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Methods: Our dendritic tree extraction (DTE) method uses small amounts of labelled
training data on MIPs to learn noise models of texture-based features from the
responses of tree structures and image background. Our strategy lies in evaluating
statistical models of noise that account for both the variability generated from the
imaging process and from the aggregation of information in the MIP images. These
noisy models are then used within a probabilistic, or Bayesian framework to provide a
coarse 2D dendritic tree segmentation. Finally, some post-processing is applied to
refine the segmentations and provide skeletonized trees using a morphological
thinning process.

Results: Following a Leave-One-Out Cross Validation (LOOCV) method for an MIP
databse with available “ground truth” images, we demonstrate that our approach
provides significant improvements in tree-structure segmentations over traditional
intensity-based methods. Improvements for MIPs under various imaging conditions are
both qualitative and quantitative, as measured from Receiver Operator Characteristic
(ROQ) curves and the yield and error rates in the final segmentations. In a final step, we
demonstrate our DTE approach on previously unseen MIP samples including the
extraction of skeletonized structures, and compare our method to a state-of-the art
dendritic tree tracing software.

Conclusions: Overall, our DTE method allows for robust dendritic tree segmentations
in noisy MIPs, outperforming traditional intensity-based methods. Such approach
provides a useable segmentation framework, ultimately delivering a speed-up for
dendritic tree identification on the user end and a reliable first step towards further
morphological characterizations of tree arborization.
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Background

Organisms perceive their surroundings primarily through sensory modalities including
the perception of touch. Touch is anatomically complex and involves the largest organ of
the body [1], namely the skin. Organisms critically depend on touch for daily activities
including feeding, locomotion and communication amongst other. To convey touch-
based sensory inputs, neurons must have the ability to sense and translate mechanical
stimuli such as force, pressure, stress, into electrical signals; this process is known as
mechanosensation. Many mechanosensory functions rely on the proper structuring and
development of neuronal dendritic trees (or arborization), as shown in Figure 1a, where
morphological patterns of dendritic trees ultimately determine how a neuron processes its
mechanosensory input [2,3]. In particular, defective dendritic arborization (see example
in Figure 1b) is acknowledged to contribute to neuro-developmental disorders [1,4]. How
mechanosensory functions are linked to dendritic tree morphologies, and vice-versa, is of
pivotal concern in developmental biology [5,6]. Hence, an integral characterization of the
relationship and dependency between mechanosensory input and dendritic arborization
is essential towards a better understanding of neuro-degenerative diseases and potential
treatment strategies.

To study the relationship between tree morphology and mechanosensory function,
images of mechanosensory neurons are typically acquired using laser scanning confocal
microscopy (Figure 1), where neurons are fluorescently labelled (e.g., GFP). For exam-
ple, this is done for the ubiquitous nematode Caenorhabditis elegans [6]; this small
(approximately 1 mm long), free-living nematode is widely used as a model organism for
biological research [7-9]. In particular, C elegans relies on chemosensation to interact with
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Figure 1 Mechanosensory PVD neuronal dendrites in the nematode C. elegans. Examples of (a,b)
original MIP and (¢,d) manually-delineated mechanosensory PVD neuronal dendrites in the nematode C.
elegans, including annotated branching generations. MIP of (a) wild-type dendritic PVD tree and (b)
disorganized PVD arborization with mutations in cell fusion gene eff-1, where nematodes show reduced
sensitivity to strong mechanical stimuli [6]. Wild-type dendritic PVD trees show repetitive structural units
known as “menorah” [6]. “c” denotes cell body (soma) and small droplets are autofluorescent gut granules.
Note that additionally an axon goes out from the cell soma which is not visualized here.
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its surrounding environment and, importantly on mechanosensory touch neurons (e.g.,
PVD and FLR) for avoidance responses (e.g., stay away from potential threats [10]) and
proprioception (i.e., sensing the relative position of neighbouring body parts including
body angle [5]). The advantages of using C. elegans critically include the knowledge of the
complete developmental program of cell division and connectivity pattern of its neurons
[11,12]. Moreover, C. elegans is an attractive candidate to study mechanosensation since
its nervous system includes sensory neurons that are both morphologically and function-
ally similar to those in humans [13], with dendrites positioned underneath the nematode
cuticle (i.e., skin) between its epidermis.

