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Abstract

Background: Many gait variability and stability measures have been proposed in the
literature, with the aim to quantify gait impairment, degree of neuro-motor control
and balance disorders in healthy and pathological subjects. These measures are often
obtained from lower trunk acceleration data, typically acquired during rectilinear gait,
but relevant experimental protocols and data processing techniques lack in
standardization. Since directional changes represent an essential aspect of gait, the
assessment of their influence on such measures is essential for standardization. In
addition, their investigation is needed to evaluate the applicability of these measures
in laboratory trials and in daily life activity analysis. A further methodological aspect
to be standardized concerns the assessment of the sampling frequency, which could
affect stability measures. The aim of the present study was hence to assess if gait
variability and stability measures are affected by directional changes, and to evaluate
the influence of sampling frequency of trunk acceleration data on the results.

Methods: Fifty-one healthy young adults performed a 6-minute walk test along a

30 m straight pathway, turning by 180 deg at each end of the pathway. Nine
variability and stability measures (Standard deviation, Coefficient of variation, Poincaré
plots, maximum Floquet multipliers, short-term Lyapunov exponents, Recurrence
quantification analysis, Multiscale entropy, Harmonic ratio and Index of harmonicity)
were calculated on stride duration and trunk acceleration data (acquired at 100 Hz
and 200 Hz) coming from straight walking windows and from windows including
both straight walking and the directional change.

Results: Harmonic ratio was the only measure that resulted to be affected by
directional changes and sampling frequency, decreasing with the presence of a
directional change task. HR was affected in the AP and V directions for the 200 Hz,
but only in AP direction for the 100 Hz group.

Conclusion: Multiscale entropy, short term Lyapunov exponents and Recurrence
quantification analysis were generally not affected by directional changes nor by
sampling frequency, and could contribute to the definition of a fall risk index in
free-walking conditions.
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Introduction

The quantification of gait variability and stability is performed in the literature by
means of several measures [1-7], often based on lower trunk acceleration data. These
measures aim to quantify gait impairment, degree of neuro-motor control and balance
disorders in different subjects. However, methodological standardization is lacking for
their wider exploitation.

Despite often been ignored in gait analysis, directional changes represent an essential
aspect of gait. Directional changes can occur both in controlled clinical/laboratory trials
(e.g. Timed Up and Go test [8-10], 6-minute walk test [11]) and in daily activities, since
20-50% of steps performed during daily activities are reported to be turns [12,13], ran-
ging from a few degrees to a full 180 deg turn. The influence of directional changes on
variability and stability measures must be evaluated, and validity of such measures in
presence of turns during walking is hence investigated. To this aim, we choose to
compare straight walking trials with trials in which a directional change was present.
Having to choose the sharpness of the directional change for our experimental analysis,
our research hypothesis was that hazardous turns (180 degrees) would have a higher
influence on variability and stability measures compared to minor turns; the eventual
absence of such a major turn influence would suggest that the presence of directional
changes of smaller entity would have little to no effects on variability and stability
measures. This is particularly important in overground walking tasks, when completely
straight walking direction is difficult to assure. According to recent research, few steps
are not sufficient for the reliable quantification of stability indexes and long straight
paths are often not available [14].

It has been proven that some measures can be influenced by the acquisition sampling
frequency [12,15], and that sampling frequency should hence be taken into account
when trying to obtain a methodological standard for the clinical use of these measures.
These studies, however, are solely based on the analysis of joint angles of lower limbs.
In the search for a methodological characterization and a broader applicability, the
influence of sampling frequency on variability and stability measures obtained from
trunk accelerations needs to be investigated as well.

The aim of this study was to preliminarily assess the influence of directional changes
and sampling frequency on gait variability and stability measures calculated on lower
trunk acceleration data, in order to establish if these experimental conditions can have
a disruptive impact on results. A sample of healthy young subjects walking in straight
walking condition and in presence of directional changes was investigated.

