchi, respectively. It is found that the stenoses and post-stenotic dilatation

lead to acceleration and deceleration respectively. The cross-sectional areas at CS1, C2

and CS3 are 22.45, 11.22 and 11.79 mm2, and the average velocities are 5.41, 10.27 and

9.80 m/s, respectively. For CS4 and CS5 with similar cross sectional areas, the average

velocity is quite different, 1.53 and 5.06 m/s, respectively. The C-shape of the trachea

can be given as a reasonable explanation, as mentioned before. At both CS4 and CS5,

high velocity regions appear at the bottom which is similar to the normal control, but

the profile is more irregular.

Subject E

Due to the severity of the stenosis, subject E is investigated separately. To maintain

normal physiological conditions in the lungs, the inlet velocity should reach up to

20.83 m/s, which is impossible to achieve. The subject therefore died from the dysnapic

apnea. Due to the severe tracheal stenosis, the bronchi and bifurcation were extremely



Figure 5 Calculated wall pressure, velocity and wall shear stress for different patients. (a) subject B;
(b) subject C; (c) subject D.
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inflated, as shown in Figure 2, to decrease the flow resistance as to meet with the low-

est physiological needs.

From this special case, the role of the C-shaped trachea can be further understood.

As show in (a) of Figure 7, no air flows out from the right main bronchus even though

the necessary anatomy is available at the inlet velocity of 20.83 m/s. On the contrary,

some air with a mass flow rate of 6.63 × 10−5 kg/s flows in from the right main bron-

chus. A pressure of -7.6 Pa also shows that the air is directed inward from this bron-

chus. Meanwhile, the wall pressure and WSS reach unrealistic values of up to 1427 and

177 Pa.



Figure 6 The local velocity profile for subject D (A – anterior; P – posterior; T – top; B – Bottom;
R – right; L – left).
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At the inlet velocity of 1.0 m/s, it is found that air flows out from the right main

bronchus by a vortex-shaped streamline, as shown in (b) of Figure 7, explaining why

the air has difficulty to flow out of the right main bronchus. The maximum wall pres-

sure and WSS become 13.5 and 2.6 Pa in these situations.

It has been suggested that the C-shaped trachea makes the flow deviate to the right

side due to the inertia. To decrease the role of inertia, the inlet velocity is dropped

gradually from 20.83 to 0.5 m/s, and RFL and RFR are calculated for each of these exper-

iments. As shown in Figure 8, RFR is positive while the inlet velocity is larger than

1.0 m/s. At an inlet velocity of 1.0 m/s, RFR turns negative, indicating the air flows out

from the right main bronchus. Further decrease of inlet velocity from 1.0 to 0.5 m/s

will increase RFR from 6.0% to 21.2%.
Discussions
For the CFD simulation of airflow in the respiratory tract, several important assump-

tions are made, including no-slip boundary conditions, modeling air as an incompress-

ible Newtonian fluid with constant density and viscosity, and steady static pressure.

These assumptions have been accepted and widely used [7-20,26]. The specified vel-

ocity inlet and pressure outlet boundary conditions are considered as a simple and feas-

ible method [9,10,14-16,20,26]. The inlet velocity (or flow rate) is usually determined

based on past experiences. For adults, the flow rate reported in literature varies widely,



Figure 7 Wall pressure, velocity streamlines and wall shear stress for subject E at different inlet
velocities. (a) 20.0 m/s; (b) 1.0 m/s.
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and takes values including 6 L/min [15], 30 L/min [19], 16.1 L/min [20], and 28.3 L/min

[26]. In infants, the flow rate is smaller, and is set to values such as 3.5 and 10 L/min [14],

3.0 and 7.3 L/min [16]. In the present study, the inlet flow rate is individualized according

to the weight, and ranges from 5.8 to 7.5 L/min. It is based on the tidal volumes, which is

5-7 mL/kg for a neonate and 7 mL/kg for an adult, the respiratory rate is 30-50 and 12-16

breaths/min [25], and the inspiration/expiration ratio 1:2 to 1:3.

For subject E, the k − ε turbulence model is applied for Re > 2000. Though this model

was shown to tend to over-predict the pressure values, it has been used in several other

studies [27]. For the other subjects, a laminar model is deemed realistic, as the Reynolds

number ranges from 1542-1886, due to the lower inlet velocity and tracheal diameter in

infants.

Pulmonary function tests (PFTs) are not feasible for infants aging 6-19 months, even

though they are useful for the evaluation of the pulmonary function. CFD results have

shown to be consistent with the PFTs for the study of the alternation of the airflow be-

fore and after trachea-bronchial stent placements [15]. It is suggested that CFD may

offer an important approach to assess the pulmonary function for the patients unsuit-

able for PFTs.

There are many CFD studies focusing on clinical diseases, such as Wegener’s grnulo-

matosis [13], pediatric airways with subglottic stenoses [14], tracheal stent implantation

[15,17], congenital tracheal stenoses [16], and stenoses caused by the vascular rings

[18]. To the best our knowledge the airflow in the trachea and main bronchi of LPAS

patients aged 6-19 month has not yet been investigated by means of CFD before. The

geometry size and CFD boundary conditions are different from past studies. To com-

pare the current study with those for the elder LPAS patients may be useful to know

the development of this disease.



Figure 8 Relative mass flow rate in the bronchus with different inlet velocities for subject E.
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Normal human airways show high ventilation efficiencies. The pressure drop is only

0.68 Pa for the healthy infant, which is close to the 0.70±0.41 Pa for the healthy adult

[15]. Even for the airway 17 generations deep in a healthy adult, the pressure drop is

only 50.0 Pa while the flow rate is 28.3 L/min [26].

