
Qi et al. BioMedical Engineering OnLine 2014, 13:59
http://www.biomedical-engineering-online.com/content/13/1/59
RESEARCH Open Access
Automatic pulmonary fissure detection and lobe
segmentation in CT chest images
Shouliang Qi1,2*†, Han J W van Triest1,2†, Yong Yue3, Mingjie Xu1,2 and Yan Kang1,2
* Correspondence:
qisl@bmie.neu.edu.cn
†Equal contributors
1Sino-Dutch Biomedical and
Information Engineering School,
Northeastern University, Shenyang,
China
2Key Laboratory of Medical Imaging
Computing (Ministry of Education),
Northeastern University, Shenyang,
China
Full list of author information is
available at the end of the article
Abstract

Background: Multi-detector Computed Tomography has become an invaluable tool
for the diagnosis of chronic respiratory diseases. Based on CT images, the automatic
algorithm to detect the fissures and divide the lung into five lobes will help
regionally quantify, amongst others, the lung density, texture, airway and, blood
vessel structures, ventilation and perfusion.

Methods: Sagittal adaptive fissure scanning based on the sparseness of the vessels
and bronchi is employed to localize the potential fissure region. Following a Hessian
matrix based line enhancement filter in the coronal slice, the shortest path is
determined by means of Uniform Cost Search. Implicit surface fitting based on Radial
Basis Functions is used to extract the fissure surface for lobe segmentation. By three
implicit fissure surface functions, the lung is divided into five lobes. The proposed
algorithm is tested by 14 datasets. The accuracy is evaluated by the mean (±S.D.),
root mean square, and the maximum of the shortest Euclidian distance from the
manually-defined fissure surface to that extracted by the algorithm.

Results: Averaged over all datasets, the mean (±S.D.), root mean square, and the
maximum of the shortest Euclidian distance are 2.05 ± 1.80, 2.46 and 7.34 mm for the
right oblique fissure. The measures are 2.77 ± 2.12, 3.13 and 7.75 mm for the right
horizontal fissure, 2.31 ± 1.76, 3.25 and 6.83 mm for the left oblique fissure. The
fissure detection works for the data with a small lung nodule nearby the fissure and
a small lung subpleural nodule. The volume and emphysema index of each lobe can
be calculated. The algorithm is very fast, e.g., to finish the fissure detection and
fissure extension for the dataset with 320 slices only takes around 50 seconds.

Conclusions: The sagittal adaptive fissure scanning can localize the potential fissure
regions quickly. After the potential region is enhanced by a Hessian based line
enhancement filter, Uniform Cost Search can extract the fissures successfully in 2D.
Surface fitting is able to obtain three implicit surface functions for each dataset. The
current algorithm shows good accuracy, robustness and speed, may help locate the
lesions into each lobe and analyze them regionally.

Keywords: Lung, Pulmonary fissure, Lobe, CT, Segmentation, Computed-aided
diagnosis
Introduction
Worldwide, chronic respiratory diseases, such as Chronic Obstructive Pulmonary

Disease (COPD), are a major cause of premature deaths in adults [1]. COPD alone,

accounts for 4 million deaths annually, and is the third leading cause of death in the
© 2014 Qi et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:qisl@bmie.neu.edu.cn
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Qi et al. BioMedical Engineering OnLine 2014, 13:59 Page 2 of 19
http://www.biomedical-engineering-online.com/content/13/1/59
United States [2]. The early and accurate identification of chronic respiratory diseases

is essential for their prevention and control.

Multi-detector Computed Tomography (CT) has become an effective and invaluable

tool for the diagnosis of chronic respiratory diseases. Using modern CTs, within one

breath hold the lung can be imaged resulting in several hundreds of high-resolution

and near-isotropic sections with thicknesses of approximate 0.5 mm [3]. Based on these

images, advanced techniques of image processing can quantitatively assess the volumes

of the lung [4], the characteristics of lung cancer [5], the structures of airway tree[6,7]

and blood vessel [8], and the size of emphysema-like region [9], and help study human

lungs from both structural and functional viewpoints [10].

With the arrival of more precise diagnosis and treatment, it is essential to segment

the lung into its constituent regions, or lobes, which are separated by fissures. In non-

pathological cases, pulmonary fissures are the double layers of infolded invaginations of

visceral pleura, and exit between the different lobes. In the left lung, the oblique fissure

separates the lower lobe from the upper lobe, whereas in the right lung, the oblique

and horizontal fissures separate the lower lobe from the upper and middle lobes re-

spectively. Once the lobe is extracted accurately, one can regionally characterize and

quantify, amongst others, the lung density, texture, airway structure, blood vessel struc-

ture, ventilation and perfusion. For the diagnosis of pulmonary emphysema for ex-

ample, the volume, emphysema volume (EV), emphysema index (EI) and mean density

can be specified for each lobe, which facilitates preoperative planning and postoperative

evaluation of lung-volume reduction surgery [11].

Segmentation of lung lobes from the chest CT images is a grand challenge for several

reasons. First of all, the normal fissures are about 1–3 mm thick, and have a density

near that of the soft tissue, which makes it hard to see the full stretch of the fissure.