Methods
Fifty-one healthy young adults (23 + 3 years, 172 + 11 c¢m, 68 + 14 kg) volunteered for
this study. Participants were chosen among students involved in sports activities pro-
moted by the University of Rome “Foro Italico”. All subjects were physically active and
self-reported no musculoskeletal or neurological disorders that could affect their per-
formance and/or behaviour. The Review Board Committee of the authors’ institution
approved this study, and informed consent was obtained from the participants.
Participants performed a 6-minute walk test [11]. In detail, they were asked to walk
back and forth for 6 minutes along a 30 m straight pathway, turning by 180 deg at
each end of the pathway, and to cover the maximum possible distance during the



Riva et al. BioMedical Engineering OnLine 2014, 13:56 Page 3 of 11
http://www.biomedical-engineering-online.com/content/13/1/56

6 minutes and, thus, walking as fast as possible. Average gait speed was 1.37 +
0.15 m/s, estimated using the method proposed by Zijlstra and Hof [16]. The fast
speed and the 180 deg turn were considered in order to test the limit condition in
terms of gait instability, representing a very sharp and potentially hazardous direc-
tional change.

An inertial measurement unit (FreeSense, Sensorize s.r.l) was fixed to the lower trunk
of the subjects at the level of the fifth lumbar vertebra through an elastic neoprene belt;
the sensor local axes were aligned to the anterior-posterior, medio-lateral and longitu-
dinal trunk axes, respectively. To ensure standardization, sensor placements were per-
formed by the same operator based on the identification of anatomical landmarks on
the subjects. Local axes of the sensor were aligned to the trunk in order to obtain a ver-
tical axis pointing up and parallel to the longitudinal axis of the trunk, an anterior-
posterior axis pointing forward and perpendicular to the trunk and a medio-lateral axis
pointing left.

Data from the gyroscopes was used to identify turns and straight walking intervals,
but only acceleration data were considered for the analysis.

Subjects were randomly divided into two matched groups of n =25 and n =26 sub-
jects. One trial per subject was acquired for the first group with a sampling frequency
equal to 100 Hz and one trial per subject was acquired at 200 Hz for the second group.
A third set of data was then obtained from the second group, down-sampling acceler-
ation signals from 200 Hz to 100 Hz, and added to the 100 Hz group. Experimental
data were analyzed without filtering, in order to avoid the complications associated
with the application of linear filtering to nonlinear signals [17] and to allow comparison
with other studies [18]. Foot strikes were detected from the vertical acceleration using
the algorithm proposed by McCamley et al. [19]. Walking data were divided into two
separate portions (about 20 strides each); portions in which the subject walked in a
straight line were labeled SW, while portions in which the subject underwent a direc-
tional change during the walk were labeled DCW. The number of strides was chosen
as the maximum number of strides reachable by the subjects in completely straight
walking conditions. Stride durations were obtained as the time intervals between two
consecutive heel-strikes of the same foot.

Eight variability and stability measures were calculated. The choice of the measures
to include in the analysis was made based on their popularity in research and clinical
settings and with the aim to cover a wide range of acceleration signal features (stability,
recurrence, complexity, smoothness and harmonicity). Three temporal variability mea-
sures were applied to stride duration: Standard deviation (SD) [1], Coefficient of vari-
ation (CV) [1] and Poincaré plots (PSD1, PSD2) [2]. Stride durations were obtained as
the time intervals between two consecutive heel-strikes of the same foot. Five stability
measures were calculated on trunk acceleration components in the vertical (V), medio-
lateral (ML) and anterior-posterior (AP) directions: short-term Lyapunov exponents
(sLE) [3], Recurrence quantification analysis (RQA) [4], Multiscale entropy (MSE) [5],
Harmonic ratio (HR) [6] and Index of harmonicity (IH) [7].

Additional information about variability and stability measures is illustrated in the
Appendix, together with details about implementation parameters.

Inconsistency of variance (IV) [1], Nonstationary index (NI) [1], long-term Lyapunov
exponents (ILE) [3] and RQA (max, diverg) [4] were also considered, but the 20 stride
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sample was deemed not sufficient to draw accurate conclusions, because these in-
dexes were assessed to have an intrinsic variability >50% when calculated on 20
strides [20]. Since gait data have been proved to be both nonlinear as well as non-
stationary [21], all of these stability measures account for non-stationarity. Details on
the measures are illustrated in Table 1.

In order to assess the influence of directional changes on the measures, statistical
differences in results between SW and DCW conditions were investigated. Z-scores
between the two conditions were obtained for each subject and each measure calcu-
lated separately on acceleration components (AP, ML and V) for the two sampling
groups (100 Hz and 200 Hz). As a measure of variance, previously found reference
values of interquartile range/median ratio (imr) calculated on a long overground walk
performed by young subjects were used [20]. These values are reported in Table 1.
Bonferroni-corrected p-values for each measure at each sampling condition were then
calculated based on the z-scores. The capability of the measures to discriminate
between SW and DCW conditions (p < 0.05) in the majority of the subjects (>20 for
200 Hz group, > 40 for 100 Hz group) was assessed. The increasing or decreasing effect
of directional changes was also assessed, based on the sign of the mean value of the
difference between measures obtained in SW and DCW conditions.

