
Girão-Silva et al. BioMedical Engineering OnLine 2014, 13:54
http://www.biomedical-engineering-online.com/content/13/1/54
RESEARCH Open Access
Short-term mechanical stretch fails to
differentiate human adipose-derived stem cells
into cardiovascular cell phenotypes
Thais Girão-Silva, Vinicius Bassaneze, Luciene Cristina Gastalho Campos, Valerio Garrone Barauna,
Luis Alberto Oliveira Dallan, Jose Eduardo Krieger* and Ayumi Aurea Miyakawa*
* Correspondence:
krieger@incor.usp.br; ayumi.
miyakawa@incor.usp.br
Laboratory of Genetics and
Molecular Cardiology, Heart Institute
(InCor) - University of São Paulo
School of Medicine, Avenue Dr.
Eneas de Carvalho Aguiar, 44, São
Paulo, SP 05403-000, Brazil
Abstract

Background: We and others have previously demonstrated that adipose-derived
stem cells (ASCs) transplantation improve cardiac dysfunction post-myocardium
infarction (MI) under hemodynamic stress in rats. The beneficial effects appear to
be associated with pleiotropic factors due to a complex interplay between the
transplanted ASCs and the microenvironment in the absence of cell transdifferentiation.
In the present work, we tested the hypothesis that mechanical stretch per se could
change human ASCs (hASCs) into cardiovascular cell phenotypes that might influence
post-MI outcomes.

Methods: Human ASCs were obtained from patients undergoing liposuction
procedures. These cells were stretched 12%, 1Hz up to 96 hours by using Flexercell
4000 system. Protein and gene expression were evaluated to identify cardiovascular
cell markers. Culture medium was analyzed to determine cell releasing factors, and
contraction potential was also evaluated.

Results: Mechanical stretch, which is associated with extracellular signal-regulated
kinase (ERK) phosphorylation, failed to induce the expression of cardiovascular cell
markers in human ASCs, and mesenchymal cell surface markers (CD29; CD90) remained
unchanged. hASCs and smooth muscle cells (SMCs) displayed comparable contraction
ability. In addition, these cells demonstrated a profound ability to secrete an array of
cytokines. These two properties of human ASCs were not influenced by mechanical
stretch.

Conclusions: Altogether, our findings demonstrate that hASCs secrete an array of
cytokines and display contraction ability even in the absence of induction of cardiovascular
cell markers or the loss of mesenchymal surface markers when exposed to mechanical
stretch. These properties may contribute to beneficial post-MI cardiovascular outcomes
and deserve to be further explored under the controlled influence of other microenvir-
onment components associated with myocardial infarction, such as tissue hypoxia.
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Background
Myocardial infarction remains one of the major causes of morbidity and mortality

worldwide. In cardiac ischemic injury, cardiomyocyte apoptosis, fibrous tissue depos-

ition, and ventricular remodeling occur, which cause a decline in cardiac function
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[1-3]. In this context, cell therapy has been widely studied as a potential approach to

improving cardiac repair and minimizing cardiac functional deterioration post-MI, but

evidence for significant cell transdifferentiation is lacking, and it appears that other

pleiotropic effects are occurring [4-7]. Adipose-derived stem cells (ASCs) are a promis-

ing and easily accessible choice for autologous cells to be used in cardiac repair [8-10].

ASCs have the potential to differentiate into multiple cell lineages including cardiovas-

cular cells in vitro, even though significant transdifferentiation in vivo has not been

demonstrated [11-15].

Data from our laboratory demonstrated that intramyocardial transplantation of ASCs

in rats minimizes cardiac dysfunction under hemodynamic stress post-MI [16,17].

These effects are not observed when fibroblasts or myoblasts are injected alone but

only when genetically modified to express Vascular Endothelial Growth Factor (VEGF)

[18,19]. Indeed, we have recently demonstrated that ASCs produce VEGF [20], and we

speculate that these beneficial influences on cardiac outcome may be attributed to the

paracrine effects of released substances from ASCs under the influence of the micro-

environment post-MI.

