
Camarda et al. BioMedical Engineering OnLine 2014, 13:71
http://www.biomedical-engineering-online.com/content/13/1/71
RESEARCH Open Access
Theoretical and experimental study of the role of
cell-cell dipole interaction in dielectrophoretic
devices: application to polynomial electrodes
Massimo Camarda1*, Giuseppe Fisicaro1, Ruggero Anzalone1, Silvia Scalese1, Alessandra Alberti1, Francesco La Via1,
Antonino La Magna1, Andrea Ballo2, Gianluca Giustolisi2, Luigi Minafra3, Francesco P Cammarata3, Valentina Bravatà3,
Giusi I Forte3, Giorgio Russo3 and Maria C Gilardi3
* Correspondence:
massimo.camarda@imm.cnr.it
1CNR-IMM Sezione di Catania, Z.I.
VIII Strada 5, I-95121 Catania, Italy
Full list of author information is
available at the end of the article
Abstract

Background: We aimed to investigate the effect of cell-cell dipole interactions in the
equilibrium distributions in dielectrophoretic devices.

Methods: We used a three dimensional coupled Monte Carlo-Poisson method to
theoretically study the final distribution of a system of uncharged polarizable particles
suspended in a static liquid medium under the action of an oscillating non-uniform
electric field generated by polynomial electrodes. The simulated distributions have
been compared with experimental ones observed in the case of MDA-MB-231 cells
in the same operating conditions.

Results: The real and simulated distributions are consistent. In both cases the cells
distribution near the electrodes is dominated by cell-cell dipole interactions which
generate long chains.

Conclusions: The agreement between real and simulated cells’ distributions
demonstrate the method’s reliability. The distribution are dominated by cell-cell
dipole interactions even at low density regimes (105 cell/ml). An improved estimate
for the density threshold governing the interaction free regime is suggested.
Background
As first defined by Pohl [1,2], the term “dielectrophoresis” is used to describe the

“ponderomotive” force exerted by a non-uniform electric field on polarizable neutral

particles. Such force allows for the controlled manipulation of micro and nano-sized

particles dispersed in colloidal solutions. Application fields include: cell partitioning

and isolation [3,4], bio-structure assembling [5], nanostructure (e.g. carbon nanotube)

deposition [6], filtration systems for oils purification [7] etc. Among these, the separation

of rare cells [8] is a specifically promising one as dielectrophoresis allows the capture/

separations of cells without the use of biomarkers; relying, instead, in the strong

selectivity of the dielectrophoretic (DEP) response [9] which depends on the particle

mass, shape and composition. Indeed, recently, this selectivity has permitted to discrimin-

ate the tumor cell types of the NCI-60 panel from Peripheral Blood MonoNuclear cells

(PBMNs) [10]. However, although many intriguing micro-structures have been fabricated

in research laboratories, DEP devices have hardly gone beyond the proof-of-concept stage
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[11]. One of the problems that are hindering development and engineerization of the

devices is the limited use of accurate numerical tools for their design which, in turn, is

due to the computational complications arising by the particle-particle dipole interaction.

Indeed, particle kinetics (i.e. the particle velocity field) in DEP devices can be easily

calculated by mean of Poisson solvers and direct integration of the equation of motion

only in the non-interacting particle approximation [12]. This approximation is not

valid in the accumulation regions of the DEP devices where, due to the increased

particle concentration, dipole-dipole interactions become important and can promote

the formation of clusters and significant rearrangements of the particle space distribution

[13-16]. These many-particle effects can be accurately simulated solving directly the

equations of motion in the few-particles limit [17] i.e. this approach is not applicable

for the simulation and design of realistic systems. Another possible approach is the use

of reaction–diffusion models [18-20] but this approach needs an “ad hoc” parameter

calibration to effectively consider the dipole-dipole interactions in compact models.

Recently a coupled Monte Carlo-Poisson (MC-P) method [21] has been implemented

which allows simulating a large number of particles in large active zones (within the

experimental range), explicitly including particle-particle interactions. The MC-P

method has pointed out the relevance of this inclusion in the modeling predictions for

the simplified condition of Two Dimensional (2D) electric field E
→

r
→

� �
distribution,

where E
→

r
→

� �
explicitly depends on two space coordinates E

→
r
→

� �
≡ E

→
x; yð Þ as in the case

of very long interdigitated electrodes. However, the possibility to apply this approach

for the numerical design of devices exploiting more complex fully Three Dimensional

