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Abstract

Background: Although clinical applications such as emergency medicine and
prehospital care could benefit from a fast-mounting electroencephalography (EEG)
recording system, the lack of specifically designed equipment restricts the use of EEG
in these environments.

Methods: This paper describes the design and testing of a six-channel emergency
EEG (emEEG) system with a rapid preparation time intended for use in emergency
medicine and prehospital care. The novel system comprises a quick-application cap,
a device for recording and transmitting the EEG wirelessly to a computer, and custom
software for displaying and streaming the data in real-time to a hospital. Bench testing
was conducted, as well as healthy volunteer and patient measurements in three
different environments: a hospital EEG laboratory, an intensive care unit, and an
ambulance. The EEG data was evaluated by two experienced clinical neurophysiologists
and compared with recordings from a commercial system.

Results: The bench tests demonstrated that the emEEG system's performance is
comparable to that of a commercial system while the healthy volunteer and patient
measurements confirmed that the system can be applied quickly and that it records
quality EEG data in a variety of environments. Furthermore, the recorded data was
judged to be of diagnostic quality by two experienced clinical neurophysiologists.

Conclusions: In the future, the emEEG system may be used to record high-quality EEG
data in emergency medicine and during ambulance transportation. Its use could lead
to a faster diagnostic, a more accurate treatment, and a shorter recovery time for
patients with neurological brain disorders.

Keywords: Electroencephalography (EEG), Wireless EEG recorder, Prehospital care,
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Background
The World Health Organization classifies neurological disorders as a great threat to

public health since these disorders and their sequelae are estimated to affect approximately

one billion people worldwide [1]. One of the most commonly used tests for the evaluation

of neurologic disorders is the electroencephalogram (EEG) [2]. It is invaluable since: it can

help a physician distinguish among different types of unconsciousness and comas; it is the

only method for continuously monitoring cerebral function over prolonged periods of time;

and, it is the only specific test for epileptic disorders [3,4]. Additional acute indications for
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the EEG include the investigation of strokes, head trauma, and intracranial haemorrhages

[5-7]. During the last 10 years, the EEG has become the first examination of unconscious

patients in the emergency rooms of several hospitals [3].

Traditional EEG recording methods are relatively time-consuming, require specialized

personnel, and the recording systems are cumbersome. Hence, they are not optimized for

use in emergency medicine (EM), and especially in prehospital care, i.e., ambulances and

other specialized environments, where the challenge is to diagnose neurological disorders

quickly so that specific treatment can be started as early as possible. It has been shown

that patients with altered mental states (AMS), in particular, would benefit from EEG

recording done early in the diagnosis process [8,9].

In recent years, a number of ambulatory EEG systems have been developed [10-15].

Nevertheless, since most of these have an intended application area other than emergency

medicine, e.g., brain-computer interface, home healthcare, epilepsy monitoring, their

size, weight, carrying system, electrode harness, and/or need to be assembled prior to

use makes them difficult to employ in EM and prehospital care. Recently there have

also been efforts to develop systems specialised for EM [16].

One of the important design decisions in the development of an EM EEG system is

the choice of electrodes. Currently wet-gel Ag/AgCl electrodes are typically used in

clinical EEG applications since they offer excellent signal quality and are widely available

commercially. However, these types of electrodes typically require some kind of skin

preparation before they can be reliably applied [17]. An interesting alternative to wet

electrodes are dry electrodes, which do not require conductive electrode paste or skin

preparation [18,19]. Nevertheless, dry electrodes still suffer from signal quality limitations,

which are due to their sensitivity to noise and motion artefacts [17]. Wet electrodes

typically have adhesive material to keep them relatively immobile as well as conductive

gel to lower the skin impedance and protect the electrode against motion artefacts.

Currently dry electrodes are not widely available for clinical use in EEG recordings,

which further limits their usability [17].

The aim of the current work was to develop and test a novel system for performing

EEG recordings in EM and in ambulances, while patients are being transferred to the

hospital. This is a vital issue because even though EEG is an important tool for assessing

brain function, it is not yet clinically available in prehospital care partly due to the lack of

specifically designed recording systems for this challenging environment. High-quality EEG

data in EM and during ambulance transportation could lead to a faster diagnostic, more

accurate treatment, and shorter recovery of patients with neurological brain disorders.