Stem cells implanted in the ischemic heart belong to a peculiar niche with specific

chemical and physical cues caused by the hypoxic condition and the pulsatile contrac-

tion of this organ. In the present work, we tested whether mechanical force (stretch)

per se can influence human adipose-derived stem cell properties that may lead to better

post-MI cardiovascular outcomes.
Methods
Cell culture

Isolation, ex vivo expansion of hASCs

Human subcutaneous adipose tissues were obtained from patients undergoing

liposuction procedures. All individuals gave informed consent to participate in

the study, which was reviewed and approved by the University of São Paulo

Ethics Committee (CAPPesq#:16688/06). Cells were isolated from adipose tissue

as previously described [8]. In brief, harvested tissue was dissociated by digestion

with collagenase IA and centrifuged. The pelleted cells were then recovered and

plated onto 10-cm culture plates (NUNC, Rochester, NY). Plating and expansion

medium consisted of Dulbecco’s modified Eagle medium (DMEM) low glucose

with 10% Fetal Bovine Serum (FBS) and penicillin/streptomycin antibiotics (Invi-

trogen Corporation, Carlsbad, CA). After 24–72 hours, cultures were washed in

Phosphate-Buffered Solution (PBS) to remove remaining erythrocytes and other

unattached cells. Cells were maintained at 37°C with 5% CO2 in tissue culture

dishes or flasks (Becton Dickinson, Franklin Lakes, New Jersey) until reaching

80% of confluence (usually within 5–7 days). Once 80% confluent, cells were

detached with 0.5% trypsin-EDTA (Cultilab, São Paulo, SP, Brazil) and either re-

plated at 1×10
4cells/cm2 or used for experiments. This culture procedure is well

characterized in our laboratory [20-22], and experiments were performed with

cells up to 15th passage. Up to this passage, the cells display constant population

doubling time and are non-senescent [22]. In addition, we have demonstrated

adipogenic and osteogenic differentiation of these cells [20].
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Cardiovascular cells

Endothelial cells (ECs) and SMCs were used as positive controls for some experiments.

These cells were extracted from human Saphenous Vein segments (hSV) obtained from

patients undergoing aortocoronary bypass surgery at the Heart Institute (InCor),

University of São Paulo Medical School (Ethics Committee SDC 2454/04/074 – CAP-

Pesq 638/04). ECs were isolated by incubation of hSV luminal surfaces with 1 mg/mL

collagenase type II for 1 h at 37°C. The vessel was flushed with PBS and cell pellet

was cultured in Human Endothelial – SFM with supplements (10% FBS, 20 ng/mL

Fibroblast Growth Factor (FGF), 10 ng/mL Endothelial Growth Factor (EGF), 10 U/mL

penicillin, 10 mg/mL streptomycin). Cells were characterized by positive immunofluor-

escence staining for von Willebrand Factor (vWF) (Sigma-Aldrich, St. Louis, MO),

Vascular Endothelial Cadherin (VE-cadherin) (Cell Signaling Technology, Danvers,

MA), and Cluster of Differentiation 31 (CD31) (Abcam, Cambridge, MA). SMCs were

obtained according to an explant protocol. Briefly, the endothelial layer was removed

by mechanical friction and small fragments of vessels were placed on six-well culture

plates containing 3% gelatin. The fragments were cultured with DMEM high-glucose

medium with 20% FBS and antibiotics (100 U/mL penicillin and 100 mg/mL strepto-

mycin). SMCs derived from vessel fragments were isolated, expanded and characterized

by hill-and-valley growth pattern and by immunofluorescence staining for Alpha Actin

2 (ACTA2) (Sigma-Aldrich).
Stretch protocol

Primary cultures of hASCs were stretched by using the Flexercell 4000 cell stretching

system (Flexcell International [23]). 1×10
5 cells were plated in Bioflex plates covered

with collagen type I and maintained in DMEM low glucose with 1% FBS (Hyclone)

to stretch protocol (12% multiaxial stretch, 1 Hz, for 72 h and 96 h). Control non-

stretched hASCs were also cultured on Bioflex plates with collagen I. During the

experiment, the system was maintained at 37°C in humidified air with 5% CO2. At the

end of the assay, the conditioned medium was frozen and the cells were washed with