From an imaging point of view, the choice of confocal microscopy, including spinning
disk confocal (SDC) microscopy, is advantageous as it allows for high-resolution imag-
ing of complex internal structures in C. elegans. Such imaging modalities deliver images
to the user via three-dimensional (3D) volumes or Maximum Intensity Projections (MIP)
images. The latter constitute projections, or accumulation of responses, of 3D-stacks visu-
alized onto a two-dimensional (2D) image (see examples of Figure 1a,b). Compared to
their 3D counterparts, MIPs have the benefit of requiring far less memory and allow large
test arrays to be performed without the need for excessive storage systems. In particular,
since the landmark study of Meital et al. [6], there has been a recent proliferation in works
on the characterization of dendritic tree arborization in C. elegans using MIPs [5,14-20].

Generally, the process of building morphological arborization models of neurons
includes amongst other the quantification of the total number of dendrites (e.g., primary,
secondary, tertiary generation), as shown in Figure 1c,d. This task almost unanimously
requires first extracting the shape of dendritic trees from binary images (or segmenta-
tions) to separate the tree structure from its environment (i.e., background), and referred
here as dendritic tree extraction (DTE). Traditionally, the characterization of dendritic
trees has relied on cumbersome manual approaches for delineation, resulting in a slow
and strenuous process that can take up to months for entire datasets [21]. Hence, given the
abundance of potential users there is an ongoing need to develop automated algorithms
that can first extract morphological structures of neuronal dendrites.

A wide array of methods have been proposed to automatically segment 3D trees from
image stacks. In most cases, these methods start by applying some level of image process-
ing such as image intensity thresholding, edge or texture extraction, or path classification
to provide some coarse or over-complete representation of the tree structure in the image
stacks. In particular, intensity-based approaches segment images by defining a threshold
value (or several values) that will separate tree structures from their background [22,23].
These methods are particularly suitable for images where tree pixels present homogenous
brightness that are consistently different from homogenous background pixels. Alter-
natively, Texture-Based approaches segment images according to regions with different
texture features [24,25], with texture defined as the spatial arrangement of a group of
pixels representing a sub-pattern, arranged in a more or less periodic manner [26].

From such representations, a tree model is then imposed to add or remove elements
from the initial representation and provide a coherent final tree segmentation. Popular
methods often belong to either tracing [27] or skeletonization-based methods [28] that
make use of local structure for segmenting. The former method uses the 3D tube-like
local geometry of a tree while the latter relies on the geometric medial axis of the data
to capture the neuronal topology. In the context of tree tracing, semi-automatic methods
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such as in the work of Peng et al. [29] have been shown to be highly appropriate. For such
approaches, a user first selects a set of seed vertices which the final tree tracing should
include, and then a local or global optimization schemes connects vertices by using the
image data. These methods have been shown to be highly effective in challenging 3D
image stacks, using little to moderate manual user input. Other strategies which are fully
automatic and require virtually no user input, outside of a training phase (i.e. requir-
ing labeled training data), have also been proposed [30-32]. Here, rather, tree traces are
achieved by constructing a set of plausible trees and selecting the best one according to
maximized global features which leverage training data. Lastly, the recent work of Xiao
and Peng [33] provides an automatic tracing method, using no training data at all and few
seed points, in order to extract dendritic structures from 3D image data.

While the aforementioned methods have shown to be effective in reconstructions of
dendritic trees from 3D image stacks [27,28,34], their application on MIP images is far less
convincing. This is in part due to two characteristics of MIP images. To begin, 3D infor-
mation is overwhelmingly lacking in MIPs to disambiguate overlapping or disappearing
curvi-linear structures. This latter point is crucial in a number of successful 3D meth-
ods. Additionally, MIPs are typically far more noisy since they represent the accumulation
of responses across image stacks. As a result, achieving DTE in C. elegans is often more
challenging, notably in the presence of intrinsic artifacts including autofluorescent gut
granules (see exampes in Figure 1a,b) or nutrient bacteria E. coli.