An ideal recording system for these environments should be portable, small, robust,

and easy-to-use so that even caregivers that are not specifically trained in EEG recordings

can operate it. Also, the time required for patient preparation should be minimized and

the data should be made available to a hospital-based interpreter in real-time. Finally, the

system's signal quality should be comparable to that of traditional recorders.

Methods
System overview

The developed 6-channel emergency EEG system (emEEG), which is shown in Figure 1,

is comprised of three separate entities: a quick-application EEG cap into which the

measurement electrodes are embedded; a wireless EEG (WEEG) recorder that measures



Figure 1 The emEEG system. It consists of recording software (left), quick-application electrode cap
(top-right), and wireless EEG recorder (bottom-right).
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the EEG and transmits it wirelessly to a personal computer; and recording software,

which displays and stores the data, allows it to be annotated, and streams it in real-time

to a remote server where it can be analyzed by a clinician.

Wireless EEG recorder

The WEEG recorder consists of a portable measurement unit (PMU; 9.3 × 6 × 2.5 cm,

75 g) and a computer interface card (CIC; 7.5 × 3.4 × 5 cm, 7.3 g), the latter of which is

located within the measurement laptop computer. Table 1 summarizes the specifications

for the WEEG and a commercially available NicoletOne V32 (Natus Medical Inc, San

Carlos, USA) amplifier. Block diagrams of the PMU and CIC are shown in Figure 2,

with each major part being described in the subsequent paragraphs.

The design of the PMU’s analog front-end follows that of a typical bioamplifier [20].

Even though it has been omitted from Figure 2 for clarity purposes, the input of each

channel possesses a voltage-limiting circuit, which prevents the high-voltage transients

induced by defibrillators from damaging the PMU. The EEG signal is pre-amplified by

means of an INA2126 (Texas Instruments, Dallas, USA) instrumentation amplifier

(IA). Due to its low voltage noise (45 nV/√Hz), high input impedance (>1 GΩ), high

common-mode rejection (≥ 80 dB) this IA is ideal for amplifying the small-amplitude
Table 1 Summary of the characteristics of the developed emEEG device and of a
commercial device

Device emEEG NicoletOne V32

Number of EEG channels 6 32

ADC resolution (bits) 16 16

Voltage resolution (μV) 0.02 0.15

Maximum sampling rate (Hz) 1000 2000

Bandwidth (Hz) 0.2 – 90 0.05 – 500

CMRR (dB) 80 >115

Input impedance (MΩ) ≈1000 >100

Acceleration information Three axes none



Figure 2 System diagram depicting the major components of the six channel emEEG system. For
clarity, only two of the six measurement channels are shown.
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EEG signal. A signal conditioning section follows, in which the signal's DC offset is removed

by means of a high-pass (HP) filter (fc ≈ 0.2 Hz, 1st order Butterworth), prior to the

signal being further amplified by a gain stage. After low-pass (LP) filtering (fc ≈ 90 Hz, 2nd

order Bessel), the EEG signal is digitized by a 16-bit analog-to-digital converter (ADC).

Sampling frequencies in the 200 – 1000 Hz range can be used to digitize the signal.

Movements of the patient's head can cause significant artefacts in the recorded EEG

signal. Therefore, an accelerometer is included in the PMU in order to allow the caregiver

to ascertain whether an abnormal EEG feature is caused by the underlying neurophysiology

or by movement. The accelerometer employed in this design is the ADXL330 (Analog

Devices, Norwood, USA). It can measure acceleration in three directions, has a typical

range of ± 3.6 g, and consumes only 1.2 mW.

In the control and communication block the main component is an ATmega128L

microcontroller (Atmel Corporation, San Jose, USA), which features an 8-bit high-

performance, low-power architecture. The principal task of the microcontroller is to

group the EEG samples together with the 10-bit acceleration data and to transfer the

resulting packets to the CIC through a custom wireless protocol, which is built on

top of the IEEE 802.15.4 standard's physical and media access control layers. This

communication method was chosen due to its low power consumption, ease-of-use,

and adequate performance. A CC2420 transceiver chip (Texas Instruments, Dallas,

USA) handles the wireless communication and operates in the 2.4 GHz band, which

is reserved internationally for industrial, scientific and medical purposes. Previous

studies have shown that transmissions at this frequency do not interfere with common

medical devices [21,22].