PBS and lysed for gene or protein expression analysis.
Flow cytometry analysis

The immunophenotype of cultured hASCs was analyzed by flow cytometry using the

flow cytometer FACSCalibur (Becton Dickinson, San Jose, CA). Cells were harvested

and washed twice with PBS. Aliquots of 1×10
6 cells were incubated for 15 minutes at

room temperature with Fluorescein Isothiocyanate (FITC) or R-Phycoerythrin (PE)-conju-

gated monoclonal antibodies and washed twice in PBS containing 2% FBS and 0.1% so-

dium azide. Fluorochrome conjugated antibodies against CD29 and CD90 were used (BD

Biosciences, San Jose, CA). Ten thousand events were acquired on a FACSCalibur flow

cytometer, and Cell Quest software (BD Biosciences) was used for further analysis.
Gene expression by RT–PCR and quantitative RT–PCR

Total RNA was isolated with Trizol Reagent (Invitrogen) and cDNA synthesis was

performed with SuperScript III Reverse Transcriptase (Invitrogen) according to the

manufacturer’s instructions. The amount of cDNA used for quantitative Reverse
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Transcription Polymerase Chain Reaction (qRT-PCR) (SYBR® Green PCR Master

Mix-PE, Applied Biosystems, Life Technologies, Carlsbad, CA) is described on Table 1.

The reaction was done in an ABI Prism 7700 Sequence Detection System (Applied Bio-

systems). All samples were assayed in triplicate. The control genes Glyceraldehyde-

3-Phosphate Dehydrogenase (GAPDH) and Cyclophilin, which stay constant under

experimental condition, were used to normalize the results. The Comparative Thresh-

old (CT) cycle method was used for data analyses. CT indicates the fractional cycle

number at which the amount of amplified target reaches a fixed threshold, and ΔCT is

the difference in threshold cycle for the target gene (ACTA2, Transgelin (TAGLN),

Myocyte Enhancer Factor 2C (MEF2C) and reference gene (GAPDH and Cyclophilin).

The levels of the gene expression are expressed as 2-ΔΔCT; where ΔΔCT is the ΔCT

value subtracted from ΔCT of static hASCs.

Reverse Transcription Polymerase Chain Reaction (RT–PCR) was used to determine

the gene expression in samples where real time RT-PCR did not reach acceptable effi-

ciency of amplification: CD31, Kinase insert Domain Receptor (KDR), GATA binding

protein 4 (GATA4), Calponin, Smooth Muscle Myosin Heavy Chain (SM-MHC), Myo-

cardin (Myocd), Megakaryoblastic Leukemia (translocation) 1 (MKL1) and Myocardin-

like Protein 2 (MKL2). The reaction was carried out using Taq polymerase under

the following conditions: initial denaturation for 5 minutes at 95°C followed by cycles

(24 – 35, Table 2) of denaturation for 15 seconds at 95°C, annealing for 1 minute at

60°C, extension for 1 minute at 72°C, and final extension for 10 minute at 72°C. The

RT-PCR products were analyzed by electrophoresis with agarose gel. The bands were

quantified by using ImageJ (http://rsb.info.nih.gov/ij/). GAPDH and Cyclophilin expres-

sion levels were used to normalize the results.

The primers were designed using the online software program Primer 3 (Primer 3,

Ver.3, Whitehead Institute/MIT Center for Genome Research http://frodo.wi.mit.edu/).

The amount of cDNA and cycles used in the reactions were defined as the linearity of

the PCR amplification. All primers were analyzed by Primer-Blast (http://www.ncbi.

nlm.nih.gov/tools/primer-blast/) to certify their specificity. The oligonucleotide primers

used in this work for qRT-PCR and RT-PCR are in Tables 1 and 2, respectively.