Secondly, the appearances of the fissures exhibit a large range of natural variations, and

may be incomplete or even absent and distorted by various diseases. Furthermore, dif-

ferent CT protocols may lead to different appearances of the fissure [12]. For conven-

tional CT, the fissures are visualized as lucent bands devoid of vascularity, whereas they

appear as sharp lines for high-resolution CT [13].

The segmentation of the individual lung lobes is an extensively studied topic. Two

classes of algorithms are available; the first group only uses the appearances of the

fissures, while the other also utilizes further anatomical information from the lung,

bronchus, and vessel structures. A brief summary of the model, feature and extrac-

tion methods in literature is presented in Table 1, and further details are given

below.
Algorithms based on fissure segmentation

Pu et al. have developed an automated fissure detection scheme using a computational

geometry approach. The marching cubes algorithm, Laplacian smoothing and extended

Gaussian image pyramids are applied to enhance the surface shaped structure within

the lung volume [14]. Finally, implicit surface fitting using Radial Basis Functions (RBF)

is adopted to segment the lobes [15]. This scheme reduces the dependence on anatom-

ical knowledge and other underlying assumptions, and is less sensitive to noise. As such

the integrity of the pulmonary fissure can be assessed [16]. On the other hand, its



Table 1 Selected algorithm and used models, features and extraction scheme

Authors Models Features Extraction scheme

Algorithms using fissure appearances

Pu et al. [14-16] ▪ The surface shaped
structure

▪ Marching cubes algorithm,
Laplacian smoothing and
extended Gaussian image

▪ Implicit surface fitting using
Radial Basis Functions (RBF)

Rikxoort et al. [17] ▪ Difference with the
other texture

▪ Trained features ▪ Supervised filter and classier

Wei et al. [18] ▪ A curvilinear line in
2D slice

▪ Line structure ▪ Adaptive fissure sweeping and
wavelet transform

Ross et al. [19,20] ▪ Ridge-like structure in
2D slice

▪ Ridgeness ▪ Thin plate splines and
maximum a posteriori
estimation

Wang et al. [21,22] ▪ Smooth high-intensity
curve in 2D slice

▪ Intensity or ridgeness ▪ A curve growing algorithm
modeled by Bayesian network

Algorithms using lung, bronchus, and vessel information

Zhang et al. [23] ▪ Smooth surface ▪ Ridgeness image ▪ Fuzzy reasoning system

▪ Ridge-like structure in
2D slice

▪ Anatomic pulmonary atlas

Ukil et al. [24] ▪ Sparseness of the vessel ▪ Ridgeness ▪ 3D watershed transform

▪ Match with bronchus tree
structure

▪ Optimal surface

▪ Ridge-like structure in
2D slice

Rikxoort et al. [25-27] ▪ The lung borders ▪ Trained features for fissure ▪ Supervised filter

▪ Airways and fissures ▪ Registration

Wei et al. [28] ▪ Different texture for
fissure

▪ Texture analysis ▪ Dynamic programming

▪ Large continuous fissure
surface

▪ Projection

Kuhnigk et al. [29],
Lassen et al. [30]

▪ Sparseness of the vessel ▪ The original data
removed blood vessel

▪ Cost image

▪ High intensity ▪ The vasculature ▪ Multi-dimensional interactive
watershed transform

▪ Match with bronchus
tree structure

▪ The bronchial tree

▪ Separation by
surface-shaped fissure

▪ Pulmonary fissures

Appia et al. [31] ▪ High intensity ▪ The intensity ▪ Global minimal path

▪ Sparseness of the vessel ▪ Distance of the
vasculature

▪ Smooth in 2D ▪ Curvature in 2D

▪ Continuity in 3D ▪ Continuity in 3D

Zhou et al. [32] ▪ Sparseness of the vessel ▪ Bronchus segmentation ▪ Voronoi division algorithm

▪ Match with bronchus
tree structure

▪ Vessel segmentation ▪ Laplacian filter

▪ Fissure appearance of
line at 2D slice
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primary limitation is that some plane-like structure resulting from diseases may be

incorrectly considered as the fissure.

Van Rikxoort et al. on the other hand have presented a pattern recognition approach,

using a supervised fissure enhancement filter [17]. In the training stage, 57 features (40
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from several Gaussian filters at different scales, and 12 derived from the Hessian

matrix) are calculated for each voxel after which a classifier is trained. Next, a multi-

phase supervised filtering is executed. This approach gives better fissure detection re-

sults than the Hessian matrix filter alone, at the cost of higher computational

complexity and does not extend well to pathological cases (e.g. fibrosis). Utilizing the

fissure appearance of a curvilinear line, Wei et al. have proposed an algorithm includ-

ing the adaptive fissure sweeping and wavelet transform [18].

An interactive lobe segmentation algorithm has been proposed by Ross et al., in

which a handful of points are given by the user, and then thin plate splines (TPS) is

employed to interpolate a minimally curved fissure surface [19]. This method is later

extended to an automatic method using particles, thin plate splines, and maximum a

posteriori estimation [20]. Computational complexity however, makes this solution less

practical.