For the subjects with LPAS in this study however, the pressure drop ranges 78.9-

914.5 Pa, mainly resulting from the tracheal and/or bronchial stenoses. The amount of

pressure drop varies with the severity of the stenoses. Ho et al. [15] calculated a pres-

sure drop of 10.61±9.22 Pa for the adult patients with tracheal stenosis while the flow

rate is determined to be 6.0 L/min. For the congenital tracheal stenosis, the pressure

drop is also found to reach up to 1825 Pa with a flow rate of 7.3 L/min. In fact, the

maximum pressure difference between the alveoli and the outside atmosphere, which

results from the movement of diaphragm and intercostal muscles, is about 94 Pa to

sustain an inspiration of 30 L/min [28]. Therefore, extremely high pressure drops indi-

cate that the flow rate cannot meet the minimum requirement for normal physiology,

and the stridor, dyspnea, and even death from suffocation (e.g., subject E) will occur.

The ratios of inflow between the left and right lobes are 46.72% and 53.28% for the

normal control. Other results reported in literature are 43.43% and 56.57% for the aver-

age of 7 healthy adult subjects [15], 48.2% and 51.8% for the average of 6 patients with

mild asthma [19], and 44% and 56% in a 60-years-old Chinese male patient [26]. The

ratios of cross sectional area for the left and right bronchi are 46.69% and 53.31%, prac-

tically the same as the inflow ratios. For subject B, similar results are found.

Neither RMAL nor RAL can determine RFL independently; the shape of trachea must

also be considered. As shown in Figure 3, RFL accords with RAL for subject B, but ac-

cords well with RMAL for subject C. For subject D and E however, the ratios of area and

inflow are significantly different. For subjects D and E, the area ratio of left bronchus is

37.26% and 46.41% respectively, but the flow ratio reaches up to 86.98% and 76.51% re-

spectively. This phenomenon is explained by the C-shaped trachea caused by the

anomalous LPA. Due to the inertia, a large fraction of the air flows into the left bron-

chus. This point is demonstrated by two aspects. Firstly, for subject E with an inlet vel-

ocity of 20.3 m/s, the right bronchus even experiences negative pressure, and thus air

flows out of it. Secondly, the inertia is further visible by decreasing the inlet flow, i.e.,
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the inertia force for subject E. As the inertia force drops, the inflow from the right main

bronchus turns into an outflow at the inlet velocity of 1.0 m/s, and the ratio of flow to

the right reaches to 21.2% for a 0.5 m/s inlet velocity.

The above observations indicate that the right bronchus (or lung) can be reached

anatomically, but it does not play any role during inspiration. The C-shaped trachea

may lead to the functional “hypogenesis” of the right lung. To the best of the authors’

knowledge, these findings have not been reported in previous studies. Moreover, it

demonstrates that CFD provides vital functional information which CT structure im-

ages cannot offer.

For subjects B-E, negative pressures of -103.5, -15.1, -8.16 and -518.9 Pa are found at

the stenoses, respectively. A study on subglottic stenoses also observed a negative pres-

sure of -845 Pa [14]. The negative pressure is dangerous as the possible collapse of the

malacic segment may occur at the stenotic site.

The WSS indicates the forces exerted tangential to the inner luminal wall of the air-

way. At laminar flow for the normal control, the WSS is small due to the developed

steady boundary layer. In the afflicted subjects however, airflow is accelerated leading

to turbulence which disrupts the boundary layer and results in high WSS. As large

WSS variations in blood vessels may increase the risk of arteriosclerosis, the high WSS

at the stenotic site is correlated with the trauma of the airway mucosa and an inflam-

matory response [14].

Limitations for the present study should be pointed out as well. Firstly, the number of

subjects in this study is very small, only including four patients and one normal control

subject. Secondly, the CFD results are not validated by the experimental measurement as

done by [20,27] though observed flow patterns are in close agreement with numerical and

experimental results [10,20]. Thirdly, only the trachea and two main bronchi are modeled

as the stenoses usually present at these locations. However, to include the bronchi of

higher generations might give more information. Fourthly, the steady state analysis for in-

spiration is adopted. Transient study including both inspiration and expiration, however,

will reveal more details. Finally, both trachea and bronchi demonstrate a large Young’s

modulus (1.31 MPa [21], 9.00 MPa [22]) owing to the availability of cartilage, and as such

the deformability might be small. The airway is assumed to have a rigid wall, and the in-

teractions between airways and airflow are not considered. In fact, the flow velocity, air-

way pressure and WSS might be affected though the cross sections of the trachea and

bronchi do not change significantly [21-24]. In further work, the authors intend to study

the effects of the above limitations carefully.
Conclusions
Using geometric models extracted from CT images and patient-specified inlet boundary

conditions, CFD simulation can provide vital airflow information including flow fea-

tures and the quantitative parameters for LPAS. Due to the tracheal and/or bronchial

stenosis, a much higher pressure drop is found for LPAS patients. The C-shaped tra-

chea may facilitate a higher air flow into the left bronchus under the inertial force,

which means the ventilation to the right lung may be decreased, even though its ana-

tomic structure remains normal. Besides the qualitative finding that high air velocity,

low wall pressure drop and high WSS occur at stenotic sites, more quantitative and
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personalized information can be obtained. These results may help understand the

mechanism of LPAS and the correlations between stenosis and dyspnea, and facilitate

the structural and functional assessment of LPAS.
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