With this in mind, the present article focuses on the automated segmentation of neu-
ronal dendritic trees to provide a reliable alternative to traditional manual approaches in
MIP images. Our approach uses small amounts of labelled training data on MIPs to learn
noise models of texture feature responses of tree structures and background. In effect,
the noise models account for both the variability generated from the imaging process
and from the aggregation of information in the MIP images. These noisy models are
then used within a probabilistic, or Bayesian framework to provide a coarse 2D dendritic
tree segmentation. Finally, some post-processing is applied to refine the segmentation.
We show that this approach allows reliable segmentation in a number of imaging condi-
tions, outperforming traditional intensity-based methods for equivalent MIP images. We
also demonstrate how our approach compares qualitatively to a state-of-the-art semi-
automatic tracing method [29] and furthermore illustrate cases where our approach
fails to provide satisfactory segmentations and skeletons as a result of varying imaging
conditions.

In the following sections, we first outline our DTE method and probabilistic framework
in detail. We then evaluate the performance of our approach on MIPs acquired from con-
focal imaging using a cross-validation method and compare our segmentation results to
existing traditional segmentation methods. Finally, we test our DTE method on examples
of independent, previously unseen MIPs and discuss some ongoing limitations.

Methods

We detail below the proposed DTE framework. Our method relies principally on texture-
based image features that are invariant to orientation changes in order to capture tree
delineations, thus providing feature that are noisy but yet informative. The resulting noisy
features are modelled statistically and serve as the basis for extracting tree structures
within a Bayesian framework.
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Notation and model

To begin, we consider each pixel g of an image to have a corresponding binary label L, €
{0,1} indicating that the pixel belongs to the dendritic tree (L; = 1) or instead to the
background (L; = 0). Given the uncertainty surrounding the value of a pixel label in an
image where a tree structure must be extracted, we consider L, to be a binary random
variable with probability distribution P(Lg).

To determine the value of the pixel label, we can compute image features X, € R from
pixel g and its surroundings. These features characterize the value of the pixel label but
are subject to noise in an MIP image. Hence, we consider X, to be a random variable such
that

N(x; pur, 1), ifL, =1

(Xg = #ILp) N (%5 o, Zo), if L, =0

(1)

where N(-) is Gaussian probability distribution and the corresponding parameters u €
R? and & € R%4 are the corresponding mean and covariance, respectively. How
these parameters are estimated is explicitly described in the subsection below (see Model
parameter estimation).

To infer the label value of a pixel L, from the feature vector X, computed at pixel ¢, we
compute the posterior probability

P(X, = x|L,)P(L
PUL X = 1) = qP(XM_”l)( 2
L=

_ P(Xy = x|Ly)P(Lp)
Ym0 PXg=xlL, =DP(Ly, = 1)’

’

2)

As such, our model states that the likelihood of observing a label is proportional to the
product of some prior belief (i.e., P(X, = x)) and the likelihood of observing a feature
vector when the label is known, as introduced in Eq. (1).

Image features

In MIP images as depicted in the examples of Figure 1, dendritic tree structures can be
characterized as curvilinear structures. At a local scale, these structures appear to be
tubular-like, positioned in a variety of orientations, and exhibiting different contrast and
noise levels. As such, defining good dendritic tree features in MIPs should be invariant to
orientation and capable of capturing the tubular nature of the tree branches.

Given these characteristics, an attractive image feature that appears well suited for
such tasks is the Maximum Response 8 (MR8) filter bank [35]. MR8 is directly derived
from the Root Filter Set (RFS) [36,38] that computes 38 texture filters using a mixture of
anisotropic edge and bar filters, as well as two rotationally symmetric filters, i.e., Gaussian
and Laplacian of Gaussian (LoG) filters with different parameters. Hence, the MR8 fil-
ter bank maximizes the anisotropic filters’ responses over the six orientations of the RFS
absolute responses. This effectively delivers 8 filters (3 scales for the 2 anisotropic filters,
in addition to 2 isotropic filters) that are rotational invariant [35] and captures tubular
structures of different scale or width. Each of the 8 filters can be applied to an MIP by
means of 2D convolutions, resulting in an 8-dimensional feature vector at each pixel loca-
tion. That is, we let X, € R8 correspond to the feature extracted at location ¢, as depicted
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in the sample image patch of Figure 2. Note that here we used the implementation pro-
vided by Leung and Malik [36] for our image bank filter [37] and thus used their filter

parameters for all conducted experiments.