Wang et al. have introduced a curve growing algorithm modeled by a Bayesian net-

work, which is influenced by the image data and prior shapes of the fissure [21]. They

replaced the original image by the ridge map in [22]. However, both the approaches re-

quire manual initialization.
Algorithms based on anatomical knowledge

At the University of Iowa, several lung lobe segmentation algorithms have been pro-

posed. An atlas-driven method is used to find the oblique fissure, in which a fuzzy rea-

soning system is employed to search the fissure by the combined information from the

ridgeness image intensity, smoothness, and the atlas-based search initialization [23].

The algorithm however often yields incorrect results on subjects with unusual anatomy

and pathology. Ukil et al. used information acquired from airway and vascular tree seg-

mentations to get an approximate region of interest for the fissures, which are further

refined by 3D optimal surface detection [24]. For incomplete fissures, incorrect initial

lobar segmentation may occur in this algorithm.

In the works performed by Van Rikxoort et al., a multi-atlas lobe segmentation algo-

rithm using the lung borders, airways and fissures was proposed to improve the robust-

ness and cope with the incomplete fissures [25-27]. Recently Wei et al. developed a

new approach with three stages: (a) texture analysis based on a neural network classifier

and gray-level run length matrix texture features to localize the fissure region; (b)

fissure region analysis by projections resulting; and finally (c) fissure identification by

dynamic programming to get the optimal path [28].

Several methods have been introduced by the team from Fraunhofer MEVIS. After

combining the 3D Euclidean distance transform image is derived from the blood vessel

mask and the gray-level image, a multi-dimensional Interactive Watershed Transform

(IWT) is applied to segment the fissures [29]. Four features including the original data

from which the blood vessels are removed, the vasculature, the bronchial tree, and the

pulmonary fissures enhanced by Hessian matrix based filters are extracted to calculate

a cost image, and the watershed transformation is performed to lobar partitioning and

classification [30].

By minimizing a 2D energy function on the sagittal slice based on the intensity of

the original image, the distance from the vasculature, the curvature in 2D, and the
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continuity in 3D, Appia et al. found the global minimal path in each slice to detect the

fissure semi-automatically [31]. After dividing the lung into five sections by a Voronoi

division algorithm based on the bronchus and vessel segmentation, the initial fissure re-

gion is determined and a Laplacian filter is adopted to extract the final fissure [32].

From the above literature review, it can be seen that the fissure appearances are often

used as direct features, but one cannot solely rely on these due to the fissures’ incom-

pleteness. Other anatomical information such as lung structure, vessel and bronchus

structures can play auxiliary role. In the present work, we adopt an adaptive fissure scanning

method in two sagittal slices to localize the fissure region. Next Uniform Cost Search (UCS)

with a cost function based on the Hessian matrix filtered image is employed to finish the

fissure extraction at coronal slices. Finally RBF based interpolation is conducted to finalize

the lobe segmentation.

Methods
Clinical dataset

All CT data sets used in this study are acquired at Shengjing Hospital, China Medical

University (Shenyang, Liaoning Province, China) from 2009 to 2014. Data are acquired

on a Brilliance 64 CT scanner from Philips Medical Systems (Best, The Netherlands).

The transverse images are reconstructed in a 512 × 512 matrix, the in-plane pixel sizes

range between 0.6 and 0.8 mm, and the slice thickness is either 0.67 or 1.0 mm. Fourteen

subjects (10 normal, 12 male) aged 40–86 years are chosen to evaluate the proposed

algorithm. The X-ray tube voltage is set at 120 kV, while the X-ray current ranges

105–378 mA. Reconstruction filters of YB and L are used for 11 and 3 subjects,

respectively.

Overview of the automatic segmentation of the lung lobes

In the proposed approach, there are four stages to achieve the automated segmentation

of lung lobe, namely (1) lung segmentation, (2) fissure detection, (3) fissure extension

and (4) lobe segmentation. Firstly, the lung segmentation is performed to limit the

search space. Secondly the points near the fissure surface are detected by using an im-

proved adaptive fissure scanning method. Next an implicit fissure surface function is

obtained using RBF interpolation. Depending on the evaluation of fissure surface func-

tions, lung lobes are ultimately segmented.

Lung segmentation

A dual-threshold 3D region growing method is adopted to extract the lung regions [33].

The dual thresholds are empirically set to −650 and −930 HU, respectively. Conservative

threshold values are chosen to prevent leakage of the segmented space. Next, a closing

operation with 7 × 7 kernel is applied on each transverse slice. Finally the tracheal walls

and pulmonary vascular structures are discarded from the lung regions by applying a

threshold at −300 HU. Representative results are shown in Figure 1.

Fissure detection

Improvement strategy based on lung anatomy

The left lung only has one oblique fissure, while two fissures (horizontal and oblique)

can be found in the right lung. The proposed algorithm handles each fissure separately,

and the main steps are given as follows.



Figure 1 Lung region segmentation. (a) transverse slice; (b) sagittal slice; (c) coronal slice; (d) 3D volume
rendered result.
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Step 1 In both lungs two sagittal slices are selected that are sufficiently spaced apart

and away from the edge of the lung volume, as shown in (a) of Figure 2. In current

algorithm, the two sagittal slices are selected by

x1 ¼ xmin þ 0:4 xmax−xminð Þ ð1Þ

x2 ¼ xmin þ 0:6 xmax−xminð Þ ð2Þ

where xmin and xmax are the minimum and maximum x coordinate of the segmented

lung. The value of 0.4 and 0.6 is set empirically.