ECs, SMCs and samples of necrotic human heart (approved by the University of São

Paulo Ethics Committee – CAPPesq#: 0511/08) were used as positive controls.
Western blot analyses

Cells were washed with PBS and lysed in lysis buffer (EDTA 1 mM, EGTA 1 mM,

MgCl2 2 mM, KCl 5 mM, HEPES 25 mM, PMSF 1 mM, DTT 2 mM, Triton X-100

0.1% and protease inhibitor cocktail (Sigma-Aldrich). After 10 minutes on ice, samples
Table 1 Oligonucleotides primers used for qRT-PCR

Target Forward (5′-3′) Reverse (5′-3′) PCR product (bp) cDNA (ng)

ACTA2 TTCAATGTCCCAGCCATGTA CATTGTGGGTGACACCATCT 109 15

Cyclophilin ATGGTCAACCCCACCGTGT TCTGCTGTCTTTGGGACCTTGTC 101 15

GAPDH TGGTCTCCTCTGACTTCAACA AGCCAAATTCGTTGTCATACC 118 25

MEF2C ATCTGCCCTCAGTCAGTTGG GGGTGGTGGTACGGTCTCTA 134 15

TAGLN AACAGCCTGTACCCTGATGG GCCCATCATTATTGGTCACT 212 25

http://rsb.info.nih.gov/ij/
http://frodo.wi.mit.edu/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/


Table 2 Oligonucleotides primers used for RT-PCR, product size and cycles used

Target Forward Reverse PCR product (bp) Cycles

Calponin CAGATGGGCACCAACAAAG CATCTGCAGGCTGACATTGA 123 29

CD31 CCACTGCAGAGTACCAGCT CACCTTGGATGGCCTCTTTC 80 35

Cyclophilin ATGGTCAACCCCACCGTGT TCTGCTGTCTTTGGGACCTTGTC 101 24

GAPDH TGGTCTCCTCTGACTTCAACA AGCCAAATTCGTTGTCATACC 118 24

GATA4 CTGTCATCTCACTACGGGCA TAGCCTTGTGGGGAGAGCTT 122 34

KDR TCAGAAGAGCTGAAAACTT GAGCCTTCAGATGCCACAGA 80 34

MKL1 ACCGTGACCAATAAGAATGC CATCTGCTGGCTTGAGGAAC 240 29

MKL2 ATTTCCAACGCTCACAGTCA TTCACTGGCATTGTGGTGAT 146 29

Myocd TTCCTGTGGATTCTGCTGTG GGCTGTGAGGCTGAGTCATT 262 34

SM-MHC CCATCCAGTTTCCTCTCCAC GTCACTGAGTTGGCCCCTTCT 86 34
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were centrifuged at 10,000 g for 10 minutes to remove cellular debris. Five to 40 μg of cell

lysates were run on SDS-polyacrylamide gels and transferred. After electrophoresis, pro-

teins were electro-transferred to PVDF membranes (Millipore, Billerica, MA) and transfer

efficiency was monitored using 0.5% Ponceau S staining. The membrane was incubated in

a blocking buffer (5% non-fat dry milk, 10 mM Tris–HCl, pH 7.6, 150 mM NaCl, and

0.1%Tween 20) for 2 h at room temperature and then probed with primary antibody. Each

membrane was incubated overnight against a specific antibody: ACTA2 (Sigma- Aldrich),

vWF (Sigma-Aldrich), Troponin I (HyTest,Turku, Finland), α-Sarcomeric Actin (Zymed,

Life Technologies, Carlsbad, CA) and KDR (anti FLK1, # sc-504, Santa Cruz Biotechnol-

ogy, Dallas, TX). After incubation with peroxidase conjugated secondary antibodies, de-

tection was performed with enhanced chemiluminescence reagents (GE Healthcare).

Protein levels of GAPDH (R&D) were used to normalize the results.
Collagen gel lattice contraction assay

For measurement of contractility, cells were trypsinized from a monolayer culture and

resuspended in DMEM low glucose at a density of 1×10
6 cells/mL. The prepared cell

suspension was added to collagen gel solution (BD Biosciences) to achieve a final con-

centration of 2.5 mg of collagen/mL and 4×10
5 cells/mL as described elsewhere [24].