(3D) electric field distributions has not been yet demonstrated. Moreover the MC-P

predictions have never been compared with real cell distributions in dielectrophoretic

devices, in order to confirm their reliability. Aiming to the two objectives of the model

extension and validation, we have improved the application potentiality of the MC-P

method to simulate the features of devices generating 3D electric field distributions. In

addition we applied the simulation method to the case of polynomial electrodes which

are known to produce well defined 3D non-uniform electric fields and are used for the

study of negative dielectrophoresis [22] or for the determination of particle dielectrophoretic

response through electrorotation analysis [23,24]. We compare the simulated results with

experimental distributions obtained in the same electrodes geometry to evaluate the role of

p-p interactions and definitively demonstrate the predictive potential of this methodology.
Methods
Computational algorithm

A detailed description of the method can be found in ref. [21], here we summarize the

key aspects of the simulations, specifically focusing on the 3D implementation.

In the first-order approximation of the polarization, an isolated particle immersed in a

media and subjected to a non-uniform electric field E r
→

� �
¼ E

→
r
→

� �
exp iωtð Þ oscillating at

the f =ω/2π frequency, will be subjected to an effective averaged potential energy [25]:

�Ueff r→
� �

¼ −
1
2
αeff E

2
rms r→

� �
ð1Þ
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where Erms r
→

� �
¼ Emax r

→
� �

=
ffiffiffi
2

p
is the effective value of the varying electric field and

αeff is the average polarizability of the particle defined as:

αeff ¼ 3VRe ~εmð ÞRe ~ε1−~εm
~ε1 þ 2~εm

� �
¼ 3VRe ~εmð ÞRe f CM ωð Þ½ � ð2Þ

where V is the particle volume, ~ε1;m ¼ ε1;m−iσ1;m=ω are the complex dielectric constants of

the particle (1) and the media (m) and fCM(ω) is the Clausius-Mossotti factor which fully

characterizes the dielectric response of the particle in the given medium. The isolated par-

ticle approximation holds only in the diluted density limit, i.e. only if the average distance

between two particles in the colloidal solution is always very large otherwise an effective

particle-particle interaction has to be considered as a result of the local distortion of the

electric field lines generated by itself and by the other particles. In this case, the DEP force

acting on each suspended particle can be directly calculated by means of the Maxwell ten-

sor [9]:
↔
T ≡Tij ¼ ~εm Etot

i Etot
j − 0:5δijEtot

k Etot
k

� �
over the closing surface of the particles:

→
FDEP ¼ ∮

↔
T ⋅ n→

� �
dA ð3Þ

Note that whereas the E
→
field in Eq. 1 is the field generated by the external electrodes

only, E
→tot

in the Eq. 3 must be calculated considering all the particle presence. This dir-

ect calculation is not practically feasible in the kinetic simulation of large systems, since

the particle distribution continuously changes in the space requiring an integration

of the Poisson equation, ∇E
→
tot ¼ 0 , at each simulation step. A more efficient ap-

proach, that requires only the evaluation of the external field, can be implemented

approximating the total distorted electric field with the sum of the field generated by

the external electrodes plus the contributions of the dipoles induced in all the particles:

Etot r→i
� �

≈E r→i
� �

þ
Xall the particles

j

Ej r→i
� �

[26].

The reliability of this approximation has been demonstrated in Ref. [13] with the aid

of the full calculation based on Eq. 3 for the case of two spherical particles immersed

in a uniform external electric field: the magnitude, the angular dependency and the

scaling with the distance of the calculated force are similar to those derived in the

interacting dipoles approximation [26].

The effective potential energy that generalizes Eq. 1 for the case of particle-particle

instantaneous interactions, in the dipole approximation when the multipole terms and

the mutual polarization of the particles can be neglected, is:

Uij ≈−
1
2
Re pi r

→
i

� �
⋅Ej r

→
i

� ��� �
¼ −

1
2
Re pj r

→
j

� �
⋅Ei r

→
j

� ��� �
ð4Þ

where Ej r
→
i

� �
Ei r

→
j

� �� �
is the electrical field generated by the dipole of the particle j (i)

at the position r
→
i r

→
j

� �
, while pi r

→
i

� �
pj r

→
j

� �� �
is the dipole moment induced on the

i-eme (j-eme) particle by the external field E r
→
i

� �
E rj
� �� �

. The electric field in r
→
i

generated by a particle in rj is:

E
→

j r
→
i

� �
¼ 1

4πRe εmð Þ
3 n

→
n
→ ⋅ p

→

j

� �
−p→

j

R3
ij

ð5Þ
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where n
→¼ R

→

ij=Rij which leads to the following expression for the average effective
potential energy:

�Uij ≅
1

4πRe εmð Þ α
i
eff α

j
eff

1−3 cos θi
ij

� �
cos θj

ij

� �
R3
ij

E
→

rms r
→
i

� �
⋅E

→

rms r
→
j

� �� �
ð6Þ

where θi
ij
; θj

ij
are the angles between the vectors E

→
r
→
i

� �
; E

→
r
→
j

� �
, and ⇀n and αieff ; αjeff

are the average polarizations for the i and j particles.