Step 2 The above slides are then processed using a method named Sagittal Adaptive

Fissure Scanning (SAFS) as illustrated in next section, to detect the fissure region (FR).

Step 3 Utilizing a line enhancement filter based on the Hessian Matrix followed by a

Uniform Cost Search (UCS), the complete fissure line is extracted from the selected re-

gions as found in Step 2. Results are given in (b) and (c) of Figure 2 as the examples.

The line enhancement filter and UCS will be discussed below.

Step 4 At each coronal slice, there are two marker points generated from the fissure

lines as obtained in Step 3. Using these two points, the coronal fissure region is inter-

polated, as shown in (d) of Figure 2. Similarly, Hessian Matrix enhancement and UCS

are employed in this region to get the fissure line in each coronal slice, which are given

in (e) and (f ) of Figure 2. Hence a set of scattered points is available for further surface

extension and interpolation.



Figure 2 Improved adaptive fissure scanning procedures. (a) coronal CT image; (b) the first sagittal
image slice; (c) the second sagittal image slice; (d) coronal CT image with FR super imposed; (e) after Hessian
matrix enhancement; (f) the final fissure after UCS.
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Sagittal adaptive fissure scanning

It is well known that the fissure region is devoid of blood vessels and bronchi as it is at-

tached to the boundaries of the two adjacent lobes. Based on this anatomical know-

ledge, an algorithm is implemented to detect the fissure regions. The method is named

the Sagittal Adaptive Fissure Scanning (SAFS), and the flow chart for the algorithm is

shown in Figure 3. It an extension of adaptive fissure scanning originating from the ref-

erence [18]. The aim of SAFS is to find a region of interest (ROI), i.e., the fissure re-

gion, which excludes the blood vessels and bronchi, and thereby models the anatomical

assumption about the fissures (no vessels and bronchi in the proximity). The taken ap-

proach does not require the full segmentation of the vascular and bronchial trees in a

separate step, but implicitly steers clear of these anatomical components.

The algorithm can be divided into three main steps, which are described as follows.

Step 1 Lines are scanned at angles θ with respect to the horizontal axis, as can be

seen in (a) of Figure 4. The scan line is evaluated to be in the fissure region and is

stored only if it meets the requirements of R > r and L/R > k, where R is the length of

scan line intersecting with the lung region, and r is an empirical value to prevent the

selection of lines too short to be part of the fissure, which may occur at the boundary

of a lobe. L is the supremum of the continuous lengths of the line segments containing

pixels with values lower than −970 HU. k is another predefined constant denoting the

importance of contiguous line segments, and as such modifying the sensitivity of vascu-

lature exclusion. The connected fissure lines form connected regions denoted by CRθ(i)

for each scan angle θ.



Figure 3 Algorithm flowchart of the sagittal adaptive fissure scanning.
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Step 2 One can determine the potential fissure region (FRθ) by finding the largest

connected region at each angle θ, as shown in (b) and (c) of Figure 4. It means

FRθ ¼ maxi CRθ ið Þf g ð3Þ

Step 3 A score indicating the likelihood of the final FR is calculated for each scan
angle, and is defined as

P ¼ w1N þ w2σR þ w3�R ð4Þ

where N, σR and �R represent the total number of scan lines in a fissure region, the

standard deviation of length of scan lines, and the average length of scan lines in a

fissure region respectively. In addition, w1, w2 and w3 are the associated weight factors

for each parameter. The formulation of P is based on the knowledge that the final FR

should have many scan lines with longer lengths and lower standard deviations of these

lengths. Finally the FR with the maximum P, i.e.,

FR ¼ arg maxθ P FRθð Þf g ð5Þ

is selected out from the group with different angles θ, as shown in (d-f ) of Figure 4.

The selected regions together are extended such that they form a volume going

through both selected slides, in which the fissures can be found.

Hessian matrix and uniform cost search

The fissures show up as vague lines in the selected regions from the sagittal images,

with intensities only slightly higher than the background of the lung. To increase the

probability of success, the lines are enhanced using a Hessian based line enhancement

filter developed by Frangi et al. [34]. This filter is based on the principle that the eigen-

values of the Hessian matrix denote the curvature of the local image structure. The

curvatures on the fissure line are close to zero along the fissure and highly negative



Figure 4 Sagittal adaptive fissure scanning. (a) original sagittal CT image; (b) multiple connected
regions at θ = 44.22o; (c) connected region CR with the maximum area at θ = 44.22o; (d) CR with the
maximum area at θ = 45.62o; (e) CR with the maximum area at θ = 46.95o; (f) The final FR with the
maximum P -value.
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perpendicular to the fissure, where the eigenvectors of the Hessian denote the direc-

tions of these curvatures.