The mixture was poured into 12-well culture plates and incubated under standard cul-

ture conditions to polymerize the collagen cell lattices. After 1 hour, the lattices were

mechanically released from the culture dishes by gently pipetting medium at the

lattice-dish interface to initiate collagen gel contraction. The extent of gel contraction

of each cell population was analyzed by measuring the dimensions of the lattice before

release and after different time points up to 48 hours of release. The images were ac-

quired by using a digital charge-coupled device camera, and the area of gel lattices was

determined by using ImageJ (http://rsb.info.nih.gov/ij/). Relative lattice area was ob-

tained by dividing the area at each time point by the initial area of the lattice. SMCs

and ECs from hSV were used as positive and negative control, respectively.
Nitric Oxide (NO) production

The NO production was evaluated by the amount of nitrite accumulation in the media

of stretched and non-stretched cells using the colorimetric Griess assay as previously

http://rsb.info.nih.gov/ij/
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described [25]. Briefly, 100 μL of culture medium or nitrite standards (serial dilutions

of NaNO2 in non-conditioned media; Sigma-Aldrich, St. Louis, MO) were mixed with

100 uL of Griess reagent, containing 50 μL of 1% sulphanilamide and 50 μL of 0.1%

naphtylethelene-diamine-dihydrochloride (Sigma) in 2.5 M H3PO4. Absorbance was

measured at 540 nm.
Determination of cell-releasing factors

Cell culture medium from hASCs cultured in static or stretch condition for 96 hours

were analyzed by RayBio® Human Angiogenesis Antibody Array C kit (able to detect 43

angiogenic factors), according to the manufacture’s manual. Briefly, array membranes

were incubated with 2 mL of blocking buffer for 30 minutes at room temperature.

Then, 4 mL of supernatant samples were placed into the membranes for 2 hours at

room temperature. After 5 wash steps, 1 mL of biotin-conjugated antibodies were

added to each array, and incubation was performed overnight at 4ºC. Membranes were

washed and incubated with 1 mL of 1000-fold diluted HRP-conjugated streptavidin for

2 hours at room temperature. After washing, detection buffer was used for 2 minutes,

and the array membrane was exposed to Hyperfilm (Amersham Bioscience) to detect

the spots. The films were scanned and analyzed by densitometer using ImageJ (http://

rsb.info.nih.gov/ij/). Positive controls present in each array were used to normalize all

the soluble protein studied.
Enzyme-Linked Immunosorbent Assay (ELISA)

VEGF, IL10, and IL8 secretion were detected by using ELISA. hASCs culture medium

in a static or stretch condition (96 hours) were analyzed according to the manufacture’s

instruction (R&D Systems). Briefly, each plate was incubated with 150 μL blocking buf-

fer (PBS +2% Bovine Serum Albumin) for 2 hours at room temperature. After washing

step, samples were incubated for 18 hours at 4°C. Another washing step was done prior to

antibody enzyme conjugate, 2 hours at room temperature. Incubation with Streptavidin-

HRP was done for reaction detection. Absorbance was read at 450 nm.
Statistical analysis

Gene, protein expression and contraction assay are presented as mean ± standard error

(SEM). Analysis of variance (two-way ANOVA, Bonferroni post-test) was used and

p < 0.05 was considered significant for comparisons. All data are represented as fold in-

duction relative to Static hASCs at 72 hours. NO production was also analyzed via

two-way ANOVA with Tukey post-test (p < 0.05). Student t test was used for cytokine

secretion evaluation and p < 0.01 was considered significant for comparisons.
Results and discussion
Mechanical stretch up to 96 hours was efficiently applied to human adipose-derived

stem cells, indicated by increased expression of phosphorylated ERK (Figure 1A) as

previously reported [26]. After stimulation, these cells were analyzed by contrast phase

microscopy. No morphological change was observed, with the characteristic fibroblast-

like phenotype maintained (Figure 1B). Differentiation into cardiovascular cell pheno-

types was assayed by gene and protein expression of respective molecular markers

http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/


Figure 1 Effects of mechanical stretch per se (12%, 1Hz) on hASCs morphology. (A) Representative
image of phosphorylated ERK expression after 10 and 30 minutes of cyclic strain, which demonstrates
that stretching was efficiently applied to hASCs. (B) Mechanical stimulus up to 96 hours was not able to
promote morphological changes, as demonstrated by microscopy analysis.
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(Figures 2, 3 and 4A-C). Endothelial markers (CD31, KDR, and vWF), analyzed by gene

and protein expression, were not detected in static or in stretched cells (Figure 2A and

2B). Similarly, no induction of cardiomyocyte markers occurred as a result of stretching