We used a Monte Carlo methodology to efficiently determine the equilibration of a

3D system of interacting particles suspended in a static liquid medium under the action

of an oscillating non-uniform electric field generated by polynomial electrodes. The

particles are considered as hard spheres with radius ri and the configuration energy is

E r1;…rnf gð Þ ¼
X
i

Ueff r→i
� �

þ
X
i;j

�Uij
⇀ri ; r

→
j

� �
ð7Þ

where �Ueff and �Uij are calculated by means of the equations (1) and (6).

The solution of the Poisson equation, which allows determining the 3D electric field

spatial distribution, has been calculated by means of a finite element numerical solver

[27]. Then, the numerical estimate of the electric field has been interpolated in the

cubic grid of the MC simulation box and, in order to obtain an accurate resolution, the

distance of next-neighbor nodes in the simulation grid has been set equal to the particle

radius. Equilibration kinetics, which is reached by a sequence of stochastic jumps for the

simulated particles, can be inferred from the simulation if Brownian motion and

particle-particle scattering due to the hard-sphere behavior lead to an approximated

diffusive behavior. In this case we can estimate the time interval Δt between two

consecutive displacement events as

NΔt ≅ 1=6� Δdð Þ2=�D ≈ 1=6� Δdð Þ2=DBrow ¼ 1=6� Δdð Þ2 3πηað Þ=kBT ð8Þ

where �D ≈DBrow is the effective diffusivity, N is the number of simulated particles, Δd is

the elementary particle displacement, η is the medium viscosity, a is the particle radius,

kB is the Boltzmann constant and T is the system temperature.

Experimental setup

The polynomial electrode design described in the previous section, has been fabricated

by deposition of 10 nm of Titanium followed by 200 nm of Nickel on a standard micro-

scope glass. The electrodes were delineated by lithographic methods followed by wet

etching. The device has been energized using a Protek 9205C signal generator which

applied, consistently with the simulated systems, a sinusoidal voltage signal of 8Vpp

value at 1 MHz for 180 sec (long time allow for cells equilibration). The final distribution

was observed with a standard 10× phase contrast inverted microscope. The human breast

cancer cell line MDA-MB-231 were cultured according to American Type Culture

Collection (ATCC) instructions. The cells, just before DEP tests, were suspended in

a low conductive buffer (used as the elute in all our experiments) composed of 9.5%

ultrapure sucrose (S7903, Sigma-Aldrich), 0.3% dextrose (Fisher D-16), and 0.1%



Camarda et al. BioMedical Engineering OnLine 2014, 13:71 Page 5 of 10
http://www.biomedical-engineering-online.com/content/13/1/71
Pluronic F68 (P1300, Sigma-Aldrich) titrated to a conductivity of 30 mS/m (consistent

with Monte Carlo simulations) by adding KCl with the aid of a conductivity meter. The

buffer had an osmolarity of 320 mOs/L and a pH of 7 and the experiments were con-

ducted at room temperature (22°C). The cells, suspended in DEP buffer at concentration

of 5×105 cells/ml were pipetted into the chamber and occupied a total volume of about

100 μl when a cover slip was placed over the rubber o-ring.
Results
In order to study the interplay between the dielectrophoresis response and the particle-

particle dipole interaction in a realistic case, we consider a suitable dielectric model of a

colloidal system of MDA-MB-231 cells dispersed in a weakly conducting water solution

(see later). The complex dielectric constant ~εeff of these cells can be approximated by the

solution of the following system of equations:

~εeff ¼ 1þ 2dr3A
1−dr3A

dr ¼ a
aþ d

A ¼ ~εin−~εme

~εin þ 2~εme

ð9Þ

where ~εin;me ¼ εin;me−iσ in;me=ω are the inner cell and membrane complex dielectric

constants and a = 6.2 μm and d = 10 nm are the cell radius and membrane thickness.