An additional analysis was conducted performing a two tails paired t-test in order
to compare mean values of measures in the SW and DCW conditions. Effect size
(Cohen’s d) and Power of the study have also been calculated.

Results and discussion

Only HR was affected by directional changes, both at 200 Hz and at 100 Hz. HR
decreased when a directional change was present in the task. HR was affected in
the AP and V directions for the 200 Hz, but only in AP direction for the 100 Hz
group.

Other measures (SD, CV, PSD1, PSD2, MSE, RQA, maxFM and sLE) were found to
be affected neither by directional changes nor by sampling frequency during walking.
Given the number of measures analyzed, we are only reporting results in the text, since
a table including p-values for all the measures would carry little information compared
to its size.

Student’s t-test showed no significant differences (p-value >0.05) between the two
groups. Effect sizes were generally medium for both 200 Hz and 100 Hz conditions,
whereas Power was generally high (around 0.8) for 200 Hz condition and a little lower
for 100 Hz condition.

Mean values of variability/stability measures among subjects in the different condi-
tions are shown, together with standard deviations and t-test results, in Tables 2 and 3,
respectively.

Turning is a fundamental aspect of everyday walking, and it has been identified as
more challenging than straight-line walking for old adults and gait-impaired subjects
[8,9]. Moreover, some reports have shown that turns can be predictive of dysfunction
in older adults with and without neurological disorders [22]. When wanting to analyze
long overground walking data for gait variability and stability analysis purposes, turns
may have to be taken into account, since long straight paths are often not available. In
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Table 1 Details on intrinsic variability of measures for 20 strides and reference imr

calculated on long overground walks performed by a sample of healthy young subjects

and use for analysis [20]

Measures Variability for 20 strides imr
Temporal variability measures  Standard deviation (SD) 20-30% 0,10
Coefficient of variation (CV) 30-40% 0,10
Inconsistency of variance (IV) > 50% 0,20
Nonstationary index (NI) > 50% 0,24
Poincaré plots PSD1 20-30% 0,07
pSD2 40-50% 0,14

Stability measures Short-term Lyapunov exponents (sLE) tot 20-30% 0,26
AP 10-20% 0,20

ML 10-20% 0,18

\Y 10-20% 0,20

Long-term Lyapunov exponents (ILE) tot > 50% 0,29
AP > 50% 033

ML > 50% 030

% > 50% 022

Recurrence quantification analysis (RQA)  rr AP < 10% 0,01
rr ML < 10% 0,01

rrV < 10% 0,02

det AP 10-20% 0,02

det ML 10-20% 0,03

detV 10-20% 0,01

avg AP 10-20% 0,03

avg ML 10-20% 0,02

avg Vv 10-20% 0,03

max AP > 50% 017

max ML > 50% 0,26

max V > 50% 042

diverg AP > 50% 0,27

diverg ML > 50% 0,23

diverg V > 50% 0,54

Multiscale entropy (MSE) AP T=1 10-20% 0,02
AP T=2 10-20% 0,03

AP T=3 10-20% 0,03

AP t=4 10-20% 0,03

AP T=5 10-20% 0,03

AP 1=6 10-20% 0,03

MLT=1 10-20% 0,02

MLT=2 10-20% 0,03

MLT=3 10-20% 0,03

MLT=4 10-20% 0,03

MLT=5 10-20% 0,03

MLT=6 10-20% 0,03

V=1 10-20% 0,03

Vi=2 10-20% 0,03

Page 5 of 11
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Table 1 Details on intrinsic variability of measures for 20 strides and reference imr
calculated on long overground walks performed by a sample of healthy young subjects
and use for analysis [20] (Continued)

V1=3 10-20% 0,03
V1i=4 10-20% 0,04
V1=5 10-20% 0,03
V1=6 10-20% 0,04
Harmonic ratio (HR) AP 20-30% 0,07
ML 20-30% 0,06
\Y 20-30% 0,07
Index of harmonicity (IH) AP 40-50% 0,20
ML 30-40% 017
% 30-40% 021

the methodological standardization of gait variability and stability measures based on
lower trunk acceleration, we addressed the not previously investigated influence of dir-
ectional changes on such measures.