(GATA-4, MEF2C, troponin I, α Sarcomeric Actin – Figure 2C-F). Although mechan-

ical stretch did not change these markers, it is interesting to notice that hASCs natur-

ally demonstrated MEF2C gene expression (Figure 2D) and α Sarcomeric Actin protein

expression (Figure 2E, quantification in Figure 2F). Our data also indicate basal expres-

sion of SMC markers (ACTA2, TAGLN, SM-MHC, Calponin) and myogenic co-factor

markers (Myocd, MKL1, MKL2) in static hASCs and this expression pattern was not

modified by mechanical stimulation (Figures 3 and 4A-C). The expression of CD29/

CD90, two immunophenotypic mesenchymal stem cell markers, is maintained in

hASCs after mechanical stimulation, as shown by flow cytometer (Figure 4D). In fact,

there was no difference in CD29/CD90 expression in stretched cells compared to static

hASCs (Figure 4E).

It has been shown that ASCs have the potential to differentiate into ECs [11,27]

SMCs [24,28,29] and cardiomyocytes [12-15]. FGF, VEGF and contact with methylcellu-

lose matrix have all been reported to induce ECs phenotype [11]. Moreover, ASCs also

display the potential to differentiate towards the smooth muscle cell line, once SMC

markers are expressed after chemical treatments, such as angiotensin II and Sphingo-

sylphosphorylcholine (SPC) [24,28]. Additionally, ASCs have already been demon-

strated to differentiate in vitro into cardiomyocytes [12-15]. Cardiac markers were

spontaneously expressed in hASCs after being in culture for 20 days via the paracrine

effect of VEGF secretion [15].



Figure 2 Expression of Endothelial and Cardiomyocyte markers in hASCs that underwent stretching
(12%, 1Hz). (A, B) Endothelial markers in hASCs that underwent stretching for 72 and 96 hours. Saphenous
vein endothelial cells. (A) Representative images of CD31 and KDR gene expression (n = 5). (B) vWF and
KDR protein expression (n = 3). (C-F) Analysis of cardiomyocyte markers in hASCs stretched for 72 and
96 hours. (C) Representative image of GATA4 expression analyzed by RT-PCR (n = 3). (D) MEF2C gene
expression was evaluated by qRT-PCR for 72 hours (n = 5) and for 96 hours (n = 6). Data are represented
as mean ± SEM and relative to 72 hours static hASCs. (E) Troponin I (n = 3) and α-Sarcomeric Actin (n = 4)
representative images of western blot experiment. (F) Quantification of α-Sarcomeric Actin protein expression
(n = 4). Human heart myocardium was used as a positive control. Each bar represents means ± SEM.
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Evidence indicates that mechanical stretch can induce differentiation of ASCs into

the cardiovascular cell phenotype. Balata et al. [30] showed that stretch alone could in-

duce myogenic differentiation in rat ASCs. The authors demonstrated that cyclic uni-

axial strain (10%, 1Hz) for 24 hours increased the gene expression of myogenic

markers (Myod, Myog and Myh2), and this pattern was even greater when associated

with chemical factors. Recently, similar results have also been reported in hASCs. Pro-

tein expression (by immunofluorescence) and the presence of multi-nucleated myo-

tubes showed myogenic differentiation after 7 days (up to 21) of uniaxial strain

(1 hour/day, 11%, 0.5Hz) [31]. In addition, Lee et al. showed a reduction in protein ex-

pression of some smooth muscle markers (ACTA2 and Calponin) in hASCs after 7 days

[32]. The same mechanical stimulation was performed (cyclic uniaxial strain); however,

the strain was constant at 10%, 1Hz.

The potential differentiation of ASCs into cardiomyocytes by mechanical stimulation

has also been demonstrated. Rat bone marrow derived stem cells that underwent cyclic



Figure 3 Expression of Smooth Muscle Cell markers in hASCs that underwent stretching (12%, 1Hz).
(A) Calponin and (B) SM-MHC gene expression were analyzed by RT-PCR after strain for 72 (n = 5) or 96 hours
(n = 6). Each bar represents means ± SEM. (C) ACTA2 and (D) TAGLN gene expression were evaluated by
qRT-PCR after stretching for 72 (n = 5) or 96 hours (n = 6). Data are represented as means ± SEM. All data
are represented as fold induction relative to Static hASCs at 72 hours.