The computer interface card transmits the data packets received from the PMU to

the recording software and vice versa. It features an ExpressCard interface and a U.FL

miniature coaxial connector (Hirose Electric Group, Tokyo, Japan) for interfacing with

one of the laptop's 2.4 GHz 802.11 wireless local area network (WLAN) antennas. There-

fore, any modern laptop with an ExpressCard interface as well as two or more 2.4 GHz

802.11 antennas can be employed to record EEG data using the emEEG system.
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While the CIC draws power directly from the measurement computer through the

ExpressCard interface, the PMU is powered by three AAA batteries. Using Duracell

Coppertop MN2400 alkaline batteries (The Procter & Gamble Company, Bethel, USA),

a sampling frequency of 200 Hz, and with the CIC and PMU adjacent to each other, it

was possible to operate the recorder continuously for approximately 23 hours.

Recording software

Custom software controls the operation of the WEEG recorder and displays the measured

EEG and acceleration data. It also allows the data to be annotated using pre-defined and

custom annotations. Furthermore, the displayed EEG data can be LP filtered simply by

selecting the desired cut-off frequency from the toolbar. Raw EEG and acceleration

data are stored side-by-side in an EDF+ file, which can be opened by the majority of

EEG analysis software. While a measurement is in progress, the recorded data is

streamed to a remote server through any internet connection that the measurement

computer may possess, e.g., mobile broadband, WLAN, satellite. This could allow a

clinician to ascertain a patient's condition before they even reach a medical center.

Quick-application cap

The cap was constructed with polyester-based materials that can be easily sterilized,

either by washing or by wiping with detergent. It was designed so that it could potentially

be applied to a patient that has suffered a neck injury and who is lying in the supine pos-

ition on a flat surface, albeit before the fitting of a cervical collar or head immobilization

device. The WEEG recorder is housed within one of the structural bands on the apex of

the head. Conductive carbon fibres embedded within the bands' material diminish the

possibility of electrostatic discharges, which could damage the measurement electronics.

Six electrode locations were selected from the international 10–20 system by means

of finite element modeling and lead field theory. The number of measurement channels

was set to six due to the limited bandwidth of the wireless link and to ensure a quick

application of the system. Only sub-hairline locations were considered so as to allow the

pre-gelled EEG electrodes described subsequently to be used. An additional constraint

imposed on the analysis was for the locations to be symmetric along the sagittal plane

so as to allow the detection of neurological asymmetries. Wendel created a realistic

four-shell head model with which the sensitivity distributions of six possible electrode

configurations matching the aforementioned requirements were compared [23]. The

configuration comprising the following locations was shown to have the broadest

sensitivity distribution: P9, F7, Fp1, Fp2, F8, and P10. An additional location is used

as the reference (Fpz) and another as the electronic 'ground' (Fz).

Disposable wet-gel Ag/AgCl snap electrodes were used in this study, the suitability of

which for EEG recordings has been demonstrated in literature [24-28]. Compared to trad-

itional EEG electrodes, e.g., cup electrodes, these wet-gel snap electrodes can be applied

very quickly since the electrolyte gel and the adhesive do not have to be added manually.

Furthermore, extensive skin preparation is not required since it has been shown that

excellent electrode impedances can be obtained with only routine skin defatting [26,28].
Testing procedure

The emEEG system's suitability for testing in a clinical environment was ascertained

through benchtop tests, which investigated the WEEG recorder's characteristics, as well
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as healthy volunteer and patient measurements that established the system's accuracy

by performing data comparison with a commercial EEG system. The study protocol

was reviewed by the regional ethical committee of the Tampere University Hospital,

which issued a positive statement regarding healthy volunteer and patient measurements.

All participants gave their written consent to take part in the study.

Benchtop testing

The frequency responses of the WEEG recorder's six channels were measured using the

standard frequency sweep method. The common-mode rejection ratio (CMRR) of a

bioamplifier is defined as the ratio of the differential gain AD over the common-mode gain

ACM and is an indication of the amplifier's capability of rejecting common-mode signals.