The measurement of the gait smoothness and rhythmicity, i.e. the HR [6], was
found to be affected by directional change when calculated on the AP and V acceler-
ation components, but not on the ML component. HR provides an indication of the
smoothness and rhythm of acceleration patterns, based on the premise that the unit
of measurement from a continuous walking trial is a stride [6]; it is hence perhaps
not surprising that a sharp turn may introduce out of phase harmonics, heavily influ-
encing the measure. The effect was observed in AP and V directions, but not in ML
direction; it is likely that the alternation of right/left steps is maintained even during
a turn, allowing the trunk to keep its medio-lateral oscillating pattern almost
unvaried.

The sampling frequency affected the measures, but not for all the acceleration direc-
tions. At 100 Hz, only HR in the AP direction was found to be affected by directional
change, while at 200 Hz AP and V directions were affected. This is likely caused by the
loss of information induced by the lower sampling frequency.

IH, maxFM, sLE, MSE and RQA were affected neither by directional changes
nor by sampling frequency; harmonicity, orbital/local stability, entropy and recur-
rence of trunk acceleration signals were comparable between straight line gait
and gait with directional changes. Measures aimed at quantifying such character-
istics are hence exploitable also in settings in which completely straight line gait
is not achievable.

Also the variability measures based on stride duration (SD, CV, PSD1, PSD2) were
unaffected by directional changes and sampling frequency. It is likely that the variations
in stride durations were small during the 180 deg turn, hence not significantly influen-
cing measures based on its variability.

The direct comparison of the two distributions (SW and DCW) via t-test didn’t high-
light any significant difference between the mean value of measures obtained in the
two conditions. The average detectable effect size was 0.24 for the 200 Hz condition
and 0.27 for the 100 Hz condition.
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Table 2 Mean values and standard deviations of variability/stability measures among

subjects (n = 26) calculated between SW and DCW conditions at 200 Hz

SW (200 Hz) DCW (200 Hz)

Mean std Mean std p-value Cohen’s d Power
MSEV 7=1 042 0,06 043 0,05 0,74 0,18 0,76
MSEV =2 0,59 0,09 0,61 0,08 0,80 0,23 067
MSEV =3 0,73 0,13 0,76 0,13 0,79 0,23 0,68
MSEVT=4 085 0,16 0,88 0,16 0,75 0,19 0,75
MSEV =5 0,95 0,19 0,98 017 0,72 017 0,79
MSEV =6 1,03 02 1,07 0,18 0,77 0,21 0,72
MSE ML 7=1 049 0,09 049 0,09 0,50 0,00 095
MSE ML 7=2 0,69 0,11 0,69 0,11 0,50 0,00 0,95
MSE ML 7=3 0,89 0,15 09 0,15 0,59 0,07 0,90
MSE ML T=4 1,08 0,18 11 0,19 0,65 0,11 0,86
MSEML T=5 1,26 021 1,27 022 057 0,05 092
MSEML =6 14 0,21 1,42 0,22 0,63 0,09 0,88
MSE AP 7=1 025 0,06 0,26 0,05 0,74 0,18 0,76
MSE AP 7=2 041 0,08 042 0,08 067 013 084
MSE AP t=3 053 0,11 0,55 01 0,75 0,19 0,75
MSE AP 7=4 063 0,13 0,66 0,12 0,80 0,24 0,66
MSE AP 7=5 0,71 0,15 0,75 013 084 0,28 058
MSE AP =6 0,78 0,15 0,81 0,14 0,77 0,21 0,72
RQAV () 15,25 1,86 14,62 1,88 0,88 0,34 1,00
RQA V (det) 88,1 3,07 88,84 2,86 0,81 0,25 0,65
ROA YV (avg) 19,81 391 18,37 3,26 0,92 0,40 1,00
RQA ML (1) 9,86 142 946 125 085 030 1,00
RQA ML (det) 75,71 8,22 7594 7,71 0,54 0,03 0,93
ROA ML (avg) 943 1,76 9,18 1,59 0,70 0,15 0,99
ROA AP (rr) 182 14 179 1,51 0,77 0,21 1,00
RQA AP (det) 89,16 2,15 89,87 21 0,88 033 048
RQA AP (avg) 14,04 2,13 14,05 2,19 0,51 0,00 0,95
HRV 2,12 1,37 2,02 1,16 061 0,08 0,98
HR ML 082 04 092 041 0381 025 065
HR AP 2,33 1,57 1,87 1,02 0,89 0,35 1,00
HV 0,06 0,05 0,04 0,02 0,96 053 1,00
IH ML 022 0,1 0,19 0,11 084 029 1,00
IH AP 0,07 0,06 0,06 0,04 0,76 0,20 1,00
PSD1 0,03 0,02 0,05 0,04 0,98 063 0,06
PSD2 0,02 0,01 0,04 0,06 095 0,46 023
SD 0,03 0,01 0,05 0,05 097 0,55 0,12
v 3,64 1,74 5381 7,56 092 040 035
SLE tot 0,7 0,16 0,74 0,16 0,81 0,25 0,64
SLE AP 1,22 0,23 1,34 0,19 097 0,57 0,10
sLE ML 1,54 033 1,62 03 082 025 0,64
SLEV 1,52 0,24 1,62 032 0,89 0,35 044