Figure 4 Expression of myogenic co-factors and mesenchymal markers in stretched hASCs (12%,
1Hz). (A) Myocd, (B) MKL1 and (C) MKL2 gene expression were analyzed by RT-PCR after strain for 72
(n = 5) or 96 hours (n = 6). Each bar represents means ± SEM. (D) Representative dot blot and (E) percentage
quantification of CD29/CD90 positive mesenchymal markers in static and stretched hASCs for 96 hours
analyzed by flow cytometer (n = 4). Bar represents means ± SEM.
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uniaxial strain for 24 hours (up to 72 h) were differentiated into cardiomyocytes dem-

onstrated by an increase in gene expression (GATA4, MEF2C, β-MHC, NKx2.5) [33].

Thus, although there is evidence of ASCs differentiation into cardiovascular cells

in vitro, our data indicate that stretch per se under the described experimental condi-

tions is not sufficient to induce any of these reported phenotypes. The culture of

hASCs has been extensively characterized in our laboratory. We have demonstrated

that human ASCs display constant population doubling time, are non-senescent up to

the 15th passage and have the potential to differentiate into adipogenic and osteogenic

lineages [22]. In the present work, most of the experiments were performed using cells

between passage 4 and 8. No difference was observed in the results obtained from cells

at different passages (data not shown). Corroborating our results, Yong Guo et al. [34]

demonstrated that mechanical stretch (8% elongation for 10 days) has no effect on rat

ASCs’ differentiation into cardiomyocytes, even though this stimulus accelerated the

differentiation of rat ASCs treated with 5-azacytidine, highlighting the complex inter-

play between a variety of factors associated with the differentiation.

We have previously demonstrated that shear stress per se is also not able to induce

endothelial markers in human and porcine ASCs, but it induced NO-dependent VEGF

production [20] [Dariolli R, data unpublished]. In contrast, the present results demon-

strate that NO release was not significantly different when comparing static and

stretched cells for 72 and 96 hours (static 72 h: 0.51 ± 0.10; stretched 72 h: 0.49 ± 0.15;

static 96 h: 0.55 ± 0.03; stretched 96 h: 0.80 ± 0.07 nmol/104 cells; n = 8 independent ex-

periments). To assess secreted factors that potentially can influence processes triggered

by tissue ischemia, we verified the profile of 43 cytokines secreted by hASCs while

stretched. Static hASCs showed an exuberant basal cytokine secretion profile including

GRO, IL-6, IL-8, Tissue Inhibitor of Metalloproteinase 1 (TIMP-1), TIMP-2 and Mono-

cyte Chemotactic Protein 1 (MCP-1). On the other hand, Transforming Growth Factor

Beta 1(TGFβ1), bFGF, Granulocyte Macrophage Colony Stimulating Factor (GM-CSF)

and IL-10 displayed lower expression (Figure 5). Interestingly, there was no alteration

in the cytokine expression profile of hASCs exposed to 96 hours of mechanical stretch

(Figure 6). The ELISA assay was also used to detect VEGF, IL8 and IL10, and no differ-

ence was observed in hASCs both static and stretched for 96 hours, confirming data

obtained with antibody array (Table 3).

Similar to that described for mesenchymal stem cells from blood cord and bone mar-

row [35,36], hASCs display an exuberant secretion capacity (Figures 5 and 6). This is

consistent with the finding that ASCs from different sources of adipose tissue secrete

soluble angiogenic and anti-apoptotic factors able to improve vascular ischemic dis-

eases [37,38]. In addition, it has been reported that expression of pro-inflammatory cy-

tokines after myocardial infarction can be beneficial to cardiac repair and the balance

of those cytokines is important in initiating the angiogenic process [39-41]. Angiogen-

esis begins after low oxygen tension and requires enzymatic degradation of extracellular

matrix, endothelial cell proliferation and migration to form new vessels [42-45]. In this

context, the balance between MMP (Matrix Metalloproteinase) and TIMP activity will

determine the ongoing angiogenic process. Moreover, TIMP have been considered

multifunctional proteins, which besides their metalloproteinase inhibitor activity have

the ability to induce growth of endothelial cells and anti-apoptotic activity [46-50].