Model parameter estimation

To estimate the parameters of the noise models, N/ (-; i1, £1) and NV (-; 10, Zo), we make
use of a training set, T = {(lo, So), - - - » In, Sn)}, where [; is an image with a dendritic tree
in it and S; is a binary image (or “mask”) with pixels equal to 1 at all locations where the
dendritic tree appears. S; are generated manually by a human expert, i.e., the human-user
annotates each pixel where a dendritic tree appears in an image; this set of annotations is
often called “ground truth”.

In order to determine parameters of our features models, we randomly sample 30% of
pixels that belong to the background and the same percentage of pixels that belong to
the foreground. These pixels are selected using the manually-segmented “ground truth”
binary images, {S;}),. The samples’ locations are chosen uniformly at random for each
image. Next, we compute the image feature at each sampled image location. To esti-
mate (i1, X1), we make use of only the image features that were selected from dendritic
tree locations and compute the Maximum Likelihood Estimator (MLE) [39] for both
and X;. Similarly, we use only background samples to estimate (w0, o), as was done for

(11, Z1).

Tree extraction
At testing time, we are interested in extracting the dendritic tree for a new given image.
First, we compute the MR8 image features at each pixel location of the image. Next, we
evaluate Eq. (2) for each pixel in the MIP using the image features and the models learned
from the training data. In particular, we assume the prior P(L; = 1) = P(L, = 0) = 1/2,
thus allowing us to simplify Eq. (2) to
P(Xy = x|L, = 1)

P(Xy=x|Lp =0)+P(Xy=x|L, =1)

P(L, =11X; =) = 3)

MRS Filter Bank
\( Ny

Raw Image
Patch

Figure 2 lllustration of image features. For a sample image patch of a dendritic tree structure (left), we
show the corresponding response images of the 8 filters in the MR8 filter bank. The first three columns depict
the response of the two anisotropic filters at three scales. The last column reflects the response of the two
isotropic filters. At each pixel, the associated feature vector computed consists of the scalar value at the
corresponding location in each of the 8 feature maps.
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As shown in Figure 3a and b, Eq. (3) assigns higher probability to regions that appear
as tree-like given the models estimated from the training data. Note that we assume the
prior to be equal to 1/2; this assumption follows as estimating the prior from data can be
challenging since it highly depends on the experimental set-ups used and in particular on
the magnification used to acquire images of dendritic trees.

While Eq. (3) provides a likelihood of a pixel being part of a tree at each image loca-
tion, we are ultimately interested in a binary segmentation of the tree. To this end, we
need to select an appropriate sensitivity threshold to classify each pixel as background
or tree using the result of Eq. (3). To do this, we optimize a performance measure using
our training set where we define our measure to be the distance from any point on the
Receiver Operating Characteristic (ROC) curve [40-42] to an ideal error-less classifier,
deorner = +/(FPR)2 + (1 — TPR)? (€[ 0,+/2]), where FPR is the False Positive Rate (i.e.,
FP/(FP + TN)) and TPR is the True Positive Rate (i.e., TP/(TP + FN)). Note that a point
on the ROC curve corresponds to a unique sensitivity threshold on P(L, = 1|X; = x).

Here, TP (True Positive), FP (False Positive), FN (False Negative) and TN (True Neg-
ative) refer to the elements of the Confusion Matrix [43]. Since our training sets include

more than one image, counts for TP, FP, FN and TN are calculated over the entire training
sets, such that they are a sum of counts from all the training images. The highest optimiza-
tion score (noted F-score and defined as /2 — dyoper, with F-score € [0, +/2]) is achieved

Figure 3 Dendritic tree extraction (DTE) method. For an example MIP image (a), we show the outcome
after computing posterior probability, Eq. (3) in (b). Low values are red while higher values appear darker.

(c) depicts the outcome after the optimized sensitivity threshold is applied to (b) to obtain a coarse
segmentation. (d) Results after the automatic refinement and post-processing steps. Red arrows indicate
examples of remaining artifacts, as a result of the presence of granules, around the cell body (soma) and tree.
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when the distance from the upper left corner of the ROC graph is minimal. Figure 3c
depicts the segmentation of a dendritic tree using the optimized sensitivity threshold.