Using the fissure enhanced image, a cost-function is defined as C =Max(E) − E,

where E is the enhanced image. In this cost function, the fissure is given by the short-

est path from one side to the other side, and is found using Uniform Cost Search

(UCS). UCS is a traditional tree searching algorithm for finding the shortest path

between two points in a graph. The image is represented as a graph where all pixels

are connected using 8-connectivity, and the cost associated with each edge is given by

the value of the destination pixel in the cost function. A point on the inner edge of the

candidate region is chosen as a root point, while all points on the edge of the candidate

region on the outer side are considered destination nodes. The shortest path is found by

continuously expanding those nodes with the lowest cost, keeping track of the direction to

go for the lowest cost movement. This process is continued until a destination node is

found. After traversing all points on the inner edge, the shortest path between inner and

outer edges is obtained finally.
Fissure interpolation

The proposed algorithm applies Radial Basis Functions (RBF) to do fissure

interpolation based on the point set that was found above. Below, the procedure is

explained in detail.
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Scattered point set construction

(a) Surface points
After UCS on each of the sagittal slices, a large set of potential fissure points, PFP,

is generated. It is infeasible to use the whole set for the interpolation of the fissure

surface due to its size. From PFP a subset PFPsub is selected in which the points are

spaced at least 30 pixels apart in both x and y directions.

A cube with size of 11 × 11 × 11 is resampled around each point in PFPsub. If the

number of potential fissure points in this cube is larger than 80, the point is stored

for further processing. As shown in (a) of Figure 5, the left point is discarded for its

cube contains too few scattered points and it may be not reliable. The final PFPsub
is illustrated as in (b) of Figure 5.

(b) Off-surface point

For each point in PFPsub, a normal vector can be calculated for the plane spanned

by two arbitrary points in the cube and its center point. From the set of all possible

normal vectors in this cube, an average normal vector is computed. Finally an

off-surface point is determined along the average normal vector at distance d = 10

pixels away from the center point. All off-surface points are stored in the set OSP,

as shown in (c) of Figure 5.

Implicit fissure surface function

Implicit fissure surface fitting follows the methods introduced by Pu et al. [15]. For

completeness, the idea and main steps are briefly presented here. The surface can be

estimated using RBF

F xð Þ ¼
Xn

i¼1
λiΦ x−xij jð Þ þ P xð Þ ð6Þ
Figure 5 Illustration of each step in the fissure extension. (a) surface point verification; (b) surface
points; (c) surface points and off-surface points; (d) surface extension.



Qi et al. BioMedical Engineering OnLine 2014, 13:59 Page 11 of 19
http://www.biomedical-engineering-online.com/content/13/1/59
where Φ is the RBF, λi are real number coefficients, P is a low degree polynomial, and

{xi} are the scattered points. Here a tri-harmonic spline is selected to be RBF, Φ = |x|3.

P(x) is represented in a linear form, P(x) = c0 + c1x + c2y + c3z. For the PFPsub with n

points, F(xi) = 0; for the OSP with k points, F(xi) = d.

Hence, Equation (6) can be rewritten as

Φ11 Φ12

Φ21 Φ21

⋯ Φ1m

⋯ Φ21
⋮ ⋮

Φm1 Φm2

⋯ ⋮
⋯ Φmm

1 x1
1 x2

y1 z1
y2 z2

⋮ ⋮
1 xm

⋮ ⋮
ym zm

1 1
x1 x1

⋯ 1
⋯ xm

y1 y2
z1 z2

⋯ ym
⋯ zm

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

2
6666666664

3
7777777775

λ1
λ2
⋮
λm
c0
c1
c2
c3

2
6666666664

3
7777777775
¼

v1
v2
⋮
vm
0
0
0
0

2
6666666664

3
7777777775

ð7Þ

where Φij can be determined by

Φij ¼ Φ xi−xj
� � ¼ xi−xj

� �2 þ �
yi−yj

�
2þ zi−zj

� �2h i3=2
ð8Þ

with i, j ∈ [1,m], m = n + k.

Through Doolittle decomposition [35], Equation (7) can be solved, and the parame-

ters λ and c are obtained. An example of a reconstructed surface is illustrated in (d) of

Figure 5.

Finally, three implicit surface functions, F1(X) for the oblique fissure in the left lung,

F2(X) for the oblique fissure in the right lung, and F3(X) for the transverse fissure in

the right lung are constructed.

Lung lobe segmentation

After the three implicit fissure surface functions are reconstructed through RBF exten-

sion, all points in each of the lungs will be classified using these functions to determine

which lobe they belong to. The criteria are shown in Table 2.

Accuracy evaluation of lung fissure extraction

To quantitatively evaluate the accuracy of the algorithm, the surface pattern evaluate

method, i.e., the shortest Euclidian distance, is adopted. The shortest Euclidian distance

from pixel i on the manually-defined surface to the surface defined by the algorithm

can be computed as

di ¼ min
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xAj −x

M
i

� �2
þ yAj −y

M
i

� �2
þ zAj −z

M
i

� �2
r( )

ð9Þ
Table 2 Conditions for determining lobe membership

Conditions Point location

F3(xi) > 0 Right upper lobe

F2(xi) > 0 ∧ F3(xi) < 0 Right intermediate lobe

F2(xi) < 0 ∧ F3(xi) < 0 Right lower lobe

F1(xi) > 0 Left lower lobe

F1(xi) < 0 Left upper lobe
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where xAj ; y
A
j ; z

A
j

� �
and xMi ; yMi ; zMi

� �
are the coordinates of the voxel on the fissure sur-

faces obtained by the algorithm and manual tracing, respectively. Correspondingly the

mean, standard deviation and the maximum value of di can be determined. Moreover,

the root mean square (RMS) of di is also given as

dRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl

i¼1
d2
i

l

s
ð10Þ

where l is the total number of voxels on the fissure surface by manual tracing.