Its value is expressed in decibels (dB):

CMRR ¼ 20 log10
AD

ACM

� �
ð1Þ

The ACM of each channel was determined by feeding a 50 Hz sinusoidal signal to the six

input channels as well as to the reference channel and then measuring the voltage at the

output of the IA stage. This frequency was chosen because 50/60 Hz mains interference is

a common source of common-mode noise in EEG recordings [14]. A channel's AD was

obtained by measuring the IA's output when a sinusoid generated by a XC90-III medical

calibrator (Oxford Instruments, Abingdon, England) was inputted differentially. Subse-

quently, the channels' CMRR was calculated by means of Equation 1.

The noise level was measured in a laboratory environment by connecting together

the PMU's six input channels, the reference channel, and the bias connection. With the

inputs short-circuited in this way, the output of the PMU is equal to its internal noise.

A one-minute recording was performed and the root mean square (RMS) amplitude of

the signal measured by each channel was calculated using MATLAB (The MathWorks,

Natick, USA). The RMS noise level of each channel at the input of the ADC was calculated

from the measured signals after the DC offset was removed with a linear-phase finite

impulse response (FIR) HP filter with a cut-off frequency of 0.2 Hz. The noise at the

input of the adapter was estimated by dividing the noise at the ADC input by each

channel's measured AD.

Parallel recordings

In order to verify the accuracy of the emEEG system, the EEG signals recorded with it

were compared to reference signals acquired with a NicoletOne V32 commercial EEG

measurement system (Natus Medical Inc, San Carlos, USA). The NicoletOne V32 was

chosen as the reference system since it is in clinical use at the Seinäjoki Central Hospital

(Seinäjoki, Finland). The spontaneous EEG of two healthy male volunteers was measured

simultaneously using the two systems, first in an examination room at the Department

of Clinical Neurophysiology, and then in the intensive care unit (ICU) of the Seinäjoki

Central Hospital. Zipprep electrodes (Aspect Medical Systems, Inc, Washington USA)

were used in these recordings and the measurements were preceded by routine defatting

of the electrode locations using alcohol pads. While lying in the supine position, the

subject was first asked to blink their eyes for 10 seconds and then keep them closed

for three minutes. This procedure was repeated three times during the approximately
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10-minute-long recordings. The leads of the quick-application cap were connected to

the two systems so as to be able to measure the subject's EEG simultaneously using

both systems and from the same locations. Prior to the start of the measurements, all

channels were checked to ensure that low and similar impedances were present (< 5 kΩ).

Because the recordings were not started at exactly the same time and since the

sampling rates of the two systems were not completely identical, the emEEG signals

were resampled to the time points of the commercial system by means of a simple

algorithm. First, the bandwidth of both signals was reduced to the 0.5 – 35 Hz range,

which is typically used in EM, by means of HP and LP linear-phase FIR filters. In order to

ensure a flat pass-band, both filters were designed by the windowing technique with the

Kaiser window. Second, the time offset between the two signals was determined at four

different locations evenly distributed over the recording. Identical features present in both

signals were identified and the amount of samples separating them was calculated. These

offsets were subsequently used to compute the coefficients of the first-degree polynomial

that models the time offset between the two signals. Thirdly, the data recorded with

the emEEG system was mapped to the timeline of the commercial data by means of

the derived polynomial. Finally, the emEEG data was linearly interpolated at the time

points of the commercial instrument’s data.

Patient measurements in hospital EEG laboratory and ICU

Patient measurements were performed at the Department of Clinical Neurophysiology

and ICU of the Seinäjoki Central Hospital. Every EEG recording made with the emEEG

system was preceded with a standard clinical EEG recording performed with a commercial

system. Zipprep electrodes were used in these recordings and the measurements were

preceded by routine defatting of the electrode locations using alcohol pads. The emEEG

recordings were approximately 20 minutes in length. Two experienced clinical neurophys-

iologists independently evaluated the technical quality of the emEEG recordings and

whether the signal quality was sufficient for clinical interpretation. They also gave

their statement on the patients’ neurological condition blindfolded, i.e., without prior

knowledge of the patients and their condition. The accelerometer data was visible to

the interpreter during analysis of the emEEG recordings to support the determination

of whether a particular signal feature is a movement artefact or not. According to the study

protocol, a three-level grading system was used for the evaluation: normal, abnormal, and

highly abnormal. The clinicians also indicated whether status epilepticus was suspected.