Since hASCs showed a great amount of TIMP-1 and TIMP-2 (Figure 5) release, one



Figure 5 Basal cytokine profile secreted by hASCs. The upper right insert is a representative image
of the array membrane incubated with conditioned medium of hASCs under static condition. All the 43
angiogenic factors were plotted as arbitrary unit intensity normalized by positive controls present in each
array. Each bar represents mean ± SEM of 4 independent experiments.

Figure 6 Cytokine profile secreted by hASCs that underwent stretching (12%, 1Hz) for 96 hours.
Data are represented as fold change secretion of stretched hASCs compared to static hASCs (n = 4,
independent experiments). The gray line represents the level of secretion of static hASCs (Figure 5).
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Table 3 VEGF, IL8 and IL10 secretion by hASCs (96 hours) detected by ELISA

Cytokine Static hASC (pg/mL) Stretched hASC (pg/mL) n

VEGF 110.9 ± 68.8 132.8 ± 55.7 8

IL8 2513.2 ± 139.3 2523.5 ± 284.1 8

IL10 14.56 ± 2.29 11.32 ± 5.39 8
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can speculate that these cells might also contribute to the angiogenesis observed during

tissue remodeling.

hASCs that underwent mechanical stimulation for 96 hours were tested by means

of functional contraction assay in collagen gel (Figure 7A). We observed that these

cells have contraction ability, corroborating data described by other laboratories

[24,28,29,51]. Indeed, this is consistent with the gene expression profile of some con-

tractile proteins studied in this work (Figures 3, 4A-C), and justifies the basal contrac-

tion potential similar to that of SMCs (32.3 ± 13% vs. 29.9 ± 10.9%, at 48 hours, n = 4).

Mechanical stretch for 96 hours resulted in no change in this phenotype (28.1 ± 12.2%)

(Figure 7B). On the other hand, it has been reported that hASCs chemical treatment,
Figure 7 Contraction assay of hASCs that underwent mechanical stimulation (12%, 1Hz). (A)
Illustrative image from collagen gel discs with no cells and with endothelial cells (ECs), smooth muscle cells
(SMCs), static hASCs or 96 hours stretched hASCs. ECs and SMCs from human saphenous vein were used
as negative and positive controls of contraction, respectively. (B) Quantification of gel disc contraction
was analyzed after 48 hours (hASCs, n = 7; SMCs n = 4; ECs, n = 2). Relative lattice area was obtained by
measuring the final dimensions in comparison with its initial area. The bars represent means ± SD and *
indicates p < 0.01 compared to 0 h. Sample sizes indicate data from independent experiments.
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such as SPC or TGFβ, promotes increments in cell contraction [28,51]. Kim et al. dem-

onstrated that U46619 (Thromboxane A2 mimetic) treatment for 96 hours induces

hASCs expression of some contractile proteins, which was associated with an almost

60% increase in contractility of these cells [29]. The native contractile properties of

hASCs could limit infarct growth and prevent cardiac function deterioration. These

findings could explain, at least in part, the beneficial cardiac post-MI outcomes associ-

ated with ASCs transplantation using different experimental models [52-54].

It is widely accepted that ASCs display secretion capacity and contraction properties

as we also demonstrate in the present work. In addition to that, we demonstrate that

mechanical stretch per se was not able to modify their properties. Since implanted cells

in the ischemic heart are in a peculiar niche caused by the hypoxic condition and the

pulsatile contraction of this organ, we are currently investigating the secretory profile

of these cells when stimulated with mechanical stretch and hypoxia, as seen under the

tissue ischemic microenvironment.

Conclusions
Taken together, we provide evidence that hASCs secrete a variety of factors and display

contractile properties. These phenotypic characteristics may contribute to the beneficial

pleiotropic effects on cardiac post-MI outcomes associated with ASCs transplantation.

Even though stretch per se did not influence these properties, the association of mech-

anical and chemical stimuli, as seen under the tissue ischemic microenvironment,

deserves to be further explored to better understand the beneficial pleiotropic effects

on cardiac post-MI outcomes associated with ASCs transplantation.
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