Post processing

Due to differences in the training and test images, the coarse extraction step typically pro-
duces spurious responses (see Figure 3c). For this reason, we proceed with a two stage
post-processing step. In the first, we automatically smooth our responses by applying
morphological operations of opening and closing in order to remove isolated pixels and
fill missing regions. This is followed by using a Hough transform [44] in order to dis-
criminate further lines’ structures from the coarse segmented image, while keeping only
“strong" lines according to empirically-chosen thresholds. Next, we add these detected
lines to the initially segmented image (i.e., after the morphological steps) to produce a
cleaner segmented image featuring magnified structures of the lines; Figure 3d displays
the result of such operations for an example MIP.

Finally, we perform a minor semi-automatic post-processing step where the user is
given the opportunity to attempt to improve parts of the segmented dendritic tree that
are not resolved to satisfaction. That is, the user can label areas that weren’t connected
in the segmented image after undergoing the automatic post-processing stages and con-
currently unlabel areas that were potentially misclassified as a tree. We emphasize here
that the more critical step is to unlabel areas that are connected to the tree, or lie in close
proximity to the tree, but do not belong to it.

Results

We have first tested our tree extraction method across an image dataset of MIPs of
mechanosensory C. elegans neurons (n = 12), obtained from fluorescence confocal
microscopy. In order to image the nematodes’ dendritic trees, transgenic C. elegans
expressing cytoplasmic ser-2p:GFP (green fluorescent protein, GFP) or plasma mem-
brane DES-2::GFP in the PVD neurons were used. Here, C. elegans are anesthesized and
placed between an agar pad and a #1.5 coverslip; for extended details on methods, see
Oren-Suissa et al. [6].

We recall that our end goal is to provide users (e.g., biologists) with segmentations of
dendritic trees from MIPs. Thus, we have manually labelled the MIP dataset to build
our training set (“ground truth”) from which the model parameters for the foreground
and background models are respectively estimated (i.e., N'(-; 1, 1) and N (-; o, o), as
introduced in Model parameter estimation), and from which the sensitivity threshold for
the coarse initial segmentation is estimated from (see Algorithm Performance below).

Cross-validation and algorithm performance

Since the training dataset is small (i.e., typical datasets for dendritic trees are on the
order of < 20 MIPs for a given strain, see for example [6,18,20]), we have imple-
mented a Leave-One-Out Cross-Validation (LOOCV), where the testing subset includes
only one sample while the training set includes all other samples. The process is then
repeated until each image is used once as a test image; note that LOOCYV is known to
be nearly unbiased but costly in variance [45]. This method is however widely adopted
when the number of samples is very small [46] as is the case here. In order to evalu-
ate our algorithm’s performance, we compare our segmentation results with a traditional
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intensity-based thresholding method [47,48] and evaluate their overall performances
against the corresponding manually-labeled segmentations.

Figure 4 presents examples of typical MIPs of dendritic trees (a-c) and their correspond-
ing performance ROC curves (d-f) following (i) our DTE method and (ii) the intensity-
based method. Here, we qualitatively see that our method outperforms the intensity-
based method. Recall that curves with both higher values of TPR and lower values of
FPR are considered better, and are positioned nearer the top left corner of (i.e., TPR =
1 and FPR = 0). Following the LOOCYV approach, we obtain F-scores of 1.251 £+ 0.009
(n = 12) for our algorithm, compared with a lower 1.160 % 0.012 for the intensity-based
method (p < 0.001, upon conducting a two-sample t-test). As additional validation, we
compared results of our algorithm using the complete RFS filter bank [36,38], where
F-scores yield 1.208 £ 0.012 (p < 0.001). While implementing the complete RFS outper-
forms the intensity-based method, the MR8 filter bank exhibits nevertheless a tangible
improvement for selecting an initial segmentation threshold. Taken independently, tree
pixel intensities are generally very similar to noisy background pixels. As a result, the
intensity-based method is not sufficiently accurate. In contrast, the MR8 feature set (and
all RFS-derived filter banks) highlights textural cues in the image and thus emphasizes
existing differences between background and foreground textures. Moreover, MR8 is
rotationally invariant such that dendritic tree structures are highlighted without any bias

to a specific orientation.