For each dataset, the fissure contours are drawn by one experienced radiologist slice

by slice using the free software of ImageJ. They form the manually-defined surface used

as the reference of accuracy evaluation.

Results
Fissure detection

The proposed algorithm can detect the fissure surfaces successfully for the 14 cases in

the dataset. As an example, representative results for one heath subject are presented

in Figure 6. For the left lung, the detected fissure curves are accurate in axial, sagittal

and coronal views, while the oblique fissure appears continuous and smooth. For the

right lung, transverse fissure can be extracted precisely, which traditionally is a difficult

task. It can be seen that the transverse and oblique fissures crossover is identified

accurately.

Moreover, the current algorithm is used to some cases with lung pathologies. As

shown in (a) of Figure 7, the fissure can be acquired for the data with a small lung
Figure 6 Fissure detection results. (a) axial view for left lung. (b) sagittal view for left lung; (c) coronal
view for left lung; (d) 3D view for left lung; (e) axial view for right lung; (f) sagittal view for right lung; (g)
coronal view for right lung; (h) 3D view for right lung.



Figure 7 Fissure detection results for four datasets with lung pathologies (indicated by the arrows).
(a) with a small lung nodule nearby the fissure; (b) with a small lung subpleural nodule; (c) with
centrilobular emphysema with tuberculosis in both apexes; (d) with centrilobular emphysema.
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nodule nearby the fissure. Even with a small lung subpleural nodule illustrated in (b)

of Figure 7, the algorithm works well for the RBF interpolation can correct some small

errors in fissure detection. Two clinical data sets with mild emphysema are used to

assess the proposed method, and the results are given in (c) and (d) of Figure 7. It can

be seen the fissures are obtained successfully since the mild emphysema does not

change the feature of fissures.

The calculated evaluation measures including the mean, standard deviation, RMS

and the maximum value of di are given in Table 3. For the right oblique fissure, the

mean (±S.D.), RMS, and the maximum averaged over all 14 datasets are 2.05 ± 1.80,

2.46 and 7.34 mm, respectively. The measures are 2.77 ± 2.12, 3.13 and 7.75 mm for
Table 3 The accuracy of fissure detection

No. Right oblique fissure Right horizontal fissure Left oblique fissure

Mean ± S.D.
(mm)

RMS
(mm)

Max
(mm)

Mean ± S.D.
(mm)

RMS
(mm)

Max
(mm)

Mean ± S.D.
(mm)

RMS
(mm)

Max
(mm)

1 1.53 ± 1.64 2.24 9.83 2.20 ± 1.33 2.57 6.75 2.12 ± 1.09 2.39 4.87

2 1.48 ± 1.27 1.96 4.96 3.19 ± 2.67 4.18 6.23 2.30 ± 2.11 2.65 5.12

3 1.81 ± 1.82 2.57 7.67 2.06 ± 2.83 3.50 11.19 3.16 ± 1.97 3.73 8.83

4 2.30 ± 2.72 2.23 7.36 5.29 ± 3.00 3.95 7.92 1.69 ± 1.17 2.06 4.27

5 2.16 ± 1.57 2.17 6.41 2.92 ± 1.57 3.31 6.72 3.06 ± 3.28 4.48 10.20

6 2.42 ± 1.92 2.61 5.60 1.84 ± 1.66 2.47 6.47 1.63 ± 0.77 1.81 3.28

7 2.28 ± 1.90 2.62 8.40 2.36 ± 0.94 2.00 4.49 2.18 ± 1.71 2.42 6.37

8 2.26 ± 1.63 2.79 7.88 3.25 ± 1.76 2.59 7.59 1.54 ± 1.03 1.85 4.27

9 1.81 ± 1.57 2.40 6.31 2.29 ± 3.27 3.99 13.57 5.68 ± 3.53 6.68 12.44

10 1.85 ± 1.46 2.36 8.56 3.13 ± 2.54 4.03 9.17 1.54 ± 1.87 4.54 5.38

11 2.32 ± 2.25 2.94 8.83 2.35 ± 2.14 3.40 6.85 1.98 ± 1.65 2.34 6.54

12 2.45 ± 1.89 2.95 7.65 2.12 ± 1.29 2.56 6.16 2.14 ± 1.23 3.28 5.49

13 1.92 ± 1.84 2.15 6.35 3.41 ± 2.58 3.19 8.15 1.49 ± 1.52 2.47 8.10

14 2.13 ± 1.67 2.48 6.91 2.38 ± 2.10 2.09 7.31 1.87 ± 1.67 4.86 10.47

Ave. 2.05 ± 1.80 2.46 7.34 2.77 ± 2.12 3.13 7.75 2.31 ± 1.76 3.25 6.83
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the right horizontal fissure, 2.31 ± 1.76, 3.25 and 6.83 mm for the left oblique fissure.