Student test’s p-values, Cohen’s d and Power of the study are also shown.

Page 7 of 11
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Table 3 Mean values and standard deviations of variability/stability measures among

subjects (n =51) calculated between SW and DCW conditions at 100 Hz

SW (100 Hz) DCW (100 Hz)

Mean std Mean Std p-value Cohen’s d Power
MSEV T=1 0,56 0,09 059 0,08 096 035 019
MSEV 1=2 083 0,15 087 0,14 091 0,28 037
MSEV =3 1,01 0,19 1,06 0,18 091 0,27 0,39
MSEV 1=4 1,1 0.2 1,16 02 093 030 031
MSEV =5 112 0,2 12 0,21 097 0,39 0,13
MSEV =6 117 0,21 1,21 0,21 083 0,19 061
MSEML 7=1 067 0,09 0,68 0,09 0,71 0,11 0,80
MSE ML t=2 1,08 0,16 1,09 0,16 062 0,06 0,88
MSE ML 7=3 1,38 02 1,41 0,19 0,78 0,15 0,71
MSE ML 7=4 1,59 0,21 1,61 02 0,69 0,10 083
MSEML T=5 1,65 0,19 1,72 0,19 097 037 0,16
MSEML =6 1,69 0,21 1,75 0,18 0,94 0,31 0,29
MSE AP 7=1 041 0,09 042 0,08 0,72 0,12 0,79
MSE AP 7=2 064 013 0,66 0,12 0,79 0,16 0,69
MSE AP t=3 08 0,16 0,84 0,15 0,90 0,26 042
MSE AP 7=4 091 0,16 0,94 0,16 0383 0,19 062
MSE AP 7=5 0,96 013 T 0,16 091 0,27 038
MSE AP =6 0,98 0,16 1,01 0,15 083 0,19 0,60
RQAV () 1544 2,39 14,67 222 095 033 1,00
RQA V (det) 76,08 6,98 76,99 75 0,74 0,13 0,77
ROA YV (avg) 14,21 3,56 1317 3,07 0,94 0,31 1,00
RQA ML (rr) 10,2 2,14 9,69 1,78 0,90 0,26 1,00
RQA ML (det) 46,71 12,51 44,61 11,85 0,81 017 1,00
ROA ML (avg) 7,6 1,15 7,21 0,77 0,98 0,40 1,00
ROA AP (rr) 18,14 1,54 17,83 1,45 0,85 0,21 1,00
RQA AP (det) 74,05 831 75,68 7,73 0,84 0,20 0,58
RQA AP (avg) 89 1,34 8383 1,26 061 0,05 0,98
HRV 24 1,61 2,38 1,2 053 0,01 0,96
HR ML 0,79 04 083 042 0,69 0,10 083
HR AP 2,37 1,49 2,12 1,11 083 0,19 1,00
HV 0,05 0,04 0,04 0,02 094 032 1,00
IH ML 021 0,11 0,19 0,1 0383 0,19 1,00
IH AP 0,08 0,06 0,06 0,03 0,98 042 1,00
PSD1 0,02 0,02 0,04 0,03 1,00 0,78 0,00
PSD2 0,02 0,01 0,04 0,04 1,00 0,69 0,00
SD 0,03 0,02 0,04 0,04 0,94 032 0,27
v 29 2,03 512 573 099 052 0,02
SLE tot 06 017 0,66 017 0,96 0,35 0,19
SLE AP 073 0,18 08 017 0,98 0,40 0,11
sLE ML 0,78 021 083 0,16 091 027 039
SLEV 0,79 0,2 0,86 0,18 097 037 0,16