Final segmentations
In Figure 5, we depict qualitative results of the final segmentations obtained for the

examples shown earlier in Figure 4; initial coarse segmentations are also provided for
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Figure 4 MIPs and corresponding ROC curves of neuronal dendritic trees. (a)-(c) Typical examples of
MIP images of C.elegans neuronal dendritic trees. MIPs illustrate varying degrees of background noise
including the presence of autofluorescent gut granules and bacteria E. coli, the main nutrient source for
Celegans (see in particular example (c)). (d)-(f) Corresponding performance ROC curves (TPR vs FPR) using
both our DTE method and a traditional intensity-based thresholding method for comparison.

Page 9 of 15



Greenblum et al. BioMedical Engineering OnLine 2014, 13:74 Page 10 of 15
http://www.biomedical-engineering-online.com/content/13/1/74

—— Our Method ——
Ground Truth Coarse Final Intensity-based

Figure 5 Dendritic tree segmentations. (a)-(c) Three example MIP images introduced in Figure 4. From left
to right, columns illustrate (i) “ground truth” images from manual-labeling, (i) coarse and (iii) final
segmentations using our DTE method, compared with (iv) a traditional intensity-based method.

comparison. Also shown are the corresponding “ground truth” segmentations as well
as results obtained with the traditional intensity-based method. We immediately notice
that the intensity-based method achieves problematic results, in particular when consid-
ering structure connectivity, further underlining the lower F-scores obtained from the
ROC curves (Figure 4). In contrast, our method provides far more suitable segmentations,
visually capturing the main characteristics of the dendritic tree while largely preserving
connectivity across most parts of the tree.

Upon closer inspection, we notice that our segmentation method is not perfect how-
ever. For example, qualitative segmentation errors leading to artifacts are apparent in the
presence of granules (see Figure 3d) or alternatively, when distant branches of the tree are
covered with background noise (see Figure 5c, third column), rendering an adequate iden-
tification of these terminal branches difficult. Furthermore, we note that our DTE method
delivers segmentations that intrinsically produce a tree structure with thicker branches
compared to the original MIPs. Such outcomes may become problematic when branches
are originally postioned closer to one another and their segmentation unites them (see
Figure 5b, third column); we have attempted to address this latter issue by following a
morphological “skeletonization” process (see discussion below).

To quantitatively evaluate and compare final segmentations using our method, Figure 6
presents the dendritic tree segmentation yield and the overall image segmentation error
for the example MIPs introduced in Figure 4; these performance metrics have been
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Figure 6 Performance evaluation of final tree segmentations between our method and a traditional
intensity-based method. (a) Tree yield (%): proportion of the tree region that is correctly segmented for the
individual MIPs of Figure 4. (b) Surface error (%): proportion of pixels misclassified over the entire MIP. (¢) and
(d) Corresponding tree yield and surface error obtained for the entire MIP dataset; mean and standard
deviations are obtained across n = 12 images.

recently defined [49] and are compared with the traditional intensity-based method.
For each MIP, we show in Figure 6a the proportion of the nematode pixels that is
correctly segmented in a given image (i.e., Tree Yield). Correspondingly, we show in
Figure 6b the proportion of pixels that is incorrectly labeled over the entire image
(i.e., Surface Error).

We note that the intensity-based method achieves a yield < 70% for two of the eval-
uated images and a 100% yield for the image shown in Figure 6a; such high yield is
however largely artificial and results from the large number of misclassified pixels belong-
ing to the tree class, causing an ideal TP count. This latter observation is supported
by noting the high surface error count in Figure 6b (see corresponding Figure 5b, last
column), while the two other MIPs produce a significantly lower surface error (< 5%).
Our method on the other hand produces tree segmentations with a yield above 90%
while maintaining a reasonable surface error (< 10%). In Figure 6¢,d, we report the
corresponding tree yield and surface error across the entire MIP dataset, as produced
from the best optimization score with LOOCV. Our method significantly outperforms
the intensity-based method with a higher tree yield (89.55% =+ 2.38% compared with
73.16% £ 7.80%) and a significantly lower error rate (6.56% =+ 0.80% compared with
11.34% =+ 3.26%).