The following values have been used: ε
0
me ¼ 24ε0; ε

0
in ¼ 50ε0; σm ¼ 30 mS=m; σ in ¼

0:2 S=m; σme ¼ 10−7S=m, [28], and the calculated real part of the factor fCM(ω) is shown

in Figure 1.
Figure 1 Real part of the Clausius-Mosotti factor fCM(ω) calculated with the dielectric model of the
MDA-MB-231 cell at a medium conductivity of 30 mS/m. At the frequency of f =ω/2π = 106 Hz, used
for both simulations and experiments, the cells are subjected to a positive-DEP, i.e. they will tend to move
towards high electric field regions.
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The cells are free to move in a cubic computational box of dimensions

1600×1600×1500 μm3 with four polynomial electrodes located at the bottom of the

box (see Figure 2) whose shapes can be described by the following parametric system:

D ≤ x ≤ L
y ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ D2

p ð10Þ

for each electrode [22]. D represents half the distance of opposing electrodes whereas
L is related to the electrode width. Referring to Figure 2, right and using Eq. 10, we

have that L1 ¼
ffiffiffi
2

p
D and L2 ¼

ffiffiffi
2

p
L−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L2−D2

p� �
. To improve the capturing efficiency of

the DEP system the electric fields in p1 and p2 must be of the same order (otherwise

the trapping regions will be limited to the p2 regions). Given that |Erms|(p1) ∝Vpp/L1
and |Erms|(p2) ∝Vpp/L2 D must be of the same order of L, in this study we sat D = 390 μm

and L = 460 μm (note that in ref. [22] D= 64 μm and L = 90 μm which favored negative-

DEP only). Figure 2, left shows the simulated box with the four electrodes situated at the

bottom. The intensity map of Ermsj j r
→

� �
is also reported in grey scale for the oscillating

four-electrodes configuration at a frequency of 1 MHz and a peak value of 8 V for Vpp

with 180° phase difference between neighbor electrodes (i.e. V1(t) = −V2(t) =Vppsin(2πft)).

Figure 2, right shows the electric field at 50 μm from the bottom surface, associated to the

considered system. The regions of high electric field (to which the cells will move under

positive-DEP) are located all around the edges of the electrodes. In the considered system

the highest electrical fields are located at p1 and p2 equivalent points.

In Figure 3 we show the initial random distribution of 1920 cells (corresponding to

a density of 5×105 cells/ml) (left) and the final (right) equilibrium condition after

2×108 Monte Carlo iterations. The final distribution is the result of the minimization

of Eq. 7, which induce a movement towards the p1 and p2 regions (minimization of

the first term) and an aligned of the cells (causing cell-chains) along the electric field

direction (minimization of the second term). Specifically particles tend to form
Figure 2 Left, side view of the simulated computational box (1600×1600×1500 μm3) with,

superimpose in grayscale, intensity map of Ermsj j r
→

� �
. Right, Top view of the system, the intensity map

of Ermsj j r
→

� �
shows the areas of higher electric field (brighter areas). L1 and L2 are the distances between

the opposing electrodes in p1 and p2, respectively.



Figure 3 Initial (left) and final (right) spatial distribution of N = 1920 MDA-MB-231 cells
suspended in a saline water solution of conductivity of 30mS/m subjected to an oscillating
electric field f = 106 Hz. The cell distribution is obtained starting from a random distribution after
2×108 MC iterations. Dipole chains are evident at the bottom of the simulation box and are
associated to high regions of electric field.
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larger chains in the regions of more intense electric field which are located mainly

around p2 equivalent points, similar distributions have been observed for densities as

low as 1×105 cells/ml (not shown). It is important to note that this tendency does

not depends on the DEP polarity because the αieff α
j
eff term in Eq. 7 is always positive

for identical cells (whereas the αieff term in Eq. 1 can be positive or negative, depending

on the value of fCM(ω)).

From these results we can infer that particle-particle interactions compete with

the dielectrophoretic force-field, which would otherwise massively trap (in p-DEP

conditions) the particles in the regions where the gradient of the electric field is

larger. Note also the cells in the region far away from the electrodes which are not

trapped by the DEP field, this allows for the definition of a depletion volume as the

region where cells are effectively attracted to the electrodes. The connection between

depletion region, electrodes geometry and particle-particle interaction is currently

under investigation.

Figure 4 shows a comparison between the simulation and the experimental cells

distribution. As can be seen the two distributions are equivalent when the statistical

approach of the equilibration is considered. In both cases the cells distribution near the

electrodes is dominated by cell-cell dipole interactions which generate long chains.