Student test’s p-values, Cohen’s d and Power of the study are also shown.
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Even though the subjects spent only a small amount of time turning in the DCW con-
dition, acceleration signals underwent modifications during the directional change. The
influence of such modification on variability/stability measures was found to be negli-
gible for almost all the measures considered. It cannot be excluded that changing the ra-
tio between time spent walking and time spent turning (i.e. analyzing less strides or gait
on a winding path) would have led to different results, and maybe to a higher number of
measures sensitive to turns. However, we believe that such results would be less mean-
ingful for clinical/research application of variability and stability measures. Experimental
conditions often imply quite long straight-line walking data with a few directional
changes in it, in order to cope with the limited available space of a laboratory environ-
ment; in order to obtain realistic and exploitable results, a worst-case scenario based on
this usual experimental setting had to be recreated.

Conclusion

The overall absence of a major influence of directional changes on variability and stabil-
ity measures suggests that such measures could be also calculated in presence of turns
without losing validity; since turns do not affect most variability/stability measure, any
change observed in the measures is likely to be caused by an actual change in the loco-
motor stability of the subject. This is particularly relevant in the analysis of overground
walking, in which perfectly straight walking conditions are harder to obtain, allowing re-
searchers to exclude the presence of directional changes in the task as a possible source
of error. Sampling frequency seemed also to have no influence on variability and stability
measures, except for HR.

In conclusion, HR was the only measure affected by directional changes and sampling
frequency, and hence it could be unreliable in overground free walking conditions. In
particular, MSE, sLE and RQA were not affected by the presence of turns during the
walk; having also recently proved to be related to fall history in treadmill walking tests
[23,24], such measures could contribute to the definition of a fall risk index in free-
walking conditions. Further research is needed to assess the capability of these measures
to identify fall-prone subjects in an over-ground walking task.

Appendix

Variability measures

Standard Deviation (SD) has simply been calculated as the standard deviation of stride
duration.

Coefficient of Variation (CV) has been calculated as the variability of stride duration
normalized to the mean stride duration value (CV = 100 x SD / mean) [25].

Inconsistency of Variance (IV) and Nonstationary Index (NI) quantify the temporal
“structure” of the time series (independent of the overall variance). Each time series was
first normalized with respect to its mean and SD, and then divided into blocks of five
strides each. In each segment, the local average and the local SD were computed.

Stride duration data plots between successive gait cycles, known as Poincaré plots,
show the variability of stride duration data. Statistically, the plots display the correlation
between consecutive stride durations data in a graphical manner. PSD1 and PSD2 repre-
sent, respectively, width and length of the long and short axis of the elliptical plots, and
hence the short-term and long-term variability of stride duration [2].
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Stability measures

Short-term Lyapunov Exponents (sLE) quantify local dynamic stability of a system and
are used for systems that do not necessarily exhibit a discernable periodic structure [3].
Recurrence Quantification Analysis (RQA) provides a characterization of a variety of
features of a given time series, including a quantification of deterministic structure and
non-stationarity [4], based on the construction of recurrence plots [26].

These measures imply the reconstruction of the state space of the system; in this
study, four different state spaces were constructed: one 3-dimensional state space com-
posed by the V, ML and AP accelerations and three (one per direction) 5-dimensional
state spaces composed by delay-embedding of each acceleration component (delay = 10
samples) [15,27,28]. Several measures were then extracted from RQA, namely recur-
rence rate (rr), determinism (det) and averaged diagonal line length (avg), using a radius
of 40%.

Multiscale Entropy (MSE) quantifies the complexity or irregularity of a time series
[29]. MSE has been obtained calculating sample entropy (consecutive data points m = 2,
distance r=0.2 [30]) on six consecutively more coarse-grained (scale factor r=1, ..., 6)
time series.

Harmonic Ratio (HR) provides information on how smoothly subjects control their
trunk during walking and gives an indication of whole body balance and coordination
[6,31].

Similarly to HR, Index of Harmonicity (IH) quantifies the contribution of the stride
frequency to the signal power relative to higher harmonics Y.
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