The results were then compared with the statements made based on the standard clinical

EEG recordings.
Preliminary ambulance recordings

After the clinical testing, the developed emEEG system was installed in an ambulance.

The laptop computer was docked to the ambulance (Figure 1) and EEG recordings were

performed for two male healthy volunteers with Norotrode electrodes (Myotronics Inc.,

Washington USA) while the vehicle was moving. The measurements were preceded by

routine defatting of the electrode locations using alcohol pads. During the measurements,

the ambulance drove through the city area of Seinäjoki as well on the nearby highway.

An experienced clinical neurophysiologist then evaluated the technical quality of the

EEG recordings.
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Results
Laboratory tests

Through the frequency response measurements the system's high-pass and low-pass

−3 dB points were determined to be 0.19 and 90 Hz, respectively. Also, the gain in the

flat region of the passband was found to be approximately 1817 V/V (65.19 dB). The

frequency responses of the six channels were nearly identical, with a maximum difference

of 0.34 dB over the 0.19 – 90 Hz range.

The average CMRR was found to be 83 dB with a standard deviation (SD) of 0.74 dB

(see Table 2). Also, the CMRR of all channels exceeds the 80 dB threshold recommended

by the ACNS guidelines [29].

All six channels exhibited excellent noise properties over the 0.2 – 90 Hz frequency

range (see Table 2). Although this measurement technique does not take into account

the Johnson-Nyquist noise generated by the electrode impedance and the noise generated

by the IA's input bias current, under typical recording conditions these values will be

small and therefore their contribution to the overall noise present in the recorded

signal was deemed negligible. The average input noise was found to be 0.41 μVRMS

with a SD of 7.6 nVRMS.
Parallel recordings

Since the preparation needed with the novel EEG system is minimal, the recordings

were started in less than three minutes. A five second window of the comparison results

is shown in Figure 3. The upper part of the figure depicts the reference signal together

with the signal measured by the emEEG system while the lower part presents the minute

difference between the two signals. The mean differences between the two signals for

the four recordings are presented in Table 3. Considering that the amplitude of non-

pathological scalp EEG is usually in the 10 – 100 μV range, the comparatively small

mean difference proves that the EEG measured with the emEEG system is very similar

to that recorded with the commercial system.
Patient measurements in hospital EEG laboratory and ICU

The patient recordings performed at the Department of Clinical Neurophysiology and

at the ICU were also started in less than three minutes. The results are presented in

Table 4. In all four cases, the technical quality of the recordings was rated to be
Table 2 Common mode rejection and root mean square noise level of the emEEG
system’s six channels

Channel CMRR (dB) Channel input noise (μVRMS)

P10 83 0.40

F8 82 0.40

Fp1 84 0.40

Fp2 82 0.42

F7 82 0.41

P9 82 0.40

Average 83 0.41

The CMRR was computed at 50 Hz and the RMS noise was calculated over the 0.2 – 90 Hz frequency range.



Figure 3 Comparison of two signals recorded in parallel with the emEEG and a NicoletOne V32
system. At the top is the comparison of a 5 seconds window of the EEG signals measured with the two
systems from subject 1 in the ICU of the Seinäjoki Central Hospital (emEEG signal in black and NicoletOne
V32 signal in gray). At the bottom is the computational difference of the two signals (mean difference is
0.59 μV and standard deviation is 0.44 μV).
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sufficient for diagnostic purposes by both of the experienced clinical neurophysiologist

and the diagnostic comparison showed consistency with the commercial system.
Preliminary ambulance recordings

The system performed in the ambulance environment as intended. The recorded EEG

data from the healthy volunteers was streamed in real-time to the Department of Clinical

Neurophysiology at the Seinäjoki Central Hospital and the technical quality of the EEG

recordings was rated to be good and sufficient for diagnostic purposes by an experienced

clinical neurophysiologist.
Discussion
The results of the laboratory test and of the healthy volunteer and patient measurements

show that the emEEG system performs well in a variety of environments. Due to its high
Table 3 Comparison of data recorded in parallel with the emEEG system and a NicoletOne
V32 system