Note also the, relative small, discrepancy between the simulated and experimental cell

distribution in the region at the center of the four electrodes. One possible explanation

of this weak discrepancy is the current preliminary calibration of the friction forces

between the cells and the wall on the bottom of the chamber (this force is included in

the MC code). Work is underway to improve the parameter calibration and definitively

refine the simulation results. The highest value of the cell concentration to avoid

particle-particle interactions strongly depends on the electrodes and system geometry,

on the particles dimensions and on the polarization factors. As a consequence a general

prescription to neglect dipole-dipole interaction in the design of a device cannot be

easily given. Jones [29] showed that cell-cell interactions should become significant



Figure 4 left) Top view of the final spatial distribution of the Monte Carlo simulation (same of

Figure 2) with superimposed the intensity map of Ermsj j r
→

� �
(same as Figure 2, right). The association

between dipole chains and high regions of electric field is evident. Right) Top view of experimental spatial
distribution of MDA-MB-231 after 180 sec of DEP manipulation. Black areas are associated to the metal
electrodes. The chains are clearly present all around the electrodes.
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when the ratio of cell spacing δ to cell diameter d falls below ~5. In a simple approxi-

mation we could assume that all cells will eventually settle to the bottom of the

chamber, which gives:

δ=d ¼ 1= dh1=2C1=2
� �

> 5→C < Cthreashold ¼ 4� 108

hd2 cells=ml ð11Þ

where h is the chamber height and C is the cell concentration. Setting h = 1500 μm
and d = 2 × r = 12.4μm we obtain C < 5 × 105cells/ml. According to this rough estimate,

the density used in the Monte Carlo simulation (C = 105 cells/ml) should not lead to

significant dipole-dipole interactions. The limit of this simple description is that it

implicitly assumes a uniform distribution of cells at the bottom of the chamber, i.e. it

neglects the fact that the cells, due to the DEP field, will concentrate at the electrodes

edges (see Figure 4). In order to qualitatively take it into account this effect, it is possible

to correct the formula using the following parameter:

rDEP ¼ ∇E2jMax= ∇E2
	 
 ð12Þ

where ∇E2|Max and 〈∇E2〉 are, the highest and average value of the electric field gradient

calculated at the bottom of the chamber. Since the dielectrophoretic force is proportional

to the electric field gradient, rDEP approximately represents the concentration factor

generated by the DEP force. So that we improve the previous Eq. 11 as:

Cthreashold ¼ 4� 108
1

hd2rDEP
cells=ml ð13Þ

i.e. the highest the concentration ratio, the lower the threshold will be. Another
assumption of Eq. 11 is that all the cells settle at the bottom of the chamber. This is

not generally true (see Figure 3) and it depends on the allowed deposition time and on
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the electric fields. To take this into account we need to substitute, in Eq. 13 the chamber

height h with the effective capturing region (zcapture):

Cthreashold ¼ 4� 108
1

zcaptured
2rDEP

cells=ml

Zzcapture

0

vz zð Þh idz ¼
Zzcapture

0

∇zUeff zð Þ	 

6πμmrcell

dz ¼ tdep

ð14Þ

Where 〈∇zUeff(z)〉 is the average DEP force in the vertical direction at distance z from

the bottom of the chamber and μm is medium viscosity. In the case of the polynomial

electrodes used and for a deposition time of 180 sec, rDEP ≅ 85 and zcap = 280μm ≅ (1/5)h

so that the improved concentration threshold, to avoid dipole-dipole interaction, should

be below 3 × 104 cells/ml. We performed Monte Carlo simulations in the 104 cells/ml

range finding no significant evidence of cell chains formation (not shown), thus

confirming that Eq. 14, together with Eq. 12, represent a better qualitative threshold

to avoid cell-cell interaction requiring only a knowledge of the electric field in the

DEP device.

Conclusions
In conclusion, we have demonstrated that the effects of particle-particle interactions play

a crucial role in the kinetic evolution of colloidal systems in DEP devices even at low

density regimes (105 cells/ml), lower than the ones currently used in DEP devices [30].

Monte Carlo methods allow for the simulation of sufficiently large systems in terms

of size and number of particles (i.e. within the experimental scopes). The discrete

approach (i.e. the particle resolution), as opposed to the fluid-flow methodologies, is

the key ingredient of the method improvement. In the case of MDA-MB-231 tumor

cells suspended in a static, low conductive, fluid under the action of a positive-DEP

field generated by a polynomial schema we have elucidated the crucial role of particle-

particle interactions on the trapping efficiency of the device, on the organization of cells

in ordered chains and on the overall cell space distribution. We have also deduced a

new qualitative concentration threshold to avoid cell-cell interaction which requires

only a knowledge of the electric field in the DEP device. Clearly, to have an exact deter-

mination of the concentration threshold for the specific DEP device used, MC-P kinetic

simulations varying the cells density, such as the one proposed in this paper, need to be

performed.

Future works will be devoted to generalize the formalism here presented in order to

include second-order effects such as cell-sedimentation and cell-stitching or including

hydrodynamic forces to simulate cells distributions in dynamic separation systems.
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