For the accuracy of the algorithm, there is no significant difference between the 10

health datasets and 4 pathological.
Lung lobe segmentation

For each patient, the five lobes are accurately segmented by three implicit fissure sur-

face functions. Figure 8 shows one example in which the lobes are marked with differ-

ent colors.

The volume of each lobe (cm3) and its ratio to total lung volume can be easily calculated

according to the segmentation, as summarized in Table 4. This algorithm may be used to

do morphometric analysis or functional assessment for the individual lobes [36].

After the lobe segmentation, we set the threshold cut-off for emphysema as −950 HU

[9], and calculated the percentage of low attenuation area (LAA%) to total lung volume

(at −600 HU threshold), i.e., emphysema index, for each lobe in the datasets 13 and 14.

For dataset 13, it is 3.14% (the left upper), 0.49% (the left lower), 8.33% (the right

upper), 0.66% (the right intermediate) and 0.48% (the right lower). For dataset 14, it

is 7.97%, 8.67%, 2.61%, 1.49% and 0.16%, respectively. The potential application is to

clinically assess emphysema heterogeneity, find predominantly emphysema lobe and

help plan the lung-volume–reduction surgery [11].
Advantages

One of important advantages of the proposed algorithm is its high speed. Using a

desktop PC running Intel Core2 Duo CPU E7500 at 2.0 GHz and 2 GB of memory, to

finish the process of lung segmentation, fissure detection, and fissure extension for the

dataset with 320 slices of 512 × 512 pixels only takes around 50 seconds. Comparing to

the running time of 2.35 minutes [22], 6–8 minutes [23,25], and about 40 minutes

[20,32], the current algorithm shows high calculation efficiency. The robustness of the
Figure 8 Results of automatic lung lobes segmentation. (a) coronal view; (b) axial view; (c) sagittal
view; (d) the second sagittal view; (e-h) four cases shown in 3D surface rendering.



Table 4 Volume of lung lobe (cm3) and the percentage of the volume of each lobe in the
whole lung volume (%)

No. L-U cm3 (%) L-L cm3 (%) R-U cm3 (%) R- I cm3 (%) R- L cm3 (%) Sum cm3

1 1183 (23.6%) 1167 (23.2%) 852 (17.0%) 478 (9.5%) 1339 (26.7%) 5019

2 1597 (21.2%) 1989 (26.4%) 1593 (21.1%) 678 (9.0%) 1680 (22.3%) 7537

3 1027 (24.0%) 857 (20.0%) 914 (21.4%) 399 (9.3%) 1080 (25.3%) 4277

4 1447 (23.4%) 1473 (23.8%) 1233 (19.9%) 492 (8.0%) 1538 (24.9%) 6183

5 1241 (22.5%) 1440 (26.1%) 1050 (19.1%) 488 (8.9%) 1290 (23.4%) 5509

6 1099 (22.1%) 1159 (23.3%) 913 (18.3%) 486 (9.8%) 1318 (26.5%) 4975

7 1292 (22.7%) 1344 (23.6%) 1273 (22.3%) 613 (10.8%) 1174 (20.6%) 5696

8 1599 (23.5%) 1611 (23.7%) 1352 (19.9%) 585 (8.6%) 1647 (24.3%) 6794

9 1284 (24.0%) 1129 (21.1%) 1114 (20.9%) 398 (7.5%) 1414 (26.5%) 5339

10 1021 (25.9%) 691 (17.5%) 858 (21.7%) 390 (9.9%) 988 (25.0%) 3948

11 1412 (25.4%) 1322(23.8%) 1011 (18.2%) 562 (10.1%) 1258 (22.6%) 5565

12 1158 (20.2%) 1402 (24.4%) 965 (16.8%) 489 (8.5%) 1723 (30.0%) 5737

13 1167 (26.5%) 860 (19.5%) 1038 (23.6%) 301 (6.8%) 1040 (23.6%) 4406

14 1311 (28.4%) 966(20.9%) 992 (21.5%) 516 (11.2%) 829 (18.0%) 4614

Ave. 23.8% 22.7% 20.1% 9.1% 24.3% 100%

L-U, left upper lobe; L-L, left lower lobe; R-U, right upper lobe; R-I, right intermediate lobe; R-L, right lower lobe.
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algorithm is preliminarily proved for it works well for the 14 datasets, including two

clinical datasets with small nodules and two with mild emphysema.

Discussions
Adaptive fissure scanning was introduced by Wei et al. [18]. In the present study, the

idea of adaptive fissure scanning is adopted, but manipulation processes are different.

The most important difference in this work is the application of anatomical knowledge to

extract the potential fissure regions in lungs. Hence, the scanning only occurs twice to

provide the candidate points for the coronal fissure regions determination, which makes

the whole algorithm more efficient. At the same time, it also reduces potential fissure

incompleteness near the boundaries which often occurs in adaptive fissure scanning.

At the axial sections, the shape of horizontal fissure in the right lung varies signifi-

cantly, which makes the fissure detection very difficult. For example, the horizontal

fissure looks like a circle in (a) of Figure 9. Hence the present algorithm conducts the

fissure scanning at the sagittal view. The fissures are more regular than those within

the axial sections, as shown in (b) of Figure 9. Takahashi et al. [13] consider the assess-

ment of fissure using sagittal images to be more accurate than using axial images. Ukil

et al. [24] trace the horizontal fissure on the sagittal view for it gives the best contrast.