Channel Examination room ICU Average

Subject 1 Subject 2 Subject 1 Subject 2

P9 1.3 ± 1.6 1.3 ± 1.6 1.0 ± 1.4 1.4 ± 1.9 1.3 ± 1.6

F7 1.1 ± 1.3 0.9 ± 1.0 0.8 ± 0.8 0.9 ± 0.9 0.9 ± 1.0

Fp1 1.2 ± 1.5 0.9 ± 1.2 0.7 ± 1.0 1.1 ± 1.9 1.0 ± 1.4

Fp2 1.0 ± 1.1 0.7 ± 0.8 0.7 ± 0.9 0.7 ± 1.8 0.8 ± 1.1

F8 1.3 ± 1.7 0.8 ± 1.1 0.7 ± 0.9 1.0 ± 1.0 0.9 ± 1.2

P10 1.2 ± 1.5 1.2 ± 1.5 0.9 ± 1.2 1.2 ± 1.7 1.1 ± 1.5

Average 1.2 ± 1.4 1.0 ± 1.2 0.8 ± 1.0 1.1 ± 1.6 1.0 ± 1.3

The table displays the mean difference ± SD of the absolute difference signal computed from the EEGs recorded
simultaneously with both systems (units: μV).



Table 4 Results of the patient measurements

Patient 1 2 3 4 5

Age 23 25 55 58 75

Gender Female Male Female Male Female

Recording location Clin.Depart. Clin.Depart. ICU ICU Clin.Depart.

General estimation (clinical EEG) Normal Normal Highly
Abnormal

Highly
Abnormal

Highly
Abnormal

Status Epilepticus No No No No Yes

Experienced clinical
neurophysiologist 1

General estimation (emEEG) Normal Normal Normal Highly
Abnormal

Highly
Abnormal

Status Epilepticus No No No No Yes

Experienced clinical
neurophysiologist 2

General estimation (emEEG) Normal Normal Normal Highly
Abnormal

Highly
Abnormal

Status Epilepticus No No No No Yes

The results from the patient measurements were evaluated by two experienced clinical neurophysiologists. Three grades
were used in the general estimation, normal, abnormal and highly abnormal based on the clinical practice. The recording
location at the Department of Clinical Neurophysiology is denoted as Clin.Depart. and the intensive care unit as ICU.
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CMRR, low internal noise, and sufficient bandwidth [26,27], the implemented system

records high-quality EEG signals. Furthermore, its extended operating time ensures

that the system can be used for long-term recordings. Compared to traditional portable

recorders, the system is smaller and requires only a brief training to use. Also, unlike

existing portable recorders, the emEEG system features a quick-application cap with

which the recording can be started quickly and without a lengthy preparation. Qualitative

testing has shown that depending on the patient's head size and hair length, the cap can

be applied in two to three minutes, with the slowest part being the peeling of the plastic

electrode covers. This time would most likely be longer for patients with long hair since

the tightening of the attachment straps would be more challenging. One final advantage

of the developed emEEG system is its integrated accelerometer, which can be used to

assess the movements of the patients and to evaluate resulting movement artefacts in

the EEG signals.

As it can be observed from Figure 3 and Table 3, the EEG measured with the emEEG

system is very similar to the EEG recorded with the commercial system. Over the four

recordings, the average difference between the two systems amounts to 1.0 μV, with a

SD of 1.3 μV. Two factors mainly contribute to the difference between the signals

recorded with the two systems. First, a small amount of internal noise (≈ 0.41 μVRMS)

is added to the recorded signal. Second, although it was assumed that the frequency

response of both systems is linear in the 0.5 – 35 Hz range, it is likely that the pass band

of each system is not completely flat. Whereas the non-uniform frequency responses

generate small variances throughout the recording, their effect is emphasized by the

large peaks of the ECG artefacts present in the EEG of channels P9 and P10. Hence,

the data recorded by these channels exhibits a slightly larger mean difference.

Based on Table 3, since the EEG from the examination room and that from the ICU

exhibits similar characteristics, neither of the two environments seems to negatively

affect the quality of the recorded data. However, it is acknowledged that further
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measurements need to be carried out in the ICU in order to determine whether other

electrical medical devices, e.g., ECG monitors, catheters, to which a patient may be

attached, could interfere with the recording.