DTE and skeletonization
To further assess the applicability of our DTE method, we apply our algorithm to exam-
ples of previously unseen MIPs (Figure 7, left column). In other words, these independent
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—— Our Method ———
Raw MIPs Segmentation Skeletonized Vaa3D

Figure 7 DTE method applied to unseen MIPs. Rows (a)-(c) feature three dendritic tree samples,
illustrating raw images (first column), our final segmentations (second column), our skeletonized trees (third
column) and traces provided by the freely available Vaa3D software [29] (last column). (@) through (c)
illustrate increasing inaccuracies resulting from the skeletonization step, leading to artificial branches and
loops. Note that prior to the skeletonization process, somas are manually removed to prevent additional
artificial loops; the soma is automatically re-integrated after skeletonization.

MIPs do not belong to the aforementioned MIP image dataset from which the parameters
of the foreground and background noise models (N (; i1, 1) and N(:; o, Zo)) are
respectively estimated. Note that accordingly, manually-labeled binary masks are not
available for these new, independent MIPs. Using the estimated parameters of the statisti-
cal model based on our dataset (n = 12), we qualitatively observe that in general our DTE
method yields satisfactory results for final segmentations (Figure 7, middle left columns).

In view of further data extraction for general tree morphology characterization [6],
we have attempted to skeletonize segmented dendritic trees following a morphologi-
cal “Thinning” process [50]. Obtaining such skeletons often allows easier viewing of the
dendritic tree structure that can be beneficial for potential users. Sample results for the
independent MIPs are illustrated in Figure 7 (middle right column). Here, the thinning
operation is calculated by translating the origin of a structuring element to all possible
pixel positions in the image. Then, at each pixel position the underlying image pixels are
compared to the structuring element’s pixels. If the foreground and background pixels
(i-e., pixels with a binary value of 1 or 0, respectively) in the structuring element match
identically foreground and background pixels in the image, the image pixel underneath
the origin of the structuring element is set to be background (i.e., to zero); otherwise it is
left unchanged [48]. While the skeletonization process delivers a compact representation



Greenblum et al. BioMedical Engineering OnLine 2014, 13:74 Page 13 of 15
http://www.biomedical-engineering-online.com/content/13/1/74

of the tree (Figure 7a), it may also yield as a result of irregularities in the final segmented
structures, spurious features such as artificial branches, loops and gaps in the last den-
dritic generations (see Figure 7b,c), while the main branching structures remain clearly
identifiable. Nevertheless, the skeletonized representation of dendritic trees is generally
attractive for further morphological quantification.

For comparison, we also illustrate in Figure 7 (last column) how “Vaa3D-Neuronl”, a
freely-available [51] state-of-the-art tracing software [29], traces the corresponding den-
dritic tree images when a user provides manually a number of required seed points along
each tree leaves and bifurcations; results shown in Figure 7 (last column) correspond
to approximately 120 annotations per image. Briefly, this tracing algorithm attempts to
deliver tree tracings that pass through each seed annotation provided by the user. We
note that while Vaa3D is capable of tracing out the general structure of the dendritic
trees, it provides however numerous spurious branches and connections (e.g., first row of
Figure 7). Overall, we observe that our DTE approach (following the skeletonization pro-
cess) provides qualitatively the same if not better dendritic tree tracings with significantly

less manual involvement on the user end.

Conclusion

We have presented a statistical computer vision method for segmenting dendritic tree
structures from MIP images of C. elegans. Our approach makes use of texture-based
features that are invariant to orientation changes in an effort to characterise noisy tubular-
like image patches. These features are then used in a probabilistic model that provides
a coarse tree segmentation before further fine-tuning using post-processing steps. We
quantitatively show that our method delivers reliable segmentations for various noisy
MIP imaging scenarios and widely outperforms traditional intensity-based methods. In
addition, we show qualitatively that our method performs at least as well, if not better
to more sophisticated methods when extracting the dendritic tree outline. Altogether,
our DTE method is anticipated to help unburden manual labor on the user end and to
appeal to a growing community of researchers interested in characterization of neuronal
arborization in C. elegans.
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