Moreover the work done by Lassen et al. also shows that the best segmentation can be

achieved in sagittal orientation [30].

Because fissures are often incomplete and barely visible in CT images, fissure

interpolation is required. Surface fitting based on RBFs using tri-harmonic splines, is

used here. One of the advantages of RBF surface interpolation is its high speed, taking less

than a second in the present implementation. The quality of the lobe segmentation is

strongly influenced by the number of the input points obtained from fissure detection.

For accuracy evaluation of fissure detection algorithm, the measures based on the

shortest Euclidian distance have been adopted by most references [14,17-25,31,32,36].



Figure 9 Determination of the fissure scanning section. (a) axial view; (b) sagittal view.
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The mean (±S.D.), RMS, and the maximum are 2.77 ± 2.12, 3.13 and 7.75 mm for the

right horizontal fissure in present study. Given different datasets, current accuracy

reaches the same level as the state-of-art works. For example, RMS (±S.D.) is 2.04 ±

3.88 [14], 2.23 ± 2.52 [20], 1.96 ± 0.71 [23] and 2.5 mm [31].

Current algorithm shows good robustness for the 14 datasets, including two clin-

ical datasets with small nodules and two with mild emphysema. Hence, the potential

applications of the proposed algorithm might include but not limited to the morpho-

metric analysis for the lung lobe volume, functional assessment of the individual lobe

[36], locating the lung nodules into the lobe [25] embedded into computed aided

detection system of lung cancer, and quantitative assessment of emphysema index

for each lobe [9,11], etc.

Our study has several limitations. Due to the dependence on the anatomical know-

ledge, the present algorithm works well for the regular major fissures, but is not well

suited for the accessory fissures. At the same time it also does not deal well with the

irregular fissure morphologies, especially circular fissure. Furthermore, the accuracy of

fissure detection is rather low for the regions near the lobe edges for two reasons.

Firstly, straight lines are used to approximately determine the fissure region, which

results in missing parts of the fissure lines. Secondly, some unreliable scattered points

may lead to a wrong implicit surface function.

Only 14 datasets are tested for our methods. Two datasets with small nodules and

two with mild emphysema are too few to prove the robustness fully. The current

method cannot cope with the lung with heavy diseases, such as the advanced tumor

and interstitial lung disease, for the fissures appear very irregular. The interactive

operations must be followed.

As far as the authors know, there is no open-source code for the fissure detection

and lobe segmentation. Due to time limitations we were unable to implement the other

methods, but instead have chosen to compare the performance of our method to previ-

ously proposed methods in literature [14,17-25,31,32,36]. In general, more validation and

comparison will be conducted in the future working.

Though the adaptive strategy is employed, a few parameters have to be determined

empirically, and might be not suitable for other datasets. For example, two sagittal

fissures are determined by Equations (1) and (2), which is essential to the success of
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the present algorithm. Any incorrect detection will cause the failure of the lung lobe

segmentation. In SAFS, r is set as 30–80, the optimal value is 50. k can range from 0.4

to 0.7, the optimal value is 0.6, which works well for all 14 subjects in the present

study. SAFS is the vital step in the algorithm, and to verify its results before continuing

other parts is recommended. Fortunately, it is easy to judge for only two sagittal slices

are involved. For radial basis interpolation, the point space is 30 voxels, and the thresh-

old of 80 potential fissure points within a 11 × 11 × 11 cube is adopted to ensure the

resampled point is reliable. The distance between the center point and the off-surface

point d is set to be 10. Because of the interpolation, these parameters are not very

sensitive to the accuracy of algorithm.

The simplified lung segmentation in current study may not work for the other data

with severe lesions. Considering the main goal of this paper is to detect the fissure and

extract each lobe, we did not implement more sophisticated methods, but more

advanced methods [37,38] can be used to replace the existing method.
Conclusions
An automatic fissure detection and lobe segmentation algorithm is developed and eval-

uated on fourteen CT scans. It is found that sagittal adaptive fissure scanning can

localize the potential fissure regions quickly, using knowledge on the density of blood

vessels and bronchi. Once the potential region is enhanced by a Hessian based line en-

hancement filter, Uniform Cost Search (UCS) can extract the fissures successfully in

2D. Furthermore, surface fitting based on RBFs is able to obtain three implicit surface

functions for each dataset. The current algorithm shows good accuracy, speed and ro-

bustness through evaluation by 14 datasets including two with small lung nodules and

two with mild emphysema. For example, averaged over all datasets, the mean (±S.D.),

RMS, and the maximum of the shortest Euclidian distance are 2.05 ± 1.80, 2.46 and

7.34 mm for the right oblique fissure. Lung anatomical knowledge is applied to localize

the potential fissure regions, which makes the algorithm fast. The complete segmenta-

tion procedure takes less than one minute on a modest desktop PC. The algorithm is

robust, enables to deal with the 14 experimental datasets successfully, and may help

locate the lesions into each lobe and analyze them regionally.
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