Whereas all 21 electrodes of the 10–20 system are used in traditional EEG studies, the

emEEG system features six electrodes. This was due to the technical characteristics of the

wireless link and also due to the effort to make the system as easy-to-use as possible.

Although current clinical guidelines recognize that a smaller number of channels can

be appropriate under special circumstances, the data cannot be considered to give a

comprehensive view of the patient's neurological status [30]. An even distribution of the

six electrodes over the cerebral hemispheres, including hairy regions, could enhance

the diagnostics but would at the same time compromise the ease-of-use of the system.

Applying electrodes in hairy regions typically requires more preparation to ensure

good contact and stability, which leads to increased set-up times. Therefore subhairline

electrode locations were chosen in the current work. Nevertheless, with the symmetric

disposition of the electrodes, the physician should be able to detect asymmetries, suggesting

focal or asymmetric damage. Also, generalized pathologies, e.g., slowing, epileptic discharges,

should be readily visible. Subhairline electrode sets with limited amount of electrodes

have been demonstrated to be accurate in non-convulsive status epilepticus and seizure

detection [31,32]. This conclusion is also supported by the results of the current patient

measurements, which showed comparable results with commercial EEG systems.

In patient 3, the frontal EEG consisted mostly of very low amplitude, slow waves,

with some beta activity. As the analysis was being carried out blind and since the lack

of normal posterior physiological rhythms was not visible in the emEEG recording, the

slow activity was thought to be of a non-pathological nature, e.g., drowsiness, sweating.

More information regarding the state of the patient might’ve led to a different diagnosis.

Furthermore, it must be noted that the emEEG recordings were not made simultaneously

with the commercial system so the temporal difference might also influence the interpret-

ation of the EEG data. It is also acknowledged that additional channels would enhance the

diagnostics; on the other hand, increasing the number of channels would probably

lengthen the setup time and also compromise the system’s applicability and usability in

demanding recording situations, e.g., during ambulance transport.

Two types of proprietary wet-gel electrodes were used in this work because they can

be applied very quickly and do not necessitate a long preparation of the skin in order

to obtain low impedance. It has been shown that such electrodes can be used as EEG

electrodes in the assessment of depth of anesthesia [24-26,28]. Also, to the best of our

knowledge, no other snap electrodes intended for EEG measurements were available

at the time of the study. Zipprep electrodes were used in the hospital testing of the

developed system. Due to the limited availability of the Zipprep electrodes, Norotrode

electrodes were used for the ambulance testing. The Norotrode electrodes performed

well during the measurements and due to their lower cost and better commercial

availability, they offer a good alternative to be used in future measurements.

Wet-gel electrodes do have shortcomings as they cannot be applied on hair and the

electrode gel can dry out within a few hours of application. It follows that such electrodes

can only be used for short-term recordings. One recently-developed alternative could

be an EEG monitoring set consisting of 12 hydro-gel coated electrodes [33]. Dry active

electrodes could prove to be another alternative solution. Some of these consist of
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metallic pins that can go through the patient's hair to make contact with the scalp

[34,35]. Therefore, dry active electrodes are certainly an interesting alternative to be

considered in EEG recordings [19], especially in the hairy regions where wet gel electrodes

cannot be easily applied [18]. Also, since dry electrodes do not require electrolyte gel, they

can be applied on the patient very quickly. Nevertheless, it must be acknowledged that

dry electrodes still need further research in order to overcome the limitations that prevent

their widespread use for clinical EEG recordings [17].

To further enhance the performance of the developed emEEG system, future improve-

ments will be focused on the electrode cap design to enable a more even distribution

of the electrodes over the surface of the head and on further improving the usability

as well as reducing set-up times in different demanding situations. The measurement

electronics will also be miniaturized in order to allow the development of a more

streamlined electrode cap.

Conclusion
In summary, this paper has presented the design and testing of the quick-application

six-channel wireless emEEG system. As a result of the good quality EEG signals recorded

in various environments and due to its ability to stream the recorded data in real-time,

the emEEG system could be employed in prehospital care in the future. The EEG record-

ings made during ambulance transport would enable the EEG data to be interpreted and

to guide the diagnostic process before the patient’s arrival at the hospital.
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